
Predicting Air Quality in Smart Environments

Seun Deleawea, Jim Kusznirb, Brian Lambb, and Diane J. Cookb,*

a Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
b School of Electrical Engineering and Computer Science, Washington State University, Pullman,
WA, USA

Abstract
The pervasive sensing technologies found in smart environments offer unprecedented
opportunities for monitoring and assisting the individuals who live and work in these spaces. As
aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of
the environment. In this paper we investigate the use of machine learning technologies to predict
CO2 levels as an indicator of air quality in smart environments. We introduce techniques for
collecting and analyzing sensor information in smart environments and analyze the correlation
between resident activities and air quality levels. The effectiveness of our techniques is evaluated
using three physical smart environment testbeds.
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1. Introduction
With the aging of the world’s population, researchers have started to focus on creating
technologies that can assist with monitoring and ensuring the health and safety of older
adults living alone [1]. Much of the emphasis has been placed on detecting falls and
ensuring that residents are performing daily activities [10]. On the other hand, there are
other factors of an environment which can dramatically impact health. One of these is the air
quality of the environment. The World Health Organization [31] reports that 2.4 million
individuals die annually from causes directly attributable to air pollution, 1.5 million of
these from indoor air pollution. Worldwide there are more deaths from poor air quality than
from automobile accidents.

While researchers do study the effect of air quality on human health, outdoor air quality has
historically received a significantly greater amount of attention than indoor air quality [14].
Nevertheless, a recent study [25] showed that US residents, on average, spend 88% of their
day inside buildings, 7% in a vehicle, and only 5% outside. Because individuals continue to
spend a majority of their lives indoors, indoor air quality continues to have a significant
effect on health. Indoor air quality is often described by the presence or absence of various
pollutants. These pollutants include but are not limited to combustion products, volatile
organic compounds, and biological particles. Carbon dioxide (CO2), a colorless, odorless
gas formed in the body during metabolic processes can also serve as an indicator of indoor
air quality [32]. Typical indoor CO2 concentrations range between 720 and 2000 ppm but
can exceed 3000 ppm [14]. Moderate levels of CO2 can cause feelings of stuffiness and
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discomfort, respiration can be slightly affected by levels greater than 15,000 ppm and
exposure to levels over 30,000 can lead to headaches, dizziness, and nausea.

Because indoor air quality is strongly related to health, society would benefit from
automated methods of predicting the indoor air quality that is anticipated for a variety of
conditions. We hypothesize that machine learning techniques can predict indoor air quality
given sensor data that is collected in a smart environment. The ability to predict indoor air
quality in dynamic situations would be extremely beneficial. The information can be used to
evaluate alternative methods for providing clean air. In addition, injecting fresh air can now
be based on detection of resident state and activities and not just on static factors such as
maximum room capacity, as is traditionally employed.

To validate our hypothesis, we collect sensor data in several physical smart environment
testbeds. We calculate total motion and use machine learning techniques to automatically
recognize activities from the raw sensor data. We also collect CO2 levels in these settings.
We use this collected data to evaluate the ability of machine learning techniques to predict
air quality from smart environment data.

2. Smart Environments
A recent convergence of technologies in machine learning and pervasive computing has
caused interest in the development of smart environments to emerge. In addition to
providing an interesting platform for developing adaptive and functional software
applications, smart environments can also be employed for valuable functions such as at-
home health monitoring and automation assistance. The long-term goal of our CASAS smart
environment project [23] is to perform automated health monitoring and to provide
automated assistance that will allow individuals to remain independent in their own homes.
Given the aging of the population, the cost of formal health care, and the importance that
individuals place on remaining independent in their own homes [1],[11], these technologies
will become an increasingly important component of our everyday lives.

