
Intent Detection-Based Lithuanian Chatbot
Created via Automatic DNN Hyper-

Parameter Optimization

Jurgita KAPOČIŪTĖ-DZIKIENĖ 1

JSC Tilde Information Technology, Vilnius, Lithuania
Faculty of Informatics, Vytautas Magnus University, Kaunas, Lithuania

Abstract. In this paper, we tackle an intent detection problem for the Lithuanian

language with the real supervised data. Our main focus is on the enhancement of the
Natural Language Understanding (NLU) module, responsible for the

comprehension of user’s questions. The NLU model is trained with a properly

selected word vectorization type and Deep Neural Network (DNN) classifier.
During our experiments, we have experimentally investigated fastText and BERT

embeddings. Besides, we have automatically optimized different architectures and

hyper-parameters of the following DNN approaches: Long Short-Term Memory
(LSTM), Bidirectional LSTM (BiLSTM) and Convolutional Neural Network

(CNN). The highest accuracy=~0.715 (~0.675 and ~0.625 over random and majority

baselines, respectively) was achieved with the CNN classifier applied on a top of
BERT embeddings. The detailed error analysis revealed that prediction accuracies

degrade for the least covered intents and due to intent ambiguities; therefore, in the

future, we are planning to make necessary adjustments to boost the intent detection
accuracy for the Lithuanian language even more.

Keywords. NLU, Intent detection, LSTM, BiLSTM, CNN, hyper-parameter

optimization, fastText and BERT embeddings, the Lithuanian language

1. Introduction

The modern society is not imaginable without conversational chatbots that are accurate,

fast, tireless and available 24/7. Chatbots can successfully boost human work efficiency,

but cannot replace them completely so far. However, the demand for chatbots is

increasing exponentially, especially in the customer service space.

Starting from the very first keyword search-based chatbot ELIZA (asking itself

instead of answering user’s questions) [1], this NLP field has made tremendous progress.

Nowadays, different types of chatbots exist: according to the communication channel

(voice-enabled or text-based); knowledge domain (closed, general or open domain);

provided service (interpersonal or intrapersonal); used learning methods (rule-based,

retrieval-based or machine learning-based); and provided answers (extracted or

generated answers).

The chatbot as the whole system can consist of several important modules: NLU

(dealing with the machine reading comprehension), slot filling (searching for specific

1 Corresponding Author: Jurgita Kapočiūtė-Dzikienė; JSC Tilde Information Technology, Naugarduko

str. 100, LT-03160 Vilnius, Lithuania; E-mail: jurgita.k.dz@gmail.com.

Human Language Technologies – The Baltic Perspective
A. Utka et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200608

95

pieces of information with respect to some named entity), dialog management

(determining the context and guiding the dialog), even emotion detection (reacting to the

user’s sentiments accordingly), etc. Various chatbot features as an appearance or a

friendly human-like behavior are important, however, the most important function

remains the correct comprehension of user’s questions and adequate responses to them.

In this paper, we are solving the intent detection problem that classifies user utterances

into predefined intent categories (related to chatbot answers).

Widely-known intelligent chatbots as Siri, Cortana, Alexa, Google assistant, etc.,

support only a small group of languages and Lithuanian is not among them. There was

an attempt to solve an intent detection problem for morphologically complex languages,

including Lithuanian [2]. This research describes experiments with fastText embeddings

using the CNN and the Feed Forward Neural Network (FFNN) classifiers (architectures

based on expert insights). Despite the significance of this research for the Lithuanian

language, the intent detection model was trained and tested on the artificial data (i.e.,

English benchmark datasets translated into Lithuanian) and a rather small number of

intents (varying from 2 up to 8).

In our research, we are solving the intent detection problem for the Lithuanian

language by training and testing the NLU model on the real dataset of 41 intent. The

contribution of this research is that we seek for the best intent detection model for the

Lithuanian language by exploring: 1) two types of word embeddings; 2) three types of

classifiers (CNN, LSTM, BiLSTM); 3) different Deep Neural Network architectures;

4) different hyper-parameters. DNN architectures and hyper-parameter values were

tuned automatically in the parameter optimization process.

