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Abstract. The scarcity and imbalance of datasets for training deep learning models
in a specific task is a common problem. This is especially true in the physiological
domain where many applications use complex data collection processes and proto-
cols, and it is difficult to gather a significant number of subjects.

In this paper, we evaluate generative deep learning algorithms by training them
to create data based on open physiological datasets and conduct a study on their
potential for transfer learning. We measure the performance change of classifiers
when the training data is augmented with the synthetic samples and also perform
experiments in which we fine-tune classification models trained with the generated
data adding increasing amounts of the real data to investigate the transfer learning
capabilities of synthetic datasets.

Finally, we advise and provide the best option for researchers interested in aug-
menting ECG datasets using these algorithms and the best fine-tuning strategies
that would generalize correctly when tested on new data from the same domain but
for a different classification task.
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1. Motivation

Given the limited availability of open physiological datasets due to regulations and data
privacy, researchers face the problem of finding enough data to train data-hungry deep
learning models. In addition, in many applications, there are severe class imbalances due
to the scarcity of examples which are very often the class of interest for the diseases stud-
ied. One way to amend these problems is the use of synthetic data as a data augmentation
technique, as opposed to the more classical techniques.

Many of these techniques for the time series [1] domain are inspired by augmen-
tations used in image processing (scaling, transposition, cut-outs, etc.) or are domain-
specific transformations (noise, jittering, warping, etc.), but it is difficult for this aug-
mented data to both capture the attributes of the problem and to be more than simply
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small alterations of the original data. Also, in the time series domain, applying these
techniques results in data that does not capture the underlying dataset distribution.

Generative models provide us with a more interesting way to augment all types of
data. From text-to-image generation to NLP tasks, generative data has been a hot topic for
quite some time. However, training these models on time series proves harder than other
types of data like images and text since there is a very limited literature on generative
models in the domain of physiological time series (EEG, ECG, EMG, etc.).

The aim of this paper is to present a short study in this domain, focusing on the
selection of a generative model and how to evaluate the performance of the synthetic data,
both graphically and when used to augment existing physiological datasets by pretraining
a classification model and thus perform transfer learning.

This research is being developed as part of the Artificial Intelligence for Healthy
Aging (AI4HA) project. The goal of the project is to develop diagnostic models for
aging-associated diseases, including Parkinson’s disease, cognitive decline, heart failure,
sarcopenia, hearing loss, etc. Most of the data used in the project come from a wide range
of physiological time series such as electroencephalography (EEG), electrocardiography
(ECG), electromyography (EMG), and inertial sensors (IMU).

2. Modeling data for synthetic generation

Modeling data in machine learning can be approached from two perspectives. The dis-
criminative approach assumes that it is sufficient to train a model to associate the input
data to a class label or a continuous value without capturing the inner process behind the
data. The generative approach assumes that modeling a problem also involves capturing
the process that defines the data, usually represented explicitly or implicitly as a proba-
bility distribution. This is a harder problem, but allows us to do sampling on the trained
model to obtain new data samples.

Currently, there are many deep learning approaches for modeling data generatively
as probability distributions. Some models define proper probability distributions directly
from the attributes of the data (autoregressive models [2], normalizing flows [2]) or by
learning latent variables models (VAEs [2], Denoising Diffusion [3]); others capture im-
plicitly the data distribution with models that can be sampled from (Generative Adver-
sarial Networks [4]). These models can be used to generate data and have been success-
fully applied in other domains, especially in natural language processing and for many
computer vision tasks.

One advantage of these models is that they can generate data without conditioning,
thus capturing a joint probability distribution, or conditionally given additional informa-
tion that allows partitioning the data distribution accordingly. This allows, for instance,
the usage of class labels, but the conditioning factor can be any supplementary informa-
tion available for the data. In this work, we condition the generative models on the class
labels, as we would like to be able to generate data resembling specific classes from the
original datasets.

Time series appear in many applications and are a challenge for generative models,
since many techniques applied in other areas are difficult to adapt or do not make sense.
Literature on applying these models for time series is limited compared to other domains
and is usually focused on specific applications and datasets. As a contribution to this
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topic, in the next sections we will experiment with different generative models trained
with physiological time series, propose methods for assessing the quality of the synthetic
data using dimensionality reduction methods, use the trained models to generate data for
solving classification tasks, and use the generated data to pretrain models to demonstrate
the potential of transfer learning.

3. Models

For data generation, we will select models from the families of Generative Adversarial
Networks (GANs) [4] and Denoising Diffusion [3]. The former models the problem of
data generation as a game between a network that can obtain samples from a latent Gaus-
sian vector (generator) and a network whose task is to distinguish these generated sam-
ples from the real ones (discriminator). The latter model assumes that a network can be
trained to progressively add noise to the data samples, and the model then learns how to
reverse this process so it can start from Gaussian noise and iteratively remove the noise
until a sample with maximium likelihood is obtained.

