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Abstract. In this paper, we tackle an intent detection problem for the Lithuanian 

language with the real supervised data. Our main focus is on the enhancement of the 
Natural Language Understanding (NLU) module, responsible for the 

comprehension of user’s questions. The NLU model is trained with a properly 

selected word vectorization type and Deep Neural Network (DNN) classifier. 
During our experiments, we have experimentally investigated fastText and BERT 

embeddings. Besides, we have automatically optimized different architectures and 

hyper-parameters of the following DNN approaches: Long Short-Term Memory 
(LSTM), Bidirectional LSTM (BiLSTM) and Convolutional Neural Network 

(CNN). The highest accuracy=~0.715 (~0.675 and ~0.625 over random and majority 

baselines, respectively) was achieved with the CNN classifier applied on a top of 
BERT embeddings. The detailed error analysis revealed that prediction accuracies 

degrade for the least covered intents and due to intent ambiguities; therefore, in the 

future, we are planning to make necessary adjustments to boost the intent detection 
accuracy for the Lithuanian language even more. 

Keywords. NLU, Intent detection, LSTM, BiLSTM, CNN, hyper-parameter 
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1. Introduction 

The modern society is not imaginable without conversational chatbots that are accurate, 

fast, tireless and available 24/7. Chatbots can successfully boost human work efficiency, 

but cannot replace them completely so far. However, the demand for chatbots is 

increasing exponentially, especially in the customer service space. 

Starting from the very first keyword search-based chatbot ELIZA (asking itself 

instead of answering user’s questions) [1], this NLP field has made tremendous progress. 

Nowadays, different types of chatbots exist: according to the communication channel 

(voice-enabled or text-based); knowledge domain (closed, general or open domain); 

provided service (interpersonal or intrapersonal); used learning methods (rule-based, 

retrieval-based or machine learning-based); and provided answers (extracted or 

generated answers). 

The chatbot as the whole system can consist of several important modules: NLU 

(dealing with the machine reading comprehension), slot filling (searching for specific 
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pieces of information with respect to some named entity), dialog management 

(determining the context and guiding the dialog), even emotion detection (reacting to the 

user’s sentiments accordingly), etc. Various chatbot features as an appearance or a 

friendly human-like behavior are important, however, the most important function 

remains the correct comprehension of user’s questions and adequate responses to them. 

In this paper, we are solving the intent detection problem that classifies user utterances 

into predefined intent categories (related to chatbot answers).  

Widely-known intelligent chatbots as Siri, Cortana, Alexa, Google assistant, etc., 

support only a small group of languages and Lithuanian is not among them. There was 

an attempt to solve an intent detection problem for morphologically complex languages, 

including Lithuanian [2]. This research describes experiments with fastText embeddings 

using the CNN and the Feed Forward Neural Network (FFNN) classifiers (architectures 

based on expert insights). Despite the significance of this research for the Lithuanian 

language, the intent detection model was trained and tested on the artificial data (i.e., 

English benchmark datasets translated into Lithuanian) and a rather small number of 

intents (varying from 2 up to 8).  

In our research, we are solving the intent detection problem for the Lithuanian 

language by training and testing the NLU model on the real dataset of 41 intent. The 

contribution of this research is that we seek for the best intent detection model for the 

Lithuanian language by exploring: 1) two types of word embeddings; 2) three types of 

classifiers (CNN, LSTM, BiLSTM); 3) different Deep Neural Network architectures; 

4) different hyper-parameters. DNN architectures and hyper-parameter values were 

tuned automatically in the parameter optimization process. 

2. Related Work 

If all outdated rule-based and keyword-based approaches are excluded, the remaining 

ones are mainly focused on the Information Retrieval (IR) and Machine Learning (ML) 

techniques. IR-based chatbots are typically used in cases when it is essential to find 

relevant information from huge data collections [3] or unstructured documents [4]. In 

our research, we experiment with the dataset containing question-answer pairs (where 

questions are grouped into categories representing related answers). This particular shape 

of the data allows us to focus on the supervised ML approaches [5].  

The majority of the intent detection research is focused on the English and Chinese 

languages having enough resources to experiment and create accurate NLU models (a 

more detailed review on different intent detection methods can be found in [6]).  

The research in [7] compares different chatbot platforms. Authors test the most 

popular NLU services on a large multi-domain dataset of 21 domains and 25K of 

utterances. The investigation reveals that IBM Watson significantly outperforms other 

platforms as Dialogflow, MS LUIS and Rasa that also demonstrate very good results. 