2. Related Work

If all outdated rule-based and keyword-based approaches are excluded, the remaining

ones are mainly focused on the Information Retrieval (IR) and Machine Learning (ML)

techniques. IR-based chatbots are typically used in cases when it is essential to find

relevant information from huge data collections [3] or unstructured documents [4]. In

our research, we experiment with the dataset containing question-answer pairs (where

questions are grouped into categories representing related answers). This particular shape

of the data allows us to focus on the supervised ML approaches [5].

The majority of the intent detection research is focused on the English and Chinese

languages having enough resources to experiment and create accurate NLU models (a

more detailed review on different intent detection methods can be found in [6]).

The research in [7] compares different chatbot platforms. Authors test the most

popular NLU services on a large multi-domain dataset of 21 domains and 25K of

utterances. The investigation reveals that IBM Watson significantly outperforms other

platforms as Dialogflow, MS LUIS and Rasa that also demonstrate very good results.

Three English benchmark datasets, i.e., askUbuntu, chatbot and webApps [8] were used

in the experiments [9]. Authors introduce a sub-word semantic hashing technique to

process input texts before classification. After vectorization, the following classifiers are

explored: Ridge Classifier – RC, K-Nearest Neighbors, Multilayer Perceptron, Passive

Aggressive – PA, Random Forest – RF, Linear Support Vector – LSV, Stochastic

Gradient Descent, Nearest Centroid, Multinomial Naive Bayes, Bernoulli Naive Bayes,

K-means. On the askUbuntu dataset, RC and LSV classifiers achieved the highest

accuracy. PA and RF were the best on chatbot and webApps, respectively. Authors claim

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot96

that with the determined classifiers and their sub-word semantic hashing technique, they

were able to achieve state-of-the-art performance on these benchmark datasets. The

experiments in [10] only confirm the fact that vectorization plays an important role in

intent detection. Authors use the BiLSTM classifier with gloVe embeddings enriched

with semantic lexicons (containing synonyms, and antonyms) and achieve superiority

over the naïve one-hot vectorization on the ATIS and Places datasets from MS Cortana.

The problems often emerge when some question is out-of-scope the intent detection

model is trained to cover. The supervised ML is also the right solution for this type of

problems. The research in [11] solves an open intent discovery problem with the dataset

of 25K of utterances in two stages: the first stage predicts if the utterance contains some

intent and if it does, the second stage tries to predict it. Authors use BiLSTM with the

Conditional Random Fields (CRF) method on a top of it and a self-attention mechanism

to learn long distance dependencies. The offered approach outperforms state-of-the-art

baselines. In the similar work [12], authors use a dataset containing queries that are out-

of-scope (covering none of the existing intents) and in-the-scope (covering one of 150

available intents). A range of different approaches has been explored in this research:

fastText classifier, BERT classifier, Support Vector Machine, CNN, DialogFlow, Rasa

and Multi-Layer Perceptron. The research discovered the BERT classifier to perform

well in-the-scope; unfortunately, all approaches struggled to identify out-of-scope

queries. Our dataset contains queries only in-the-scope; therefore, we will focus on the

closed domain intent detection problems only.

Intent detection problems are sometimes tackled together with the slot filling.

Authors in [13] experimentally prove that the proposed joint BERT model outperforms

BERT models for the intent detection and slot filling trained separately. Their proposed

joint model is trained on the dataset of 72 slots and 8 intents and achieves significant

improvement over the attention-based Recurrent Neural Network (RNN) models and

slot-gated models. In similar research [14], authors use SNIPS-NLU and ATIS datasets

and propose a Capsule-Based Neural Network model. The architecture consists of three

types of capsules: WordCaps (to learn word representations), SlotCaps (to classify words

by their slots) and IntentCaps (to determine the intent). The offered method outperforms

other popular NN-based approaches. Authors in [15] present an attention-based encoder-

decoder NN model for the joint intent detection and slot filling task. The method encodes

sentences using the CNN-BiLSTM hybrid approach and decodes using the attention-

based RNN with aligned inputs. The authors experimentally prove that the offered

approach achieves better performance compared to the other popular DNN-based

approaches. Since our dataset does not contain necessary annotations for the slot filling,

we will focus on the intent detection problem only; however, the analysis of similar

research especially encourages us to test BERT embeddings and DNN classifiers.

