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Abstract. Vision-language models (VLMs) are intensively used in
many downstream tasks, including those requiring assessments of
individuals appearing in the images. While VLMs perform well in
simple single-person scenarios, in real-world applications, we often
face complex situations in which there are persons of different gen-
ders doing different activities. We show that in such cases, VLMs
are biased towards identifying the individual with the expected gen-
der (according to ingrained gender stereotypes in the model or other
forms of sample selection bias) as the performer of the activity. We
refer to this bias in associating an activity with the gender of its
actual performer in an image or text as the Gender-Activity Bind-
ing (GAB) bias and analyze how this bias is internalized in VLMs.
To assess this bias, we have introduced the GAB dataset with ap-
proximately 5500 AI-generated images that represent a variety of
activities, addressing the scarcity of real-world images for some sce-
narios. To have extensive quality control, the generated images are
evaluated for their diversity, quality, and realism. We have tested 12
renowned pre-trained VLMs on this dataset in the context of text-to-
image and image-to-text retrieval to measure the effect of this bias
on their predictions. Additionally, we have carried out supplemen-
tary experiments to quantify the bias in VLMs’ text encoders and to
evaluate VLMs’ capability to recognize activities. Our experiments
indicate that VLMs experience an average performance decline of
about 13.2% when confronted with gender-activity binding bias.

1 Introduction

Nowadays large multi-modal models have shown tremendous poten-
tial in various tasks, from information retrieval systems to image cap-
tioning, visual question answering, image generation, and visual rea-
soning. As a branch of multi-modal models, Vision-Language Mod-
els (VLMs) [23] that provide a shared cross-modal embedding space
between text and image modalities, have been intensively investi-
gated by researchers recently and are used in many real-world appli-
cations [41, 25, 11].

Despite their wide range of success in downstream tasks, VLMs
are subject to many critical biases, which can consequently affect
their performance, especially in sensitive applications. For example,
Agarwal et al. [3] provides a comprehensive analysis of biases and

∗ Corresponding Author. Email: soleymani@sharif.edu.
1 Equal contribution.

their implications in the CLIP Models, revealing how this model is
exposed to gender biases and how challenging it is to trust it in real-
world applications. As Srinivasan and Bisk [29] and Lee et al. [18]
state, the bias is introduced in visual-linguistic pre-training due to
unfairness in the training data, and additionally, at inference time, the
visual and linguistic contexts that is used for few-shot applications
can also promote bias.

One important type of bias, which is highly discussed in the liter-
ature, is the gender bias. Gender bias demonstrates the undesirable
association of a factor with a gender according to the model. For in-
stance, due to the high occurrence of data in which men are repairing
devices, this activity is usually associated with men by deep mod-
els, which leads to failure when faced with women repairing devices.
Hall et al. [12] suggests that different VLMs do not perform equally
well on determining gender for an occupation, and do not assign
equal retrieval likelihood to images of male and female professionals.
Also, Lee et al. [18] and Wang et al. [33] show that CLIP [23] shows
biased behavior in retrieval based on gender-neutral queries. Please
note that, in line with common practice in the literature, our focus is
on two genders, masculine and feminine. This approach streamlines
the process of generating the dataset and analyzing the experiments.

In this research, we delve into the issue of gender-activity bind-
ing in retrieval tasks. We aim to retrieve the corresponding caption
or image from two given captions or images, each depicting an ac-
tivity performed by a different gender, based on a provided image
or caption that shows one of the genders performing the activity. We
refer to this bias in associating gender and activity as the Gender-
Activity Binding (GAB) bias. This bias arises due to ingrained gender
stereotypes in the model or other types of sample selection biases [5].
Our research indicates that VLMs do not display a substantial bias
in retrieval tasks when both text and image modalities depict only
one gender. This is because the identification of the performer’s gen-
der can directly lead to the correct output, eliminating the need to
bind the performed activity with the performer’s gender. However,
text encoders have shown a considerable bias towards the expected
gender. The bias becomes more pronounced when the scene is more
complex, i.e., when two individuals of different genders are present
in the image. We observe a drop in retrieval accuracy in scenarios
where the activity performer is the unexpected gender. For example,
in the context of the “repairing” activity, the retrieval accuracy of
VLMs in identifying the performer decreases when a woman is re-

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240555

729



pairing a device and a man is also present in the scene. This is in
comparison with scenarios where the performer is a man, or there is
no man present in the scene to associate the activity with him.

