
Modal logic programming revisited

Linh Anh Nguyen

University of Warsaw
Institute of Informatics
ul. Banacha 2,
02-097 Warsaw (Poland)

nguyen@mimuw.edu.pl

ABSTRACT. We present optimizations for the modal logic programming system MProlog, in-
cluding the standard form for resolution cycles, optimized sets of rules used as meta-clauses,
optimizations for the version of MProlog without existential modal operators, as well as iter-
ative deepening search and tabulation. Our SLD-resolution calculi for MProlog in a number
of modal logics are still strongly complete when resolution cycles are in the standard form and
optimized sets of rules are used. We also show that the labelling technique used in our direct ap-
proach is relatively better than the Skolemization technique used in the translation approaches
for modal logic programming.

KEYWORDS: modal logic, logic programming, MProlog.

DOI:10.3166/JANCL.19.167–181 c© 2009 Lavoisier, Paris

1. Introduction

Modal logic programming is the field that extends classical logic programming to
deal with modalities. As modal logics can be used, among others, to reason about
knowledge and belief, developing a good formalism for modal logic programs and an
efficient computational procedure for it is desirable.

The first work on extending logic programming with modal logic is (Fariñas del
Cerro, 1986) on the implemented system Molog (Fariñas del Cerro et al., 1986). With
Molog, the user can fix a modal logic and define or choose the rules to deal with
modal operators. Molog can be viewed as a framework which can be instantiated with
particular modal logics. As an extension of Molog, the Toulouse Inference Machine
(Balbiani et al., 1991) together with an abstract machine model called TARSKI for
implementation (Balbiani et al., 1992) makes it possible for a user to select clauses
which cannot exactly unify with the current goal, but just resemble it in some way.

Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009, page 167 to 181



168 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

Apart from the mentioned works, modal logic programming has been studied by
several authors in (Balbiani et al., 1988; Akama, 1989; Debart et al., 1992; Nonnen-
gart, 1994; Baldoni et al., 1996) and by us in (Nguyen, 2003; Nguyen, 2004; Nguyen,
2006). The works (Balbiani et al., 1988; Baldoni et al., 1996) and our mentioned
works use the direct approach, the works (Akama, 1989; Debart et al., 1992) use
the functional translation approach, and the work (Nonnengart, 1994) uses the semi-
functional approach. See (Orgun et al., 1994; Nguyen, 2006) for further information.

In (Nguyen, 2006), we gave a framework for developing the least model semantics,
fixpoint semantics, and SLD-resolution calculi for positive modal programs (called
MProlog programs) in modal logics whose frame restrictions consist of the serial-
ity conditions (i.e. ∀x∃y Ri(x, y) for every modal index i) and some classical Horn
clauses. We have applied the framework for basic serial monomodal logics (Nguyen,
2003), multimodal logics of belief (Nguyen, 2006), the class BSMM of basic serial
multimodal logics (Nguyen, 2006), and the class sCFG of serial context-free gram-
mar logics (Nguyen, 2007).

The special feature of our framework is that it uses the direct approach and does
not assume any special restriction on occurrences of modal operators1, while the work
(Balbiani et al., 1988) assumes that universal modal operators do not occur in bodies of
program clauses and goals, and the work (Baldoni et al., 1996) assumes that existential
modal operators do not occur in program clauses and goals.

Using our framework we have designed and implemented the modal logic pro-
gramming system MProlog (Nguyen, 2004; Nguyen, 2008b). The theoretical founda-
tion of the MProlog system is very different than that of Molog (Fariñas del Cerro et
al., 1986). In MProlog, the labelling technique is used for existential modal opera-
tors instead of Skolemization. Our system uses new technicalities like normal forms
of modalities and pre-orders between modal operators. It also eliminates some draw-
backs of Molog, e.g., MProlog gives substitutions as computed answers, while Molog
can only answer “yes” or “no” (where “yes” means there exists a correct answer).

In this paper, we present new results and optimization techniques for modal logic
programming. One of the theoretical results is the theorem about strong complete-
ness of our SLD-resolution calculi for MProlog. We give various optimizations for
MProlog that are both interesting from the theoretical point of view and useful for
the implementation, including the standard form for resolution cycles, optimized sets
of rules used as meta-clauses, optimizations for the version of MProlog without ex-
istential modal operators, as well as iterative deepening search and tabulation. The
other theoretical results are that our SLD-resolution calculi for MProlog in a number
of modal logics are still strongly complete when resolution cycles are in the standard
form and optimized sets of rules are used. We also show that the labelling technique
used in our direct approach is relatively better than the Skolemization technique used
in the translation approaches for modal logic programming.

1. Programs and goals in our framework are of a normal form but the language is as expressive
as the general modal Horn fragment.



Modal logic programming revisited 169

This paper can be treated as a supplement to (Nguyen, 2006). We assume that the
reader is familiar with modal logic and logic programming. Despite that we have made
this paper self-contained to a certain extent, for a more comprehensive explanation
we recommend the reader to read some parts of (Nguyen, 2006), e.g. the illustrating
example given in (Nguyen, 2006, Section 1). Due to the lack of space, the proofs of
the theorems given in this paper are presented only in the technical report (Nguyen,
2008a).