The emphasis of smart home assistance for individuals with special needs has been to
monitor completion of ADL (Activities of Daily Living) activities [3],[18],[21]. We are
taking the research to the next step by determining if automatically-recognized activities and
automatically-calculated motion levels can be mapped onto predict indoor air quality levels
We treat a smart environment as an intelligent agent that perceives the state of the resident
and the physical surroundings using sensors and acts on the environment using controllers in
such a way that the specified performance measured is optimized [6]. Researchers have
generated ideas for smart environment software algorithms that track the location of single
residents, that generate reminders, and that react to hazardous situations [34]. Some projects
with physical testbeds have begun to emerge including the MavHome [35], the Gator Tech
Smart House [12], the iDorm [9], and the Georgia Tech Aware Home [2]. Resulting from
these advances, researchers are now beginning to recognize the importance of applying
smart environment technology to health assistance [3],[15],[16],[19],[22] and companies are
recognizing the potential of this technology for a quickly-growing consumer base [13].

The role of smart environments in this research is to provide non-obtrusive monitoring that
not only detects motion and recognizes activities but also uses this information to provide
real-time predictions and estimates of air quality. In order to predict air quality in smart
environments, we collect sensor data in our smart environment testbeds. We calculate total
motion that occurs within a time window in the space and also identify the current activity.
We next use this information to predict air quality. All of our data and experimental
validation is performed in the context of our three physical smart environment testbeds: two
smart apartments and a smart workplace.
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3. Testbeds
Our smart environment testbeds are located on the Washington State University campus and
are maintained as part of our ongoing CASAS smart home project [23]. We performed our
testing in three separate physical smart environment testbeds: two apartments and one
workplace environment. The physical layout and sensor placement for these three
environments are shown in Figs. 1 through 3. As shown in Fig. 1, the first smart apartment
testbed (which we label “Kyoto”) contains three bedrooms, one bathroom, a kitchen, a living
room, and a dining area. The apartment is equipped with motion sensors distributed
approximately 1 meter apart throughout the space. In addition, we have also installed
sensors to provide ambient temperature readings and custom-built analog sensors to provide
readings for hot water, cold water, and stove burner use. Contact switches allow us to
monitor usage of key items including a cooking pot, a medicine container, and the phone
book. In addition, Insteon™ power controls monitor usage and control lighting throughout
the space. Sensor data is captured using an in-house sensor network and is stored in a SQL
database. Our middleware uses a XMPP-based publish-subscribe protocol as a lightweight
platform and language-independent method to push data to client tools (i.e., our data
analysis and application programs).

Our second smart apartment (which we label “Tulum”) is shown in Fig. 2. This is a smaller
environment in which we equipped only the downstairs areas with motion sensors,
positioned approximately 4 feet apart. Finally, we have equipped an on-campus smart
workplace environment (which we label “Tokyo”), shown in Fig. 3. This is a laboratory that
is organized into four cubicles with desks and computers, an open server area, a postdoc
office, a meeting area, a lounge, and a kitchen. Like the apartment, the lab is equipped with
motion sensors placed approximately 1 meter apart throughout the space and magnetic
sensors record door openings and closing. In addition, powerline controllers operate all of
the lights in the room. Each sensor event is represented by the event’s date, time, sensor ID,
and sensor value.

The sensors that we use in these environments allow our algorithms to recognize and track
daily activities. While this feature alone has benefits for monitoring the functional and
physical well-begin of residents, we hypothesize that the data can be used additionally to
detect types of social interactions. We do not employ cameras or microphones in these
testbeds. While they may offer valuable insights for social interaction detection, they are
typically not well-accepted by the community that we want to serve with this technology [8]
and therefore are not used as part of our smart environment testbeds.

Using four Fluke 975 AirMeters (shown in Fig. 4) logging one data point each minute, we
collected CO2 at four different locations. The first three are our smart environments: Kyoto,
Tulum, and Tokyo. The fourth location is an outdoor spot directly outside the Tokyo smart
workplace environment (which we label “TokyoOut”). Each air quality data reading consists
of a reading number, temperature, wet bulb, dew point, percent relative humidity, carbon
monoxide level, carbon dioxide level, and time stamp. For the purpose of this study, we
focused on the temperature, the carbon dioxide level, and the time stamp. We collected a
total of 10,080 readings in these environments over a one week time span. During this time
each apartment (Kyoto and Tulum) housed two volunteer participants who performed their
normal daily routines. Approximately ten undergraduate and graduate students performed
their research activities in the smart workplace (Tokyo) during this time.