Three English benchmark datasets, i.e., askUbuntu, chatbot and webApps [8] were used 

in the experiments [9]. Authors introduce a sub-word semantic hashing technique to 

process input texts before classification. After vectorization, the following classifiers are 

explored: Ridge Classifier – RC, K-Nearest Neighbors, Multilayer Perceptron, Passive 

Aggressive – PA, Random Forest – RF, Linear Support Vector – LSV, Stochastic 

Gradient Descent, Nearest Centroid, Multinomial Naive Bayes, Bernoulli Naive Bayes, 

K-means. On the askUbuntu dataset, RC and LSV classifiers achieved the highest 

accuracy. PA and RF were the best on chatbot and webApps, respectively. Authors claim 
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that with the determined classifiers and their sub-word semantic hashing technique, they 

were able to achieve state-of-the-art performance on these benchmark datasets. The 

experiments in [10] only confirm the fact that vectorization plays an important role in 

intent detection. Authors use the BiLSTM classifier with gloVe embeddings enriched 

with semantic lexicons (containing synonyms, and antonyms) and achieve superiority 

over the naïve one-hot vectorization on the ATIS and Places datasets from MS Cortana.  

The problems often emerge when some question is out-of-scope the intent detection 

model is trained to cover. The supervised ML is also the right solution for this type of 

problems. The research in [11] solves an open intent discovery problem with the dataset 

of 25K of utterances in two stages: the first stage predicts if the utterance contains some 

intent and if it does, the second stage tries to predict it. Authors use BiLSTM with the 

Conditional Random Fields (CRF) method on a top of it and a self-attention mechanism 

to learn long distance dependencies. The offered approach outperforms state-of-the-art 

baselines. In the similar work [12], authors use a dataset containing queries that are out-

of-scope (covering none of the existing intents) and in-the-scope (covering one of 150 

available intents). A range of different approaches has been explored in this research: 

fastText classifier, BERT classifier, Support Vector Machine, CNN, DialogFlow, Rasa 

and Multi-Layer Perceptron. The research discovered the BERT classifier to perform 

well in-the-scope; unfortunately, all approaches struggled to identify out-of-scope 

queries. Our dataset contains queries only in-the-scope; therefore, we will focus on the 

closed domain intent detection problems only.  

Intent detection problems are sometimes tackled together with the slot filling. 

Authors in [13] experimentally prove that the proposed joint BERT model outperforms 

BERT models for the intent detection and slot filling trained separately. Their proposed 

joint model is trained on the dataset of 72 slots and 8 intents and achieves significant 

improvement over the attention-based Recurrent Neural Network (RNN) models and 

slot-gated models. In similar research [14], authors use SNIPS-NLU and ATIS datasets 

and propose a Capsule-Based Neural Network model. The architecture consists of three 

types of capsules: WordCaps (to learn word representations), SlotCaps (to classify words 

by their slots) and IntentCaps (to determine the intent). The offered method outperforms 

other popular NN-based approaches. Authors in [15] present an attention-based encoder-

decoder NN model for the joint intent detection and slot filling task. The method encodes 

sentences using the CNN-BiLSTM hybrid approach and decodes using the attention-

based RNN with aligned inputs. The authors experimentally prove that the offered 

approach achieves better performance compared to the other popular DNN-based 

approaches. Since our dataset does not contain necessary annotations for the slot filling, 

we will focus on the intent detection problem only; however, the analysis of similar 

research especially encourages us to test BERT embeddings and DNN classifiers. 

3. The Dataset 

Our NLU module training and testing was done on the real Lithuanian data: i.e., dataset 

containing question-answer pairs about the company’s Tilde product “Tildes Biuras” 

(questions about prices for different users, licenses, supported languages, available 

dictionaries, used technologies, etc.). The whole dataset contains 41 intents (chatbot 

outputs/answers), each covered by at least 5 instances (user inputs/questions). When 

solving the intent detection problem, the following Lithuanian language-dependent and 

spoken language-dependent features have to be considered. The Lithuanian language is 
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morphologically complex, highly inflective, has a rich vocabulary and a rich word-

derivation system. Besides, questions (to correspond the real conversation conditions) 

are formulated in the spoken Lithuanian language: they have relatively free word-order 

(that is typical for the Lithuanian language), contain stylistically irregular constructions 

(typical for the spoken language).  

The dataset was split into training and testing sub-sets (statistics about these splits 

can be found in Table 1).  