3. The Dataset

Our NLU module training and testing was done on the real Lithuanian data: i.e., dataset

containing question-answer pairs about the company’s Tilde product “Tildes Biuras”

(questions about prices for different users, licenses, supported languages, available

dictionaries, used technologies, etc.). The whole dataset contains 41 intents (chatbot

outputs/answers), each covered by at least 5 instances (user inputs/questions). When

solving the intent detection problem, the following Lithuanian language-dependent and

spoken language-dependent features have to be considered. The Lithuanian language is

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot 97

morphologically complex, highly inflective, has a rich vocabulary and a rich word-

derivation system. Besides, questions (to correspond the real conversation conditions)

are formulated in the spoken Lithuanian language: they have relatively free word-order

(that is typical for the Lithuanian language), contain stylistically irregular constructions

(typical for the spoken language).

The dataset was split into training and testing sub-sets (statistics about these splits

can be found in Table 1).

Table 1. Statistics about the training/testing dataset used in our experiments

Number of
intents

Number of
questions

Number of
words

Number of
distinct words

Avg. number of
words per question

Training dataset

41 365 1,857 699 5.09

Testing dataset

41 144 751 435 5.22

4. Methodology

The nature of the dataset (presented in Section 3) makes it possible to use it with the

supervised ML approaches [5]. A solving task is a typical classification problem and can

be formally defined as follows:

Let D = {d1, d2, …, dn} be a set of instances (user inputs/questions). Let C = {c1, c2,

…, cm} be a set of classes (chatbot outputs/answers/intents). Each di can be attached to

only one cj; besides m > 2 that restricts this task to a single-label multi-class classification

problem. D is mapped to C according to the logic Г (Г : D � C). The main goal is to

train a classifier on the training dataset DT that could find the best approximation of Г

and demonstrate as higher accuracy as possible on the testing dataset DT.

The formulated NLU problem is considered as AI-hard problem (meaning that the

software should be learned to behave as intelligent as a human). The state-of-the-art

approaches focus on DNN classifiers applied on a top of neural word embeddings (see

Section 2) and for this reason we have chosen to explore these approaches as well. The

whole package should contain the correct selection of the vectorization type, classifier,

its architecture and hyper-parameter values. Thus, we have investigated:

� FastText 2 [16] and BERT 3 [17] word embeddings. FastText embeddings

(offered by Facebook AI) are suitable for the non-normative texts: they are

composed of the n-gram vectors; therefore, embeddings of misspelled words

are close to their correct equivalents. BERT embeddings (offered by Google)

are robust to disambiguation problems (because they have mechanisms to

represent homonyms with different vectors depending on their context).

� LSTM [18], BiLSTM [19], CNN [20] (with the 1D convolution adjusted for the

text classification [21]) classifiers. Both LSTM and BiLSTM are adjusted to

process the sequential data and to overcome limitations of the simple RNN

suffering from the short memory problem (due to a vanishing gradient). LSTM

2 The Lithuanian fastText embeddings (offered by Facebook’s AI Research Lab) for our experiments

were downloaded from https://fasttext.cc/docs/en/crawl-vectors.html.
3 We have used the Google’s BERT service with the base multilingual cased 12-layer, 768-hidden, 12-

heads model for 104 languages (including Lithuanian) downloaded from https://github.com/hanxiao/bert-as-

service.