Fig. 5 shows the CO2 readings that were measured at each of the sites during our data
collection process. As the graph shows, all of the air quality levels are fairly good and are
well within the recommended ranges for indoor air quality. The outdoor readings are better
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overall than the indoor readings, which may be due to the increased amount of human
activity in the somewhat confined indoor spaces. We can see that there are fluctuations in
the readings throughout the day. However, the fluctuations do not cover a wide range of
values (with the possible exception of readings in the Kyoto environment), which make this
a more difficult concept to learn than in environments where there is a tremendous amount
of fluctuation in indoor air quality levels.

4. Processing Smart Environment Data
The goal of this study is to determine if smart environment sensor data can be used to
predict air quality readings. In order to achieve this goal we collect smart environment
sensor readings for a window of time leading up to the corresponding CO2 data reading.
There are a number of decisions that need to be made to generate the most accurate model
possible, and we address these decisions here.

4.1. Determining the time window size
The first decision to make is how much smart environment data to collect that corresponds
to one air quality reading. Since we are collecting readings for a fixed window of time
before the CO2 reading, this translates to a question of what the time window size should be.
A big window size will generate a large amount of data to train the model, which can
improve the accuracy of the model. On the other hand, the most current data most
dramatically impacts the air quality level and collecting data that is old may actually degrade
the accuracy of the model. In order to analyze the effect of different window sizes on
different environment layouts and activities we test a variety of window sizes. Our results
report the accuracy of models generated with windows of size 2, 5, 10, 15, 20, and 30
minutes.

4.2. Generating motion level features
One of the most valuable pieces of information a smart environment provides for air quality
is the activity level or motion level in the environment. This can be measured by calculating
the number of motion sensors that are activated during the data collection time window. Our
motion sensors are activated by movement in a 4′ sq radius and stay on until no new
movement is detected for 5 seconds. In our first approach the motion count is a total of all
motion sensors that activated during the time window.

In our second approach, we calculate a weighted mobility count. We do this because the
activity closest to the Fluke meter will most greatly affect the readings at the meter itself.
Each motion sensor in this approach is assigned a value between 1 and 8 based on its
proximity to the meter (8 being the closest to the meter). We then compute a sum of these
weighted values to generate input data for our model.

4.3. Automatically-recognized activities
While collecting sequences of sensor readings in a smart environment is valuable,
determining what activities these sequences represent provides even more valuable insights
on the residents’ functional health. This information can in turn be used to assess the
residents’ well-being and to provide context-aware, customized interventions and services
for the residents. On the other hand, recognizing activities from raw sensor data is
challenging. Researchers have conducted studies that assess the ability of machine learning
technologies to recognize activities using wearable sensors [18], by monitoring interactions
with objects in the environment [20],[21], by videotaping activities [4], and by analyzing
motion sensor data [7]. A variety of models including naïve Bayes classifiers [4],17,[28],
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decision trees [18], and probabilistic model such as Markov models, dynamic Bayes
networks, and conditional random fields [7],[17],[21],[26] have been tested.

While these studies have indicated the power of algorithmic methods for activity
recognition, they have been tested in single-resident settings where the activities are
uninterrupted. In contrast, we have designed an approach that handles cases where some of
the activities are interrupted [27], some activities occur in parallel, and some activities
involve multiple residents [28]. In order to recognize these activities in a smart environment,
we use a portion of the data as sample data for creating a model of the activities.
Specifically, we use a hidden Markov model (HMM) to model the dynamic system. A
hidden Markov model (HMM) is a statistical model in which the underlying model is a
stochastic process that is not observable (i.e. hidden) and is assumed to be a Markov process
which can be observed through another set of stochastic processes that produce the sequence
of observed symbols. A HMM assigns probability values over a potentially infinite number
of sequences. Because the probabilities values must sum to one, the distribution described
by the HMM is constrained. This means that the increase in probability values of one
sequence is directly related to the decrease in probability values for another sequence.