The significance of this bias escalates when we consider its un-
derlying implications. Not only does it perpetuate societal biases and
fairness concerns related to gender stereotypes, but it can also lead to
serious complications if incorporated into judgement and decision-
making systems. The potential for such bias to inadvertently influ-
ence outcomes underscores the importance of addressing it.

We have created a dataset known as the Gender-Activity Binding
(GAB) dataset as shown in Figure 1(a). This dataset comprises im-
ages depicting various activities performed by men or women in dif-
ferent contexts (with or without the presence of an individual of the
opposite gender), each accompanied by a descriptive caption. Given
that our scenarios are uncommon due to biases and stereotypes, suit-
able real-world images are scarce for evaluation purposes. To address
this issue, all images are generated using DALL-E 32. We employ ex-
tensive prompt enhancement techniques to ensure the diversity and
quality of the generated images. We also evaluated the generated im-
ages on diversity, quality, and realism. We performed multiple quan-
titative assessments consisting of Fréchet Inception Distance (FID),
Structural Similarity Index (SSIM), Learned Perceptual Image Patch
Similarity (LPIPS), and coverage score[21] for quality and diversity
assessment, and human feedback for a final qualitative assessment
to ensure the final results accurately represent the intended activities
and their related contexts. The activities included in GAB dataset are
sourced from various places to encapsulate societal gender stereo-
types and other activities that are statistically biased towards a spe-
cific gender, as observed in the LAION-400M dataset [26].

We benchmark the performance of 12 renowned multi-modal
foundation models and assess their performance in terms of text-
to-image retrieval, image-to-text retrieval, and recognizing activities
on GAB dataset as shown in Figure 1(b). Specifically, in the image-
to-text retrieval task, we observed that while an unexpected gender
is doing a stereotypically biased activity, the average performance
of VLMs declined by approximately 33.2% due to the presence of
the expected gender in the scene. Moreover, VLMs undergo an av-
erage accuracy reduction of approximately 13.2% when encounter-
ing gender-activity binding bias. On the other hand, in the text-to-
image retrieval task, most VLMs achieve an accuracy of approxi-
mately 50%, indicating that their performance is nearly random, and
they fail to recognize the performer of the activity based on the text.

As far as we are aware, this research is the first to delve into
the origins of the association between genders and activities in
vision-language models by conducting a thorough analysis both
image-to-text and text-to-image retrieval accuracy of VLMs. It en-
compasses not only straightforward scenarios involving single in-
dividuals, where VLMs demonstrate high accuracy for both gen-
ders [15, 4, 30], but also more complex situations with individuals
of different genders [12]. This comprehensive approach allows us to
isolate the impact of the complexity of the scenario on performance
decline [32] and more accurately measure the Gender-Activity Bind-
ing bias. Additionally, the study carries out supplementary experi-
ments to investigate the bias in VLMs’ text encoders and their profi-
ciency in recognizing activities.34

To summarize, our contributions are as follows:

2 https://openai.com/dall-e3
3 Supplementary materials are available on Arxiv [1]:
https://arxiv.org/abs/2407.21001

4 The dataset and codes for reproducing results are available on Github [2]:
https://github.com/sharif-ml-lab/GABInsight

• We have created a novel dataset, known as the gender-activity
binding dataset. This dataset includes AI-generated images of var-
ious activities that are typically associated with a specific gender,
and are excellent in terms of diversity, quality, and realness (Sec-
tion 3).

• We conduct an intensive performance benchmark of well-known
vision-language models in retrieval tasks to assess their robustness
against the Gender-Activity Binding bias. Our findings reveal that
when two individuals of different genders are present, VLMs ex-
hibit a bias towards binding the activity with the gender that is
expected to perform it, resulting in a 13.2% drop in retrieval ac-
curacy. However, in scenarios involving a single individual, these
models demonstrate high image-to-text retrieval accuracy. We also
demonstrate that VLMs lack the ability to bind gender and activity
in text-to-image retrieval tasks (Section 4).

• We carry out additional experiments to investigate the binding
bias in VLMs’ capability to comprehend activities and the bias
present in their text encoders (Section 4 and the Supplementary
Material [1]). We delve into the insights that can be derived about
how VLMs internalize this bias and its impact on the shared em-
bedding space of VLMs (Section 5).