We train these models conditionally based on the classification task that will be
solved. In other words, we take into account the class labels of the dataset when fitting
the generative models. For the GANs, we mix the class label with the latent noise that the
model learns to convert to data, and we also add classification as an additional output for
the discriminator to determine the class of the real and generated samples. This procedure
biases the model so that the generator is able to transform the Gaussian latent on samples
of the selected class. For the diffusion model, the conditioning appears as an embedded
component added to the original noise prediction network. A cross-attention layer is used
to bias the model so the path followed by the denoising process ends on sample of the
desired class.

We chose to train two GANs, one based on CNNs with 1D convolutions [5] whose
discriminator output is an array of numbers corresponding to different parts of the se-
quence instead of a single number measuring the realness of the data [6], and the other
based on transformers [7]. We also chose a diffusion model based on DiffWave [8], a
popular model used in audio synthesis. The selected models have been adapted to work
with physiological time series and class conditioning, by modifying the architecture to
work with single-channel time series and adding a conditional embedding representing
the labels attributed to the corresponding datasets.

Figure 1. Deep residual convolutional classifier architecture.
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For the classification tasks models, to study the capabilities of synthetic data, we
have considered training a deep residual convolutional neural network model (Figure 1)
under different settings.

4. Datasets

For creating the synthetic data, we used open source datasets from PhysioNet. These con-
sist of ECG signals from various patients with different anomalies. Specifically, the MIT-
BIH dataset [9] offers data related to cardiac arrhythmias (five classes based on the cat-
egories proposed by the AAMI EC57 standard, subdivided into healthy with 90,589 ob-
servations, atrial premature with 2,779 observations, ventricular malfunction with 7,236
observations, fusion of ventricular and normal with 803 observations and a last class of
8,039 unclassified observations), while the PTB dataset [10,11] contains ECG signals
corresponding to patients diagnosed with myocardial infarction and healthy patients used
as control data (two classes, the abnormal one with 10,505 observations, and the normal
or healthy one with 4,045). For both datasets, we used the same preprocessing technique
as presented in the work [12], where the ECG signals are divided into QRS segments of
length 187.

5. Methodology and Evaluation

When it comes to methods for evaluating the generated data, there is no agreement on
the correct way. The most common ones in the literature are the ones used for synthetic
images, namely the Fréchet Inception Distance [4] and other similar metrics. In the case
of images, this is measured based on the features obtained from a pre-trained network on
a massive dataset of natural images. There is, however, no such concept of natural time
series, nor pretrained networks that can be used for feature extraction, so this is not a
viable approach. The evaluation of conditional generation is also an open problem given
the difficulty in assessing how well the distribution of the generated data has captured
the underlying information present in the real dataset.

In this work, we chose to perform two simple types of evaluation. The first is a 2D
plot of the transformation of the data sets using the dimensionality reduction algorithms t-
Stochastic Neighbor Embeding (t-SNE, [13]) and Locally Linear Embeding (LLE, [14]),
which give visual insight into the distribution of the synthetic data in spaces of reduced
dimensionality. Properly generated data would have an overlapped distribution with the
original dataset, when fitting t-SNE and LLE to both the original and generated data.

The second type of evaluation is the change in the classification scores (accuracy,
precision, and recall) when using the aforementioned classifier. We perform several kinds
of evaluations on the synthetic quality of generated data: training on synthetic data and
testing on real data (TSTR), training on real data and testing on synthetic data (TRTS),
training and testing on real data (TRTR), training and testing on synthetic data (TSTS),
training on a mix of real and synthetic data and testing on real data (TRSTR), and training
on synthetic and adding increasing proportions of real data. These tests were carried out
to see how different training affects the classification task, with the aim of improving the
performance of the classifiers using only real data.
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6. Generative and Classification models experiments

By training all the generative models with the original datasets, we have found the TTS-
CGAN and Diffwave models to be the best choices, as they were both successful in dif-
ferent ways. The Diffwave model seems to be better at capturing the underlying prob-
abilistic distribution and also generating an evenly distributed array of synthetic data,
while the TTS-CGAN based model generates the best pretraining data for the MIT-BIH
dataset. The GAN with 1D convolutions, arguably the simplest model, does not do a
good job in capturing the probabilistic distribution of the real dataset with the generated
samples, and seems to cluster the data in dense patches corresponding to the class labels.