In the case of a Markov chain, all states are observable states and are directly visible to the
observer. Thus, the only other parameter in addition to the prior probabilities of the states
and the distribution of feature values for each state is the state transition probabilities. In the
case of a hidden Markov model, there are hidden states which are not directly visible, and
the observable states (or the variables) influence the hidden states. Each state is associated
with a probability distribution over the possible output tokens. Transitions from any one
state to another are governed by transition probabilities as in the Markov chain. Thus, in a
particular state an outcome can be generated according to the associated probability
distribution.

HMMs are known to perform very well in cases where temporal patterns need to be
recognized which aligns with our requirement in recognizing interleaved activities. The
conditional probability distribution of any hidden state depends only on the value of the
preceding hidden state. The value of an observable state depends only on the value of the
current hidden state. The observable variable at time t, namely xt, depends only on the
hidden variable yt at that time. We can specify an HMM using three probability
distributions: the distribution over initial states Π = {πk}, the state transition probability
distribution A = {akl}, with akl = p(yt=l|yt−1=k} representing the probability of transitioning
from state k to state l; and the observation distribution B = {bil}, with bil = p(xt=i|yt=l)
indicating the probability that the state l would generation observation xt=i. These
distributions are estimated based on the relative frequencies of visited states and state
transitions observed in the training data.

Given a set of training data our algorithm uses the sensor values as parameters of the hidden
Markov model. Given an input sequence of sensor event observations x1..xt, our goal is to
find the most likely sequence of hidden states or activities, y1..yt, which could have
generated the observed event sequence. We use the Viterbi algorithm [30] to identify this
sequence of hidden states following the calculation in Equation 1.

(1)

In our implementation of a hidden Markov model, we treat every activity as a hidden state.
Next, every sensor is treated as an observable state in the model due to the fact that every
sensor which is used is observable in our dataset. Based on the collected data we estimate
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the prior probability (i.e., the start probability) of every state which represents the belief
about which hidden state the HMM is in when the first sensor event is seen. The training
data is also used to estimate the transition probability between any two states a and b, (as the
ratio of occurrences of a transition from a to b to the total number of transitions out of state
a) and the emission probability that represents the likelihood of observing a particular sensor
event for a given activity. We have tested these approaches on data in our smart apartment
and have generated results above 90% for most activities.

For this study, we add activity information for one of the environments, the Kyoto smart
apartment. We capture and annotate 16 possible activities for this environment and abstract
them into 5 categories for this task, which include:

1. Sleeping

2. Grooming/cleaning

3. Eating

4. Shower

5. Studying

6. Other

4.4. Additional features
In addition to motion counts and activities, we collect additional features that may have an
effect on air quality. These include time of day and temperature readings. Each of these
features was discretized using equal-size binning. Time of day was discretized into morning,
afternoon, evening, and night values, while temperature readings were discretized into high,
mid, and low readings.

5. Machine Learning Model
We employed three different machine learning methods to model the air quality data. The
goal of the model is to learn a mapping from smart environment features to an air quality
range. The first technique we evaluate is a naïve Bayes classifier which selects the air
quality label which fits the feature descriptions with the greatest probability. A naïve Bayes
classifier uses the relative frequencies of feature values and the class values found in
training data to learn a mapping from a data point description to a classification label. Naïve
Bayes classifiers have been shown to yield promising results for activity recognition, which
is one reason we consider this model for our study. For our second model we use a
multilayer perceptron, which traditionally handles continuous-valued attributes (such as
temperature and motion sensor counts in our case) well. Our network employs one hidden
layer with five hidden nodes, a learning rate of 0.3, and a momentum of 0.2. Finally, we
learn the mapping from features to classification with a decision tree model which uses
entropy to select an ordering of feature values to consider in the concept rule description.
Because a decision tree generates decision rules as its model we can understand the
attributes that were most influential in predicting the air quality class. The decision tree we
employ has a confidence factor of 0.25. For all three approaches we use the Weka [33]
implementation of the learning algorithms.