2 Gender-Activity Binding Bias

Despite the recent increase in large-scale data collection, it’s impor-
tant to note that these datasets are not necessarily devoid of biases.
These biases can manifest in large datasets derived from real-world
distributions, primarily due to sample selection bias. The issue causes
VLMs to have varying levels of accuracy in recognizing the per-
former of an activity depending on the gender of the individual in-
volved [40]. We refer to this bias in associating an activity with the
gender of its actual performer in an image or text as Gender-Activity
Binding Bias.

Consider an image-to-text retrieval task, where we have two pieces
of text C1 and C2, each describing an activity performed by a differ-
ent gender. We also have an image I1 depicting a person (either a
man or a woman) performing an action. The task is to match the im-
age with the correct piece of text (Figure 1-(b) left). Also, consider
the text-to-image retrieval task, where we have two images I1 and I2,
each showing an activity being performed by a specific gender, and
we want to retrieve the correct image based on a given piece of text
C1 (Figure 1-(b) right). The Gender-Activity Binding bias manifests
as a decline in the retrieval accuracy of VLMs when they incorrectly
identify the gender of an individual performing activities typically
associated with a different gender.

Let’s denote the probability of a VLM correctly identifying the
performer of an activity in a data i (image or text) as p, the activity
as a, and the gender as g. Ideally, the probability p(g|a, i) should be
equal for all g. However, because of the co-occurrence of gender g
of the performer and the activity in the dataset, which is referred to
as sample selection bias [5], the gender of the performer becomes
correlated with the activity. Thus, we often find that p(g1|a, i) >
p(g2|a, i), where g1 and g2 represent different genders and g1 shows
the expected gender for the performer of a. In simple terms, VLMs
tend to incorrectly select the text or image because they are biased
towards associating the activity with a specific gender. This is not
always accurate, leading to errors in scenarios where the activity is
performed by the less expected gender.

The accuracy of models in image and text retrieval tasks is as-
sessed in two scenarios: one where only a person of an unexpected
gender (in terms of the bias) is depicted or described in the text or im-
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Figure 1. Overview of (a) the creation process of the introduced dataset and (b) the empirical tests conducted to assess the gender-activity binding bias in
retrieval tasks within vision-language models. (a) Left: we gather three sets of activities that show bias, including stereotypical, everyday activities, and those

that exhibit gender bias in the captions of LAION-400M [26]. Middle: we employ prompt enhancement techniques to develop a diverse, descriptive, and
detailed prompt from a basic initial one, aiding us in generating a wider range of images with superior quality and realism. Right: we utilize DALL-E 3 to

construct our dataset based on the enhanced prompts. The generated images are selected to align with the activity and scenario and are evaluated for diversity,
quality, and realness to achieve a high score based on standard metrics. (b) Middle: joint embedding space of text and images in vision-language models.
Left/Right: an overview of image-to-text/text-to-image retrieval tasks. The caption/image with the highest cosine similarity to the input image/caption is

retrieved.

age, and another where both genders are present in the data, but the
activity is performed by only one of them. Consequently, the impact
of the bias can be observed as a decrease in accuracy in two situa-
tions: when the expected gender is absent or present, and when the
activity is performed by the unexpected or expected gender. These
cases together provide better insights into how these models han-
dle gender-activity associations under different conditions. The first
scenario allows us to understand how well the models can recog-
nize and correctly associate an activity with an unexpected gender
when the other gender is not present. This helps us gauge the mod-
els’ ability to break away from societal stereotypes and biases. The
second scenario, on the other hand, tests the models’ ability to cor-
rectly identify the performer of an activity when both genders are
present, which is a more complex and realistic situation. This indi-
cates these biases affect the models’ performance in real-world sce-
narios. Together, these cases provide a comprehensive understanding
of the models’ strengths and weaknesses in handling gender-activity
binding, paving the way for targeted improvements to mitigate the
gender-activity binding bias.

3 Dataset

This section details the creation process of the Gender-Activity Bind-
ing (GAB) Dataset, which serves to evaluate various VLMs against
the gender-activity binding bias we have identified and their ability
to associate activities with performers. This dataset comprises AI-

generated images that illustrate a variety of activities with potential
subjects of both genders.

3.1 Overview of the dataset

The GAB dataset divides images into four distinct groups:

1. In two groups, both genders are present in the scene. In one of
these groups, the expected gender is performing the activity while
the other gender is just present in the image. In the other group,
the unexpected gender is performing the activity while the other
gender is also in the scene.

2. In the next two groups, only one gender is present in the scene. In
one of these groups, the expected gender is performing the action.
In the other group, the scenario is reversed, with the unexpected
gender acting.