Figure 2. t-SNE fitted with real and synthetic data generated with TTS-CGANmodel trained on the MIT-BIH
dataset. Real classes are decimals ending in .0 and synthetic ones in .5 (e.g. healthy data: real=0.0, gener-
ated=0.5)

Figure 3. t-SNE fitted with real and synthetic data generated with Diffwave model trained on the MIT-BIH
dataset. Real classes are decimals 0 and synthetic ones in .5 (e.g. healthy data: real=0.0, generated=0.5)

J.F. Núñez et al. / Applying Generative Models32



Figure 4. LLE fitted with the MIT-BIH
dataset and TTS-CGAN generated data

Figure 5. LLE fitted with the PTB dataset
and TTS-CGAN generated data

As we can observe in figure 3, the data distribution generated by the Diffwave model
trained on the MIT-BIH dataset almost completely overlaps the original data’s distribu-
tion, informing us that the model learned to capture the underlying attributes of the data
and is thus considered of good probabilistic quality. Furthermore, we can appreciate that
the TTS-CGAN model struggled to do the same, with many gaps in the synthetic data’s
overlapped regions. However, we will show how this model could be of interest for aug-
menting datasets and pretraining classifiers. Furthermore, the LLE proved to be better at
showing outliers, as the data was segmented into narrow shapes resembling lines in the
reduced space (see figs 4, 5) and most of the data is found near the center of the shapes.

For a more practical evaluation, we have trained a deep residual convolutional neural
network similar to the one presented in [9] but with only one residual block. The model
has been trained and tested with the MIT-BIH and PTB datasets and has been evaluated
through its performance on different classification scores, as presented in Table 1.

Next, with the goal of assessing how synthetic data can help in the training a Deep
Learning model when data are scarce or highly unbalanced, we focus on the MIT-BIH
dataset’s minority classes (related to arrythmias), as there is an overwhelming prevalence
of the healthy class compared to the others, making the dataset highly unbalanced. Once
we have a trained model using a synthetic dataset consisting of 550k samples (110k from
each class), we fine-tune it using different sizes of real data, starting with 20% of the real
data until we use the whole dataset, with increments of 20%. Table 2 shows the evolution
of the scores as more real data is used.

Another experiment performed to evaluate the model trained on synthetic data has
been to fine-tune the model with the real data from the PTB dataset changing the task to
myocardial infarction classification (binary classification). Similarly as before, we start
with a pre-trained model trained with synthetic PTB data (112k observations for each
class) then fine-tune the model adding increments of 20% of the real data in order to
study the evolution of the classification scores. Results are shown in Table 3.

7. Results

On the basis of the previous results, we can conclude that the data generated by the TTS-
CGAN model proved to be more useful and that the t-SNE plots were the most helpful
measure of synthetic quality. For the experiments, we first evaluate the synthetic data
and compare them with the real data, the results are shown in Table 1. These results
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Table 1. Results from testing the models under different train and test combinations.

Dataset Setting Accuracy Precision Recall

MIT TSTR 0.551 0.430 0.753
TSTS 0.999 0.999 0.999
TRTR 0.980 0.961 0.840
TRSTR 0.971 0.933 0.783

PTB TSTR 0.660 0.660 0.699
TSTS 1.000 1.000 1.000
TRTR 0.914 0.908 0.874

Table 2. Comparison table between trained model on synthetic data and fine-tuned on real data vs model
trained with real data using different percentages of real data. The data used corresponds to the MIT dataset.

Percentage Accuracy Precision Recall Execution

Synthetic Real Synthetic Real Synthetic Real Synthetic Real

0.2 0.9760 0.9664 0.9098 0.9153 0.8651 0.7700 33.5108 32.1254
0.4 0.9803 0.9741 0.9329 0.9476 0.8703 0.7854 50.4500 51.5347
0.6 0.9814 0.9763 0.9551 0.9586 0.8502 0.8074 65.3325 65.7416
0.8 0.9804 0.9783 0.9591 0.9599 0.8311 0.8162 81.9592 82.6904
1.0 0.9799 0.9751 0.9633 0.9612 0.8168 0.7920 100.0152 110.3127

Table 3. Comparison table between trained model on synthetic data and fine-tuned on real data vs model
trained with real data using different percentages of real data. The data used corresponds to the PTB dataset.

Percentage Accuracy Precision Recall Execution

Synthetic Real Synthetic Real Synthetic Real Synthetic Real

0.2 0.6627 0.7785 0.6810 0.7901 0.6684 0.7700 1.7065 7.3009
0.4 0.7888 0.8092 0.8166 0.8196 0.8052 0.7989 12.8148 16.2860
0.6 0.7961 0.8669 0.8131 0.8641 0.8234 0.8562 20.4001 26.8113
0.8 0.8248 0.8621 0.8187 0.8564 0.8504 0.8394 25.0002 34.6997
1.0 0.8221 0.8902 0.7885 0.8660 0.8352 0.8647 27.1476 42.3554

highlight that the synthetic data can be more easily classified (observations of each class
are very similar, but very different from observations of other classes). Indeed, a classifier
trained and tested with synthetic data has perfect performance, while models trained on
synthetic data and tested on real data have very low performance. We added scores from
training and testing on real data to give insight into the difficulty of the tasks. An insight
to be drawn from this is that the generative models studied produce data maximizing the
likelihood that it belongs to a specific class, as evidenced in figure 2 where the mass of
the generated data sits well within the boundaries of the real data distribution. This could
mean that the generated data is in a sense a simplification of the real data, but more work
is to be done to find the actual explanation of this behavior.