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot98

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service

allows the data stream only forward (i.e., from-the-past-to-the-future), whereas

BiLSTM process the text in both directions (i.e., forward and backward) and

can acquire how succeeding words impact the current time moment. The CNN

method is adjusted to seek for the influential text patterns (sequences of words,

word n-grams) the most relevant to the intent.

� DNN architectures, having different numbers of hidden layers (i.e., series of

convolutional layers in CNN; simple or stacked LSTM and BiLSTM).

� Discrete and real DNN hyper-parameter values: numbers of neurons (100, 200,

300, 400); dropouts (values from an interval [0,1]); recurrent dropouts ([0, 1]);

activation functions (relu, softmax, tanh, elu, selu); optimizers (Adam, SGD,

RMSprop, Adagrad, Adadelta, Adamax, Nadam); batch sizes (32, 64) and

numbers of epochs (20, 30, 40, 50).

All this results in a huge number of options and expert knowledge is not always capable

of selecting the most accurate one. The tuning of DNN architectures and hyper-

parameters was performed automatically with the parameter optimization library

Hyperas4 and two optimization algorithms (the optimization process took 100 iterations):

� tpe.suggest (Tree-structured Parzen Estimator) [22], which organizes hyper-

parameters into a tree-like space. This Bayesian modelling approach decides

which set of hyper-parameters should be tried in the next iteration based on the

distribution of previous results.

� random.suggest performs random search over a set of hyper-parameters.

All methods were implemented in Python using Tensorflow and Keras5.

5. Experiments and Results

All experiments described in Section 4 were carried out with the dataset described in

Section 3. The training dataset (see Table 1) was shuffled and used for the DNN hyper-

parameter optimization: 80 % was used for training and the rest 20 % for validation. The

best determined model (giving the highest accuracy on the validation dataset) was

evaluated with the testing dataset. The accuracy (in eq. 1, where Ncorrect and Nall

represents instances with the correctly predicted intents and all tested instances,

respectively) was used as the evaluation metric. The highest achieved accuracies with

different DNN methods and vectorization types are presented in Table 2.

 (1)

The approach is considered reasonable if the accuracy is above

 (where cj is a probability of an intent) and majority=max(P(cj)) baselines in

our case, equal to ~0.04 and ~0.09, respectively. The McNemar test [23] with α=0.05

was used to determine if the differences between the obtained results are statistically

significant.

4 More about Hyperas is in https://github.com/maxpumperla/hyperas.
5 https://www.tensorflow.org/ and https://keras.io/.

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot 99

https://github.com/maxpumperla/hyperas
https://www.tensorflow.org/
https://keras.io/

The architecture of the best determined approach which happened to be the CNN

classifier with BERT embeddings is presented in Figure 1 (plotted with the plot_model
utility function in Keras). Since not all determined optimal hyper-parameters can be

plotted in the figure, we report them here: selu activation function after Conv1D layer;

softmax activation function after dense; batch_size=64; epochs=20; optimizer=Nadam;

dropout rate=0.467.

Table 2. The highest achieved accuracies (after hyper-parameter optimization) with different DNN classifiers,

vectorization types, and parameter optimization strategies. The best result is in bold, the underlined results
determine that they do not differ significantly from the very best

 fastText embeddings
 LSTM BiLSTM CNN

tpe.suggest 0.243 0.563 0.639
random.suggest 0.278 0.556 0.646

 BERT embeddings
 LSTM BiLSTM CNN

tpe.suggest 0.681 0.653 0.715
random.suggest 0.681 0.694 0.708

Figure 1. The best determined intent detection classifiers and its architecture: CNN with BERT embeddings

As presented in Table 2, all results are reasonable, because are above random and

majority baselines. The highest accuracy=~0.715 is achieved with the BERT embeddings

and the CNN classifier after parameter optimization (the best architecture is presented in

Figure 1 and the best hyper-parameters are presented in Section 5). The superiority of

the CNN classifier over the other approaches as LSTM and BiLSTM reveals that for this

intent detection problem, to detect patterns (as word n-grams) is more important than to

cope with the sequential nature of the input.