For each activity, with respect to these groupings, we can consider
four groups based on the performer of the activity (expected (E) or
unexpected (U)) and the number of persons (with different genders)
in the scene (1 or 2): E1, E2, U1, U2.

For each image in the dataset, we have templates that are replaced
with activity or gender identifiers ("man" and "woman") in accor-
dance with the designed experiments. Details of the experiments and
these replacements can be found in Section 4. The template for im-
ages containing two genders is: "a <man/woman> is <doing activity>
and a <woman/man> is in the scene," and for images containing one
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gender, the template is: "a <man/woman> is <doing activity>." This
specific template can also be used for images with two genders.

Each of the mentioned groups contains at least 26 images for each
activity, resulting in a total of 5500 images.

This dataset structure facilitates the evaluation of gender-activity
binding bias and the ability of VLMs to bind and recognize activities
by defining different retrieval tasks, as you can see in Section 4.

The pipeline of the dataset creation is shown in Figure 1(a).

3.2 Selection of Activities

We proposed three methods to identify the biased activities, all uti-
lizing Masked Language Modeling (MLM) as part of their approach
to detecting biased activities. We utilized the ’RoBERTa-large’ [20]
model for its superior performance in masked token prediction,
which was attributed to its objective function. The sentences are for-
matted as "a <mask> is doing <activity>".5 We then calculate the
probabilities associated with "man" and "woman" (as well as related
masculine and feminine identifiers like "boy" and "girl"), from which
we calculate the log ratios as follows.

bias(sentence) = log

(
P (mask = man|sentence)

P (mask = woman|sentence)
)

(1)

3.2.1 Stereotyped Activities from GPT

Our first method involved using GPT-4 to request activities stereo-
typically associated with men or women in society. We provided
over 100 activities from GPT-4 and formed sentences by replacing
the <activity> token in the template of ’a <mask> is doing <activ-
ity>’. We then input these sentences into the RoBERTa model and
calculated the log ratio.

We applied this methodology separately for activities stereotypi-
cally associated with each gender. For men, this resulted in a normal
distribution6 with a positive mean (μ > 0), from which we chose
the sentences at the rightmost end. Similarly, for women, it also re-
sulted in a normal distribution but with a negative mean (μ < 0),
from which we then chose the sentences at the leftmost end.

3.2.2 Everyday Activities from GPT

In our second approach, we used GPT-4 to compile a list exceeding
1,000 sentences related to hobbies, jobs, and everyday activities. We
then masked the subjects of the sentences just like in the first method
and asked the RoBERTa model to fill the mask. We stored the log
ratios of predicted probabilities. The log ratios formed a normal dis-
tribution, from which we selected sentences at each end.

3.2.3 Activities from LAION-400M Dataset

In the third method, we used the LAION-400M [26] dataset, which
consists of 400 million image-caption pairs. We filtered out the
NSFW7 pairs and sampled 20 million pairs randomly. We then ex-
tracted the verbs, subjects, and objects of all caption sentences using
spaCy [14], a natural language processing toolkit. We counted the
number of masculine and feminine subjects for each verb-object pair

5 <mask> is the special mask token of the RoBERTa model
6 All the tests, including log ratios, formed normal distributions that we tested
using the Shapiro–Wilk test for normality

7 ’Not Safe For Work’. In this context, it refers specifically to content involv-
ing nudity, vulgarity, or violence.

and calculated their log ratios. This also formed a normal distribu-
tion.

We then used the Z-test to determine whether each verb-object
pair had a significantly different ratio compared to the mean of all
verb-object pairs. This test is appropriate due to the large dataset size
of LAION-400M. By checking if differences are statistically signif-
icant, we identify biased activities. This method enhances the reli-
ability of our activities by ensuring they are not a result of random
variance or outliers. Then, we created sentences with the biased verb-
object pairs, masked the subject, and submitted them to the RoBERTa
model to fill the mask, conducting the same experiment as in the pre-
vious methods to select the biased activities.

3.3 Generation

The generation process consisted of two phases. The first phase in-
volved generating a good prompt that helped the image generation
system meet the criteria given below, derived from the base sentence.
The second phase involved generating the image from the prompt.
The generated images should accurately represent the original activ-
ity, look natural and high quality, and be diverse.