Table 1. Statistics about the training/testing dataset used in our experiments 

Number of 
intents 

Number of 
questions 

Number of 
words 

Number of 
distinct words 

Avg. number of 
words per question  

Training dataset 

41 365 1,857 699 5.09 

Testing dataset 

41 144 751 435 5.22 

4. Methodology 

The nature of the dataset (presented in Section 3) makes it possible to use it with the 

supervised ML approaches [5]. A solving task is a typical classification problem and can 

be formally defined as follows:  

Let D = {d1, d2, …, dn} be a set of instances (user inputs/questions). Let C = {c1, c2, 

…, cm} be a set of classes (chatbot outputs/answers/intents). Each di can be attached to 

only one cj; besides m > 2 that restricts this task to a single-label multi-class classification 

problem. D is mapped to C according to the logic Г (Г : D � C). The main goal is to 

train a classifier on the training dataset DT that could find the best approximation of Г 

and demonstrate as higher accuracy as possible on the testing dataset DT.  

The formulated NLU problem is considered as AI-hard problem (meaning that the 

software should be learned to behave as intelligent as a human). The state-of-the-art 

approaches focus on DNN classifiers applied on a top of neural word embeddings (see 

Section 2) and for this reason we have chosen to explore these approaches as well. The 

whole package should contain the correct selection of the vectorization type, classifier, 

its architecture and hyper-parameter values. Thus, we have investigated:  

� FastText 2  [16] and BERT 3  [17] word embeddings. FastText embeddings 

(offered by Facebook AI) are suitable for the non-normative texts: they are 

composed of the n-gram vectors; therefore, embeddings of misspelled words 

are close to their correct equivalents. BERT embeddings (offered by Google) 

are robust to disambiguation problems (because they have mechanisms to 

represent homonyms with different vectors depending on their context). 

� LSTM [18], BiLSTM [19], CNN [20] (with the 1D convolution adjusted for the 

text classification [21]) classifiers. Both LSTM and BiLSTM are adjusted to 

process the sequential data and to overcome limitations of the simple RNN 

suffering from the short memory problem (due to a vanishing gradient). LSTM 

 
2 The Lithuanian fastText embeddings (offered by Facebook’s AI Research Lab) for our experiments 

were downloaded from https://fasttext.cc/docs/en/crawl-vectors.html.  
3 We have used the Google’s BERT service with the base multilingual cased 12-layer, 768-hidden, 12-

heads model for 104 languages (including Lithuanian) downloaded from https://github.com/hanxiao/bert-as-

service.  
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allows the data stream only forward (i.e., from-the-past-to-the-future), whereas 

BiLSTM process the text in both directions (i.e., forward and backward) and 

can acquire how succeeding words impact the current time moment. The CNN 

method is adjusted to seek for the influential text patterns (sequences of words, 

word n-grams) the most relevant to the intent.  

� DNN architectures, having different numbers of hidden layers (i.e., series of 

convolutional layers in CNN; simple or stacked LSTM and BiLSTM).  

� Discrete and real DNN hyper-parameter values: numbers of neurons (100, 200, 

300, 400); dropouts (values from an interval [0,1]); recurrent dropouts ([0, 1]); 

activation functions (relu, softmax, tanh, elu, selu); optimizers (Adam, SGD, 

RMSprop, Adagrad, Adadelta, Adamax, Nadam); batch sizes (32, 64) and 

numbers of epochs (20, 30, 40, 50).  

All this results in a huge number of options and expert knowledge is not always capable 

of selecting the most accurate one. The tuning of DNN architectures and hyper-

parameters was performed automatically with the parameter optimization library 

Hyperas4 and two optimization algorithms (the optimization process took 100 iterations):  

� tpe.suggest (Tree-structured Parzen Estimator) [22], which organizes hyper-

parameters into a tree-like space. This Bayesian modelling approach decides 

which set of hyper-parameters should be tried in the next iteration based on the 

distribution of previous results.  

� random.suggest performs random search over a set of hyper-parameters. 

All methods were implemented in Python using Tensorflow and Keras5. 

5. Experiments and Results 

All experiments described in Section 4 were carried out with the dataset described in 

Section 3. The training dataset (see Table 1) was shuffled and used for the DNN hyper-

parameter optimization: 80 % was used for training and the rest 20 % for validation. The 

best determined model (giving the highest accuracy on the validation dataset) was 

evaluated with the testing dataset. The accuracy (in eq. 1, where Ncorrect and Nall 

represents instances with the correctly predicted intents and all tested instances, 

respectively) was used as the evaluation metric. The highest achieved accuracies with 

different DNN methods and vectorization types are presented in Table 2.  

 (1) 

The approach is considered reasonable if the accuracy is above 

 (where cj is a probability of an intent) and majority=max(P(cj)) baselines in 

our case, equal to ~0.04 and ~0.09, respectively. The McNemar test [23] with α=0.05 

was used to determine if the differences between the obtained results are statistically 

significant. 