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot100

The tpe.suggest strategy allowed to optimize parameters even better compared to the

random.suggest. However, there is no big difference how these parameters were

optimized, the most important is that the accurate model has been found.

To see how significantly results differ from the best achieved (accuracy=~0.715)

with BERT + CNN + tpe.suggest, we have performed the McNemar evaluation

(calculated p values are in Table 3).

Table 3. The p values indicating how much the results are statistically significant between the best result with
BERT + CNN + tpe.suggest strategy and other approaches

 fastText embeddings
 LSTM BiLSTM CNN

tpe.suggest 4.49E-08 0.039 0.300
random.suggest 2.62E-07 0.032 0.348

 BERT embeddings
 LSTM BiLSTM CNN

tpe.suggest 0.668 0.402 -
random.suggest 0.668 0.828 1.000

We have evaluated the accuracy for each intent separately (see the statistics in xy � z,

where x, y, and z are number of testing instances, number of intents having x instances

and the accuracy, respectively): 210 � 1.00, 27 � 0.50, 27 � 0.00, 31 � 0.67, 31 � 0.00,

41 � 1.00, 42 � 0.75, 41 � 0.50, 51 � 1.00, 52 � 0.80, 51 � 0.40, 51 � 0.40, 62 � 1.00,

62 � 0.83, 61 � 0.33, 101 � 0.90, 141 � 1.00. Our solving intent detection problem is

very challenging (41 intents, some of them are covered with only a few questions). The

error analysis revealed that intents covered by more instances are better predicted.

Besides, some intents are ambiguous (leading to very similar answers) and can be

aggregated. Still, the accuracy of the NLU model is acceptable; we are planning to

increase it even more by filling the training dataset with the new instances (especially by

adding more instances to the least covered intents) and uptraining the new version of the

model with the parameters already determined in this research.

6. Conclusions

This paper presented the intent detection problem solving for the Lithuanian language.

This NLU problem for the Lithuanian language is tackled for the first time by using the

real data and by comparing a wide variety of different approaches. We performed the

automatic parameter optimization with three classifiers (LSTM, BiLSTM, CNN), two

types of word embeddings (fastText, BERT), different DNN architectures (deeper and

shallower) and various DNN hyper-parameter values.

The tackled task was especially challenging due to the following reasons: 1) the

dataset contains many intents (41); 2) each intent was covered by only a few instances

(~8.9 instances of which only ~7.1 are used for training and ~1.8 for validation). The

experimental investigation revealed the superiority of the CNN classifier with BERT

embeddings over other approaches; the best approach achieved ~0.715 of the accuracy.

The error analysis revealed that intents covered by more instances are more reliable and

recognized better. It allows us to assume that after adding more instances to the least

covered intents and retraining the model, the accuracy will boost even more. In the future

research, we are planning to expand the number of intents and instances.

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot 101

Acknowledgements

The project Bot Cloud (No. J05-LVPA-K-03) was funded from EU funds under the

measure General Science and Business Projects and 1st PRIORITY. Promotion of
research, experimental development and innovation.

References

[1] Weizenbaum, J. ELIZA–a computer program for the study of natural language communication between

man and machine. Communications of the ACM 1996; 9:36–45.
[2] Balodis K, Deksne D. FastText-Based Intent Detection for Inflected Languages. Information 2019;10(5):

161.

[3] Lommatzsch A, Katins J. An Information Retrieval-based Approach for Building Intuitive Chatbots for
Large Knowledge Bases. Proceedings of the LWDA conference 2019; 343–352.

[4] Zhao Y, Duan N, Bao J, Chen P, Zhou M, Li Z, Zhou J. DocChat: An Information Retrieval Approach

for Chatbot Engines Using Unstructured Documents. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) 2016;516–525.

[5] Sebastiani F. Machine Learning in Automated Text Categorization. ACM Computing Surveys 2002;34:

1–47.
[6] Liu J, Li Y, Lin M. Review of Intent Detection Methods in the Human-Machine Dialogue System. Journal

of Physics: Conference Series 2019; 1267 012059.