We used a Large Language Model (LLM) to generate diverse
prompts while also keeping the original activity intact (Details about
the utilized LLM are provided in the Supplementary Material [1]).
We then created a list of predefined settings like the environment
of the house, the skin color of the person, etc. We created a list
of different combinations of these settings and encoded them using
MiniLM [34] sentence transformer [24]. We then clustered them into
K8 clusters and sampled N

K
samples from each cluster to enforce

more diversity semantically among N selected prompts. We then
generated a set of diverse prompts based on the selected prompts
by instructing Llama2 to generate diverse prompts that maintain the
original activity while describing the environment and the settings.
Using these prompts, the generated images were significantly im-
proved in quality and detail. Among the various image generation
options we explored, we ultimately selected DALL-E3 [22] as our
final solution for image generation (detailed in the Supplementary
Material [1]).

3.4 Image Filtering Methodology

Our image filtering methodology employs a combination of auto-
mated metrics and human evaluation to ensure the generated images
are of high quality, relevant, and diverse.

3.4.1 Quality Assessment

The quality of generated images was assessed using the Fréchet In-
ception Distance (FID) [13]. The FID score aims to measure the sim-
ilarity between the generated images and a set of reference images
(in this work, we selected images from the COCO [13] dataset that
contain at least one human in the scene). To achieve high-quality
images, we initially filtered out images with high Fréchet Inception
Distance (FID) scores. Furthermore, for an image to pass our qual-
ity assessment, individuals must constitute at least 15% of the de-
tected objects and must have a detectable face, as confirmed by the
MTCNN model. The FID score for images in the whole dataset is
11.9. It’s worth mentioning that the FID scores for both expected
(E1 and E2) and unexpected (U1 and U2) categories of images are

8 K = 6 which resulted in sufficient diversity in our experiments
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12.1 and 11.7, respectively, signifying an acceptable level of quality
across all scenarios.

3.4.2 Diversity Metrics

To ensure image diversity, we employed the Structural Similarity
Index (SSIM) [35], the Learned Perceptual Image Patch Similarity
(LPIPS) [39], and the coverage [21] metrics.

SSIM compares images on a per-region basis. Lower SSIM in-
dicates greater diversity. Our target mean SSIM threshold across all
image pairs is 0.046. It’s also worth mentioning that the SSIM for the
expected (E1 and E2) and unexpected (U1 and U2) categories of im-
ages are 0.046 and 0.045, respectively. This indicates a satisfactory
level of diversity in both image categories.

LPIPS measures the perceptual similarity between two images, us-
ing deep network features to closely mimic human visual perception.
To indicate greater diversity, we aim for higher LPIPS values, set-
ting the mean target for all pairs at 0.66. Also, the LPIPS scores for
the expected (E1 and E2) and unexpected (U1 and U2) categories of
images are 0.66 and 0.65, respectively.

In our analysis of the GAB dataset’s diversity, we also report the
coverage [21], which measures how well the GAB dataset’s distri-
bution aligns with that of the COCO dataset. This is done by cal-
culating the proportion of real samples from the COCO dataset for
which there exists a similar sample in the GAB dataset (in this work,
the used samples of COCO contain at least one human in the scene).
Using the ViT-base-16-224 [36, 9] model, the coverage scores for
the entire dataset, as well as for the expected (E1 and E2) and unex-
pected (U1 and U2) categories, are 0.71, 0.73, and 0.75, respectively.
These scores indicate that the GAB dataset effectively represents the
diversity found in the COCO dataset.

3.4.3 Human Feedback

After quantitative evaluations, we performed a qualitative analysis
with human feedback. This involved scrutinizing images for align-
ment with the desired activities and contexts. Images that did not
align with the activities or did not depict the intended subjects were
removed. Additionally, images with unrealistic or nonsensical ele-
ments, and those appearing abnormal to an external observer, were
excluded.

Following this step, a list of images that have passed both quanti-
tative and qualitative evaluations is obtained. As a result, the images
are diverse, high-quality, and realistic while also meeting our criteria
for the generation phase.

4 Experiments

We designed several experiments on our proposed GAB dataset to
evaluate Vision-LanguageModels in text-to-image and image-to-text
retrieval tasks, as shown in Figure 1(b). Based on these experiments,
we assessed the defined gender-activity binding bias and the ability
of VLMs to recognize gender-biased activities. Finally, we evaluated
the bias in the text encoders and image encoders of different VLMs
separately.