 
4 More about Hyperas is in https://github.com/maxpumperla/hyperas.  
5 https://www.tensorflow.org/ and https://keras.io/.  
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The architecture of the best determined approach which happened to be the CNN 

classifier with BERT embeddings is presented in Figure 1 (plotted with the plot_model 
utility function in Keras). Since not all determined optimal hyper-parameters can be 

plotted in the figure, we report them here: selu activation function after Conv1D layer; 

softmax activation function after dense; batch_size=64; epochs=20; optimizer=Nadam; 

dropout rate=0.467. 

Table 2. The highest achieved accuracies (after hyper-parameter optimization) with different DNN classifiers, 

vectorization types, and parameter optimization strategies. The best result is in bold, the underlined results 
determine that they do not differ significantly from the very best 

 fastText embeddings 
 LSTM BiLSTM CNN 

tpe.suggest 0.243 0.563 0.639 
random.suggest 0.278 0.556 0.646 

 BERT embeddings 
 LSTM BiLSTM CNN 

tpe.suggest 0.681 0.653 0.715 
random.suggest 0.681 0.694 0.708 

 

 

Figure 1. The best determined intent detection classifiers and its architecture: CNN with BERT embeddings 

As presented in Table 2, all results are reasonable, because are above random and 

majority baselines. The highest accuracy=~0.715 is achieved with the BERT embeddings 

and the CNN classifier after parameter optimization (the best architecture is presented in 

Figure 1 and the best hyper-parameters are presented in Section 5). The superiority of 

the CNN classifier over the other approaches as LSTM and BiLSTM reveals that for this 

intent detection problem, to detect patterns (as word n-grams) is more important than to 

cope with the sequential nature of the input.  
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The tpe.suggest strategy allowed to optimize parameters even better compared to the 

random.suggest. However, there is no big difference how these parameters were 

optimized, the most important is that the accurate model has been found.  

To see how significantly results differ from the best achieved (accuracy=~0.715) 

with BERT + CNN + tpe.suggest, we have performed the McNemar evaluation 

(calculated p values are in Table 3).  

Table 3. The p values indicating how much the results are statistically significant between the best result with 
BERT + CNN + tpe.suggest strategy and other approaches 

 fastText embeddings 
 LSTM BiLSTM CNN 

tpe.suggest 4.49E-08 0.039  0.300  
random.suggest 2.62E-07 0.032  0.348  

 BERT embeddings 
 LSTM BiLSTM CNN 

tpe.suggest 0.668 0.402 - 
random.suggest 0.668 0.828 1.000 

 

We have evaluated the accuracy for each intent separately (see the statistics in xy � z, 

where x, y, and z are number of testing instances, number of intents having x instances 

and the accuracy, respectively): 210 � 1.00, 27 � 0.50, 27 � 0.00, 31 � 0.67, 31 � 0.00, 

41 � 1.00, 42 � 0.75, 41 � 0.50, 51 � 1.00, 52 � 0.80, 51 � 0.40, 51 � 0.40, 62 � 1.00, 

62 � 0.83, 61 � 0.33, 101 � 0.90, 141 � 1.00. Our solving intent detection problem is 

very challenging (41 intents, some of them are covered with only a few questions). The 

error analysis revealed that intents covered by more instances are better predicted. 

Besides, some intents are ambiguous (leading to very similar answers) and can be 

aggregated. Still, the accuracy of the NLU model is acceptable; we are planning to 

increase it even more by filling the training dataset with the new instances (especially by 

adding more instances to the least covered intents) and uptraining the new version of the 

model with the parameters already determined in this research.  

6. Conclusions 

This paper presented the intent detection problem solving for the Lithuanian language. 

This NLU problem for the Lithuanian language is tackled for the first time by using the 

real data and by comparing a wide variety of different approaches. We performed the 

automatic parameter optimization with three classifiers (LSTM, BiLSTM, CNN), two 

types of word embeddings (fastText, BERT), different DNN architectures (deeper and 

shallower) and various DNN hyper-parameter values. 

The tackled task was especially challenging due to the following reasons: 1) the 

dataset contains many intents (41); 2) each intent was covered by only a few instances 

(~8.9 instances of which only ~7.1 are used for training and ~1.8 for validation). The 

experimental investigation revealed the superiority of the CNN classifier with BERT 

embeddings over other approaches; the best approach achieved ~0.715 of the accuracy. 

The error analysis revealed that intents covered by more instances are more reliable and 

recognized better. It allows us to assume that after adding more instances to the least 

covered intents and retraining the model, the accuracy will boost even more. In the future 

research, we are planning to expand the number of intents and instances. 
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