6. Results
In our experiments we want to determine if smart environment information can be used to
learn a model of air quality. We are also interested to see how alternative feature choices and
alternative environments affect the predictive accuracy of the models. In our first experiment
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we compare data collection window sizes, number of class labels, and learning algorithms
for the Tulum smart apartment. Each of the results is generated using 3-fold cross validation.
The results are listed as percentages of the test data-set that are correctly classified with the
true air quality level. For each row in the table we indicate with an asterisk (*) each case in
which the accuracy of the leading classifier is significantly higher (p < 0.05) based on a
paired t-test calculation. As the results in Table 1 indicate, the decision tree algorithm
consistently outperformed the other learning methods on this problem. While the predictive
accuracy is lower when a greater number of classes are being learned, both models were
learned with a fairly high degree of success. The larger window sizes tend to perform best.
We notice that since the Fluke meter averages past readings together, it does take a while for
the CO2 readings to drop back down to normal after a flurry of CO2-generating activity is
done. This may explain why larger time windows are effective at predicting air quality for
these studies.

In our first testbed, the decision tree significantly (p < 0.05) outperforms the other methods
in each case. While this is usually the case in the other test-beds as well (summarized in
Tables 2 through 4), we should point out that all of the models perform consistently well,
which indicates that air quality can in fact be learned from smart environment information.
This is the main goal of our effort and the evidence validates in these studies.

In the second experiment we analyze data collected in the Tokyo smart workplace
environment. As before, we are interested in seeing if the machine learning algorithm can
successfully predict air quality levels from smart environment data. As in the first
experiment we compare three different learning algorithms for different time window sizes
and number of class labels. In this experiment, we also include an attribute that represents
outdoor air quality levels. This information is provided by the TokyoOut location
immediately outside the Tokyo lab.

Table 2 summarizes the results from the second experiment. Once again the decision tree
algorithm performed the best and the larger time windows yielded better predictive results.
The smart environment data combined with the learning algorithms did successfully predict
air quality levels in this second smart environment testbed. An interesting observation is that
the inclusion of outdoor air quality levels did improve the performance of the weaker
models (the naïve Bayes classifier and the neural network) but did not significantly improve
the performance of the strongest model. While outdoor air quality may have an effect on
nearby indoor environments, this will in general be dependent upon the number of windows,
the quality of filters, and the activities in the indoor environment. More testing on a number
of different types of environments will provide greater insight on the effect of outdoor air
quality on the indoor values for particular environments.

Our last experiments focused on the Kyoto smart apartment testbed. Here we once again test
the learning algorithms on varying window sizes and number of class labels. In addition, in
this study we compare the result of using an unweighted count of motion sensor events with
a weighted count. We also consider the effect of discretize motion counts into ranges instead
of using raw values. These results are summarized in Table 3. The decision tree algorithm
did perform best again. The numbers did not improve when we used weighted motion sensor
counts. This was contrary to our expectations. These are fairly small spaces and the results
indicate that activity that occurs even away from the sensor can affect the overall indoor air
quality readings to a measurable degree. As a result, all activity that occurs within a smart
environment should be included in any model that is used to predict air quality in the
environment. In our final experiment we include activity information as an attribute that is
fed in to the machine learning algorithms. This represents the output of one machine
learning algorithm that is provided as input to another algorithm in order to improve the
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performance of the overall system. We tested our theory that activity information would
provide useful insights on air quality prediction in the context of the Kyoto smart apartment
testbed. The results of this experiment are summarized in Table 4.

The inclusion of activity information does improve the accuracy of each of the models. The
average accuracy of the models with no activity information is 82.74% for two class labels
and 73.88% for three labels. In contrast, the average accuracy of the models including
activity information is 86.69% for two class labels and 79.33% for three class labels. The
addition of the activity information thus improves the prediction accuracy by 4.70%, on
average. This result indicates that not only smart environment sensor data is useful for
predicting air quality, but smart environment algorithms that intelligent process sensor data
to recognize resident activities are valuable for predicting the quality of air in an indoor
smart environment.