4.1 Setup

4.1.1 Task Definitions

The experiments we have designed to assess the performance of
VLMs on the aforementioned aspects are grounded in their zero-shot

performance on both text-to-image and image-to-text retrieval tasks.
More formally, consider the space of images as I and the space

of captions as C. Also consider a VLM with an image encoder EI :
I → R

D and a text encoder EC : C → R
D , that map images and

texts respectively to a shared embedding space, which is shown in the
middle box in Figure 1(b). We can define a matching score function
s : I × C → R

+, which measures the similarity between a caption
and an image, as the cosine similarity between the embedding of an
image I and the embedding of a caption C:

s(I, C) =
EI(I).EC(C)

‖EI(I)‖‖EC(C)‖ . (2)

Text-to-image retrieval involves finding the image that best
matches a given text from a collection of images. Conversely, image-
to-text retrieval is about finding the text that best describes a given
image. We compute the similarity using the previously defined sim-
ilarity measure in the upcoming experiments. For the text-to-image
retrieval task, we have a caption C and make comparisons between
two images: I , which shows an image corresponding to the caption
C, and IR, which corresponds toCR (obtained by reversing the gen-
der of subjects in C). Similarly, for the image-to-text retrieval task,
we have an image I and make comparisons between two captions C
and CR.

4.1.2 Selected Vision-Language Models

In our experiments, we benchmarked 12 VLMs and presented the re-
sults of various tests. To compare the effects of patch size and back-
bone size, we reported the results for 4 CLIP models released by
OpenAI [23], each with different backbones and patch sizes.

Another model selected for evaluation is NegCLIP [38], a version
of the CLIP-ViT-B-32 model by OpenAI [23] which is fine-tuned on
a modified subset of the Visual Genome Dataset [17] annotations.
NegCLIP is fine-tuned to purportedly enhance the base model’s per-
formance on tasks requiring relational and activity understanding.

We also included results for several recently proposed VLMs,
including Eva01 [10] and Eva02 [31], FLAVA [28], ALIGN [16],
COCA [37], and AltCLIP [7].

4.2 Results

4.2.1 Image-to-Text Retrieval

We assess the performance of the models discussed in Section 4.1.2
on the GAB dataset and calculate their accuracy in retrieving the
correct caption as outlined in Section 4.1. We employ a caption
template of the form: “a <man/woman> is <doing activity> and
a <woman/man> is in the scene”. The results for activities that are
stereotypically biased are presented in Figure 2, while the results for
the other two groups of activities are provided in the Supplementary
Material [1].

In this experiment, we assessed image-to-text retrieval across three
distinct scenarios. The first scenario involves images where an in-
dividual of an unexpected gender is performing a typically biased
activity with no other individuals present in the scene. The second
scenario comprises images where both genders are present, and the
activity is performed by the gender typically associated with it. The
third scenario mirrors the second, but in this case, the activity is per-
formed by the gender not typically associated with it.
Performance Drop Due to Presence of Expected Gender: As de-
picted in Figure 2, there is a noticeable drop in the accuracy of the
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Figure 2. Average retrieval accuracy of VLMs on the image-to-text
retrieval task across various scenarios. The chart highlights the performance
drop between these scenarios for each model. The purple bar represents the
accuracy in the scenario where the unexpected gender is performing the

activity in the reference image, while the expected gender is also present in
the scene. The red bar corresponds to the accuracy in the reverse scenario,
where the expected gender is performing the activity. The blue bar denotes
the scenario where the unexpected gender is performing the activity and is

the only one present in the scene.

Figure 3. Average retrieval accuracy of VLMs on the image-to-text
retrieval task for the E1 and U1 categories of images on stereotypical

activities. The purple (left-hand) bar represents the accuracy in the scenario
where the unexpected gender is performing the activity in the reference
image and is alone in the scene. The blue (right-hand) bar denotes the

scenario where the expected gender is performing the activity and is the only
one present in the scene. In this task, the template is “a <man/woman> is

<doing activity>”.

models when the scene includes two genders compared to scenarios
where only the unexpected gender is present and performing the ac-
tivity associated with bias. The chart reveals that VLMs experience
an average performance decline of approximately 33.2%. However,
a few models demonstrate only a slight decrease in performance.
Performance Drop Due to Gender-Activity Binding Bias: In the
scenarios where there are two individuals present at the scene, the
majority of models display a substantial decline in retrieval accuracy
when the action is performed by an individual of the unexpected gen-
der. As indicated in Figure 2, the VLMs undergo an average accuracy
reduction of approximately 13.2% when encountering gender activ-
ity binding bias.