For the second experiment, we assess the effect of the synthetic data when train-
ing a Deep Learning classification model when data are scarce or highly unbalanced.
The results (see table 2) show that starting with a model trained with synthetic data pro-
vides better classification scores. This is of interest in particular for the case of precision
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Table 4. Comparison table between trained model on synthetic MIT data and fine-tuned on real PTB data vs
model trained with real PTB data using different percentages of real data.

Percentage Accuracy Precision Recall Execution

Synthetic Real Synthetic Real Synthetic Real Synthetic Real

0.2 0.8362 0.7785 0.8551 0.7901 0.8441 0.7700 11.6971 7.3009
0.4 0.8926 0.8092 0.8999 0.8196 0.9036 0.7989 19.8847 16.2860
0.6 0.9452 0.8669 0.9396 0.8641 0.9507 0.8562 33.1194 26.8113
0.8 0.9466 0.8621 0.9359 0.8564 0.9542 0.8394 39.0200 34.6997
1.0 0.9641 0.8902 0.9490 0.8660 0.9655 0.8647 46.4486 42.3554

Figure 6. Loss curves on validation set of the fine tuned synthetic model (blue solid lines) and the real data
model (red dashed lines) trained under different sizes of the MIT-BIH dataset. Lines become darker as more
data has been used

and recall, which provide information about the biases in the classifier resulting from
class imbalance. While precision is nearly the same for the fine-tuned model and the one
trained with real data, it is clear that precision is better in the fine-tuned model, which
improves the final accuracy. Furthermore, although the loss curves (Figure 6) show that
models trained with synthetic data start with less loss, we can observe in the second-to-
last column (time needed to train the model in seconds) that it is unclear whether the
training time is influenced by fine-tuning the model. It is clear that as more data be-
comes available, less time is needed to train a fine-tuned model. Finally, observe that the
scores in both models become more similar as the percentage of real data used increases,
probably as an effect of the model becoming accustomed to the real data and forgetting
patterns from the synthetic data.

The same experiment has been performed with the PTB dataset, where we pre-train
the same classification model on PTB synthetic data and then fine-tune it with different
sizes of real data from the same dataset. The results (see table 3), show that the synthetic
data does not reflect the patterns of the real data with either model. This could be caused
by the small amount of data available in the PTB dataset (roughly 1/10th the size of the
MIT-BIH dataset), and the difficulty to train a generative model on such a scarce dataset.
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Moreover, the third and last experiments consisted in using the classification model
pre-trained with synthetic data for the arrythmia detection task (MIT-BIH dataset) and
then fine-tuning it in order to solve the myocardial infarction detection task (PTB
dataset). Results are shown in table 4, and it can be seen that the fine-tuned model has
better overall scores with a considerable margin compared to the classifier trained only
on real data. This indicates two things: arrhythmia detection and the myocardial infarc-
tion task have similar patterns. Additionally, the synthetic data generated using the MIT-
BIH dataset are good enough to capture the patterns that are useful for both tasks. There-
fore, in this case of data scarcity, having more data through synthetic generation has
significantly improved the baseline.

8. Conclusions and future work

Our results show that synthetic data generation can be useful when classifying a scarce
dataset or one with an overwhelming minority class, especially when the task highly
depends on the data quantity and quality. This work also shows the need for a better
synthetic time series evaluation method, as the t-SNE and LLE plots do not give all the
probabilistic insight needed and the classification experiment does not tell us if we are
truly capturing the patterns in the distribution of physiological time series.

As future work, it would be of interest to perform new experiments on the recently
released PTB-XL data set [15], one of the largest clinical data sets focused on ECG
signals, as well as to work with other physiological time series such as EEGs and EMGs.
Also of great interest to us is to compare the presented generative models with newer ones
coming from the diffusion family or those which incorporate attributes from different
families of models. Lastly, we want to find other methods to evaluate the generative
quality of these models (e.g. UMAP looks promising) [16].

Finally, beyond physiological time-series data, new generative models for images
based on diffusion techniques can also be used to enhance classifiers related to aging-
related illnesses, for instance tasks like colon polyp detection on colonoscopies, detection
of prostate cancer using MRI scans, histopathology analysis, etc. which are tasks related
to our current project as well.
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