[7] Liu X, Eshghi A, Swietojanski P, Rieser V. Benchmarking Natural Language Understanding Services for
building Conversational Agents. CoRR 2019;abs/1903.05566.

[8] Braun D, Hernandez-Mendez A, Matthes F, Langen M. Evaluating Natural Language Understanding

Services for Conversational Question Answering Systems. Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue 2017;174–185.

[9] Shridhar K, Sahu A, Dash A, Alonso P, Pihlgren G, Pondeknath V, Simistira F, Liwicki M. Subword
Semantic Hashing for Intent Classification on Small Datasets. CoRR 2018; abs/1810.07150.

[10] Kim J-K, Tur G, Celikyilmaz A, Cao B, Wang Y-Y. Intent Detection using Semantically Enriched Word

Embeddings. IEEE Spoken Language Technology Workshop 2016 Sep; 414–419.
[11] Vedula N, Lipka N, Maneriker P, Parthasarathy S. Towards Open Intent Discovery for Conversational

Text. CoRR 2019;abs/1904.08524.

[12] Larson S, Mahendran A, Peper, JJ, Clarke Ch, Lee A, Hill P, Kummerfeld JK, Leach K, Laurenzano MA,
Tang L, Mars J. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. Proc. of

the 2019 Conference on Empirical Methods in NLP and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP) 2019 Nov; 1311–1316.
[13] Chen Q, Zhuo Z, Wang W. BERT for Joint Intent Classification and Slot Filling. CoRR 2019;

abs/1902.10909.

[14] Zhang Ch, Li Y, Du N, Fan W, Yu PS. Joint Slot Filling and Intent Detection via Capsule Neural
Networks. CoRR 2018;abs/1812.09471.

[15] Wang Y, Tang L, He T. Attention-Based CNN-LSTM Networks for Joint Intent Detection and Slot

Filling. Chinese Computational Linguistics and Natural Language Processing Based on Naturally
Annotated Big Data 2018;LNAI;11221:250–261.

[16] Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching Word Vectors with Subword Information.

Transactions of the Association for Computational Linguistics 2017;5:135–146.
[17] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. CoRR 2018; abs/1810.04805.

[18] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation 1997;9(8):1735–1780.
[19] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Networks 2005;18(5-6):602–610.

[20] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 1998;2278–2324.

[21] Kim Y. Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP) 2014;1746–1751.
[22] Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for Hyper-Parameter Optimization. Advances in

Neural Information Processing Systems 2011;24:2546–2554.

[23] McNemar Q. Note on the Sampling Error of the Difference Between Correlated Proportions or
Percentages. Psychometrika 1947;12(2):153–157.

J. Kapočiūtė-Dzikienė / Intent Detection-Based Lithuanian Chatbot102

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Q
https://arxiv.org/search/cs?searchtype=author&query=Zhuo%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Wang%2C+W
https://arxiv.org/search/cs?searchtype=author&query=Devlin%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Chang%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Toutanova%2C+K
https://www.researchgate.net/profile/Alex_Graves?_sg=fkI53eGfFdxA7zp4TFA9sNxlHmF8QHJEOdGlbEaqWK6pZxXwY5CbSuj1HZ356eN8UtlPslo.gSZdhgy34Y6h_9Ql2gkRHy2hMwu1fN_Ilc4N6_D8DZj33bOaWFqFNfweEK4O_6zRZuiXFfMI6MwPyZ9uMn4PZw
https://www.researchgate.net/scientific-contributions/40000894_Juergen_Schmidhuber?_sg=fkI53eGfFdxA7zp4TFA9sNxlHmF8QHJEOdGlbEaqWK6pZxXwY5CbSuj1HZ356eN8UtlPslo.gSZdhgy34Y6h_9Ql2gkRHy2hMwu1fN_Ilc4N6_D8DZj33bOaWFqFNfweEK4O_6zRZuiXFfMI6MwPyZ9uMn4PZw
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