Note that, as illustrated in Figure 3, the models demonstrate satis-
factory performance in the Image-to-Text retrieval task on both im-
age scenarios of U1 and E1, indicating that the gender bias adversely
affects the performance of the models only when there is more than
one individual in the image. Additionally, the accuracy of the models
remains consistent, regardless of whether the expected or unexpected

gender is performing the activity. The models’ average performance
in both scenarios is approximately 80%.

4.2.2 Text Encoder Bias

Given an activity a, consider e, u ∈ {man,woman} where e is the
expected gender of the individual performing a and u is the unex-
pected one. To separately assess the bias of the text encoder, we de-
termine the frequency at which the embedding of a gender-neutral
sentence "a person is <doing activity>" is closer to the embedding of
"a e is <doing activity>" than the embedding of "a u is <doing activ-
ity>". The outcomes are presented in Table 1. It can be observed that
in all categories of the gathered activities, the majority of activities
exhibit a bias towards the expected gender.

Table 1. Bias of the text encoder for each model. Taking into account the
template “a <mask> is <doing activity>”, the table shows the proportion of
activities where substituting <mask> with the gender-neutral term “person”
results in a higher matching score (Eq. 2) in the embedding space compared
to the instance in which <mask> is replaced by the expected gender reference

(woman/man) compared to the unexpected one. The columns denote the
collected activities across different categories as outlined in Section 3.2.

Model LAION-400M Biased GPT Gathered Biased Stereotype
Activities Biased Activities Activities

AltCLIP 0.80 0.73 0.91
EVA01-g-14 0.80 0.80 0.92
EVA02-L-14 0.80 0.80 0.92
CLIP-RN50x64 0.50 0.60 0.59
CLIP-ViT-B-16 0.70 0.60 0.83
NegCLIP-ViT-B-32 0.70 0.60 0.75
CLIP-ViT-B-32 0.60 0.66 0.59
CLIP-ViT-L-14 0.60 0.73 0.83
COCA-ViT-B-32 0.90 0.93 0.92
COCA-ViT-L-14 1.00 0.93 0.92
Flava 0.70 0.53 0.75
Align 0.90 1.00 1.00

4.2.3 Text-to-Image Retrieval

Figure 4 illustrates the accuracy of VLMs in the task of text-to-image
retrieval. For each activity, we form random pairs of images from E2
and U29. Each model is then evaluated for its ability to retrieve the
image that best matches captions formatted as "a <man/woman> is
<doing activity> and a <woman/man> is in the scene." As can be
seen in Figure 4, VLMs achieve an accuracy of approximately 50%,
indicating that their performance is nearly random in this task. In
essence, the benchmarked models do not seem to comprehend the
properties of the given images that would aid in retrieving the correct
one given embedded information from the caption, i.e., they fail to
recognize the performer of the activity based on the text.

4.2.4 Activity Recognition

To investigate whether gender bias in associating certain activities
with specific genders arises from a misunderstanding of the activi-
ties themselves, we evaluated the model’s comprehension of these
activities. We collected several alternative activities performed in the
same environment as the reference activity for each entry in the GAB
dataset. For each image, we generated captions based on both the ref-
erence activity and the collected alternative activities. These captions
were then ranked by their matching scores with the image.

9 Pairing is in the form of one-to-one correspondence.
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Figure 4. Average accuracy of models in the text-to-image retrieval tasks.
The images are sourced from the E2 and U2 groups, which are images that
feature two individuals of different genders. The performance of models on

the U2 and E2 groups is represented by the purple (left-hand) and blue
(right-hand) bars, respectively. Additionally, the red (upper) and black
(lower) dashed lines depict the average performance for the U2 and E2

groups, respectively.

We report the mean reciprocal rank (MRR), recall@1, and re-
call@3 for the true caption (reference activity) in the context of ev-
eryday activities (Section 3.2.2) in Table 2 (see Supplementary Ma-
terial [1] for results for other sets of activities). The results indicate
that the model is capable, to some extent, of correctly identifying the
true activity from a list of alternatives, suggesting that VLMs can
recognize the performed activity in image-to-text retrieval.

Table 2. Models’ ability to retrieve the correct activity from a list of
activities. For every image, we formulate a collection of captions derived
from a list of activities and arrange them according to their matching score
(Eq. 2) with the image. We report Mean Reciprocal Rank (MRR), recall@1,
and recall@3, which indicate that VLMs can to some degree recognize the

correct captions in image-to-text retrieval tasks.