7. Conclusions
The goal of this work is to determine if smart environment sensor data can be used to predict
air quality levels. The results we obtained from our study indicate that CO2 levels can be
learned with a reasonable amount of accuracy and therefore machine learning models build
from sensor data can be used as a partial indicator of dynamic air quality conditions in smart
environments. In an ideal scenario CO2 levels would be used with other partial indicators of
air quality such as volatile organic compounds for a more holistic quantification of the
quality of air in the environment.

This study allows us to investigate the ability of machine learning algorithms to predict air
quality levels based upon smart environment sensor information. We note that this study
used specific implementations and customizations of three machine learning models. In
order to perform a thorough analysis of the most effect model for this problem additional
models and parameterizations should be considered and analyzed.

There are additional influencing factors that could be analyzed in order to provide a more
comprehensive model. For example, all of the data in this study was collected during
summer months. The nature of air quality influences will likely be different in the colder
winter months. In addition, features of the residents themselves should be taken into
consideration, such as monitoring environments where one or more residents are smokers.
Future work can sample data under a greater number of varying conditions to determine the
ability of these models to predict and generalize over such variations. In our current
approach we sample several different time windows to collect input data for the learned
model. In actuality the resident’s time spent within a room will affect the optimal window
size for the analysis. We plan to estimate resident times from available CO2 and smart
environment sensor data and use this information to automate window size selection.

When the air quality is predicted it can then be used to automate tasks such as automated
ventilation and purification of air. The intelligent regulation of such tasks in a smart
environment will eventually prove to be economical as well as efficient. Future
improvements upon the results we obtained may require more accurate estimates of the
proximity of the sensors to the meters, alternative feature selection methods, and more
accurate measurement of CO2 levels.
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Fig. 1.
WSU Kyoto smart apartment testbed. Sensors in the apartment monitor motion, temperature,
water, telephone, and item use.
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Fig. 2.
WSU Tulum smart apartment testbed and motion sensor layout.
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Fig. 3.
WSU Tokyo smart workplace testbed.
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Fig. 4.
Fluke air quality meter.
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Fig. 5.
Air quality readings averaged by hour for the four monitored locations.
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Table 1

Results in the Tulum smart apartment testbed for varying machine learning models, time window sizes, and
numbers of classes. The data was collected and analyzed while two participants lived in the apartment and
performed their normal daily routines. Statistical significance of comparative performance between the best
classification accuracy and other classifiers is indicated with an asterisk (*).

Number of Air Quality Class Levels Window size Naïve Bayes Neural Network Decision Tree

Two levels (low, high)

2 65.09%* 72.95%* 86.54%

5 66.15%* 74.33%* 88.52%

10 66.17%* 76.48%* 88.83%

15 66.38%* 76.43%* 89.22%

20 67.01%* 74.54%* 89.46%

30 66.13%* 75.36%* 89.23%

Average 66.16% 75.02% 89.06%

Three levels (low, medium, high)

2 54.15%* 61.93%* 85.38%

5 54.03%* 62.95%* 85.24%

10 56.21%* 64.26%* 85.29%

15 57.65%* 63.44%* 84.99%

20 58.30%* 63.16%* 85.36%

30 58.49%* 63.88%* 85.61%

Average 56.47% 63.27% 85.31%
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Table 4

Air quality results in the Kyoto smart apartment testbed. The results are reported for varying machine learning
models, different time window sizes, and different numbers of class labels. Statistical significance of
comparative performance is indicated with an asterisk (*).

Number of Air Quality Class Levels Window size Naïve Bayes Neural Network Decision Tree

Two levels (low, high)

2 77.55%* 86.11%* 96.57%

5 76.56%* 86.42%* 96.61%

10 76.23%* 87.97%* 96.60%

15 76.15%* 88.27%* 96.33%

20 76.55%* 88.05%* 96.47%

30 77.02%* 84.50%* 96.40%

Three levels (low, medium, high)

2 61.88%* 78.93%* 95.65%

5 62.02%* 80.50%* 95.93%

10 62.36%* 78.43%* 95.68%

15 64.17%* 79.36%* 95.89%

20 64.45%* 80.01%* 95.99%

30 63.61%* 77.38%* 95.80%
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