Model MRR Recall@1 Recall@3

One Gender Two Genders One Gender Two Genders One Gender Two Genders

Presence Presence Presence Presence Presence Presence

AltCLIP 0.677 0.593 0.553 0.449 0.731 0.659
EVA01-g-14 0.585 0.512 0.425 0.363 0.672 0.564
EVA02-L-14 0.688 0.563 0.564 0.415 0.760 0.635
CLIP-RN50x64 0.601 0.495 0.465 0.334 0.648 0.557
CLIP-ViT-B-16 0.483 0.456 0.333 0.310 0.531 0.486
NegCLIP-ViT-B-32 0.347 0.332 0.159 0.153 0.414 0.385
CLIP-ViT-B-32 0.296 0.269 0.128 0.110 0.316 0.274
CLIP-ViT-L-14 0.606 0.550 0.469 0.404 0.672 0.618
COCA-ViT-B-32 0.319 0.292 0.137 0.128 0.382 0.316
COCA-ViT-L-14 0.459 0.418 0.280 0.243 0.529 0.489
Flava 0.474 0.469 0.283 0.282 0.554 0.538
Align 0.534 0.497 0.375 0.331 0.620 0.589

5 Discussion

5.1 Image and Text Embedding in VLMs

To gain a deeper understanding of how texts and images are encoded
into the shared embedding space, consider these points:

1. Given that the image retrieval accuracy is nearly 50% for both
expected and unexpected caption groups (as shown in Figure 4),
we can infer that the cosine similarity (as per Eq. 2) between both
sets of captions and images (for expected and unexpected groups)
is almost identical.

2. As the average text retrieval accuracy exceeds 60% for E2 and falls
below 50% for U2, it suggests that text embeddings are somewhat
closer to the image embeddings in E2.

A plausible interpretation of these observations is that VLMs encode
images more closely to the encoding of the more expected text. How-
ever, the image encoders of VLMs embed images from both groups

closely together, resulting in nearly equal cosine similarity with any
caption embedding.

5.2 Bias Mitigation

Multiple works have previously discussed approaches for mitigating
bias from VLMs, such as orthogonal projection [8], making unbiased
datasets [19, 15], representation correction [27, 33], and prompt tun-
ing [6]. Several of these approaches could be applied also for robust-
ness to gender-activity binding bias. For more detail on these works,
refer to the Supplementary Material [1].

5.3 Future Works

Study Other Social Biases. In this work, we focused solely on gen-
der bias; however, the experimental approaches described can be ex-
tended to other social biases, such as race and age. In future research,
we plan to explore how VLMs perform across these dimensions us-
ing the experiments outlined in this study.
Study the Source of Bias in the Training Data. Due to limited
accessibility to the training sets, especially for models with unpub-
lished datasets, this study could not investigate the source of bias in
the training data directly. We plan to address this limitation in future
work by examining the sources of bias in publicly available training
datasets for VLMs and analyzing the origins of these biases within
those datasets.
Exploring the Influence of More Attributes on Image Retrieval

Accuracy Our image generation prompts took into account vari-
ous factors such as clothing type (casual wear, formal attire, tra-
ditional attire, activewear, and business casual) and age (teenager,
young adult, adult, middle-aged, and senior). However, it remains un-
explored whether specific attributes, like gendered clothing or preg-
nancy, have a greater impact on retrieval accuracy than the physical
characteristics of the individuals depicted. We recognize the poten-
tial to investigate these factors separately in the future to understand
their influence on activity binding by VLMs.

6 Conclusions

In this study, we have explored a significant yet overlooked bias in
VLMs known as the gender-activity binding bias. We used a unique
dataset named GAB, which includes about 5500 images. We found
that the capacity of VLMs to link an activity with the gender of its
performer notably decreases when another person of a different gen-
der is in the scene. We discovered that while the bias is evident in
image-to-text retrieval tasks and in the text encoder alone, the mod-
els perform randomly in text-to-image retrieval tasks. This suggests
that the gender-activity binding bias is primarily absorbed by the text
encoder rather than the image encoder in VLMs. Furthermore, we
noted that while VLMs have difficulty with gender-activity binding,
they do have some ability to recognize activities. We believe that the
ability of VLMs to comprehend activities and perform compositional
reasoning in complex scenes are other crucial factors contributing to
the gender-activity binding bias that could be investigated in future
research.
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