2. Preliminaries

2.1. Considered modal logics

Modal logics considered in our framework of modal logic programming are quan-
tified modal logics with fixed domain and rigid terms. Their language is an exten-
sion of the language of classical first-order logic with modal operators �i and ♦i, for
1 ≤ i ≤ m (where m is a fixed number). If m = 1 then we ignore the subscript i and
write � and ♦. The operators �i are called universal modal operators, while ♦i are
called existential modal operators.

We restrict ourselves to modal logics that extend the quantified modal logic K(m)

with axioms (D) : �iϕ → ♦iϕ (for 1 ≤ i ≤ m) and some axioms that correspond
to frame restrictions of the form of a Horn clause. The axiom (D) for modal index i
corresponds to the seriality condition ∀x∃y Ri(x, y). When �iϕ is read as “agent i
believes that ϕ holds” (and ♦iϕ is treated as ¬�i¬ϕ), the axiom says that beliefs of
agent i are consistent.

In some examples we use the modal logics KDI4s and KDI4s5. In these logics,
�iϕ means “ϕ is believed with degree at least i”. These logics are axiomatised as:

KDI4s = K(m) + (D) + (I) + (4s)

KDI4s5 = K(m) + (D) + (I) + (4s) + (5)

where the schemata of the additional axioms are: 2

(I) : �iϕ→ �jϕ if i > j,
(4s) : �iϕ→ �j�iϕ (strong positive introspection),
(5) : ¬�iϕ→ �i¬�iϕ (negative introspection).

2.2. The logical formalism MProlog

A universal modality is a (possibly empty) sequence of universal modal operators.
We use � to denote a universal modality. Similarly as in classical logic programming,

2. Axiom (5s) : ¬�iϕ→ �j¬�iϕ (strong negative introspection) is derivable in KDI4s5.



170 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

we write �(ϕ← ψ1, . . . , ψn) to denote the formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)).3 We
use E to denote a classical atom.

A program clause is a formula of the form �(A ← B1, . . . , Bn), where n ≥ 0
and A, B1, . . . , Bn are formulas of the form E, �iE, or ♦iE. � is called the modal
context, A the head, and (B1, . . . , Bn) the body of the program clause. An MProlog
program is a finite set of program clauses.

An MProlog goal atom is a formula of the form �E or �♦iE, where � is called
the modal context of the goal atom. An MProlog goal is a formula written in the
clausal form← α1, . . . , αk, where each αi is an MProlog goal atom.

Let P be an MProlog program and G an MProlog goal of the form← α1, . . . , αk.
A substitution θ is a correct answer in a modal logic L for P ∪ {G} if the domain of
θ consists of variables occurring in G and P |=L ∀((α1 ∧ . . . ∧ αk)θ).

It is shown in (Nguyen, 2008a) that MProlog has the same expressive power as
the general Horn fragment in normal modal logics that are characterised by a class
of Kripke structures. For a specific modal logic L, we may adopt some restrictions
on modal contexts of MProlog program clauses and MProlog goal atoms and call the
obtained language L-MProlog. (If no restriction is adopted then L-MProlog is the same
as MProlog.) Such restrictions either follow from equivalencies in L or are acceptable
from the practical point of view, and furthermore, they do not reduce expressiveness
of the language.

For example, in KDI4s5 we have the equivalence ∇∇′ϕ ≡ ∇′ϕ, where ∇ and
∇′ are arbitrary modal operators. Hence we can assume that the modal context of an
KDI4s5-MProlog program clause has length 1 or 0, and an KDI4s5-MProlog goal
atom is a formula of the form E, �iE or ♦iE, with E being a classical atom.

2.3. A framework of SLD-resolution for MProlog

In (Nguyen, 2006), we gave a framework for developing fixpoint semantics, the
least model semantics, and SLD-resolution calculi for L-MProlog, where L is a se-
rial modal logic whose frame restrictions except seriality are Horn clauses (of classi-
cal first-order logic). We outline here the fragment involving SLD-resolution of that
framework.

From now on, by a modal operator we mean �i, ♦j , or 〈S〉k, where 〈S〉k is
♦k labelled by S, which is either a classical atom or a variable for classical atoms
(called an atom variable). For further information on labelled modal operators, see
(Nguyen, 2006). We use ∇ and∇′ to denote modal operators.

A modality is a (possibly empty) sequence of modal operators. We use4 to denote
a modality. Recall that we useE to denote a classical atom. A modal atom is a formula

3. By ∀(ϕ) we denote the universal closure of ϕ, which is the formula obtained by adding a
universal quantifier for every variable having a free occurrence in ϕ.



Modal logic programming revisited 171

of the form4E. A simple modal atom is a formula of the form E or ∇E. We use A,
B to denote simple modal atoms, and α, β to denote modal atoms.

There may exist a compact form for modalities in L. For each specific modal logic
L, we define L-normal form of modalities. For example, a modality is in KDI4s5-
normal form if its length is 0 or 1. It is possible that no restriction is adopted for
L-normal form of modalities. A modality is in L-normal labelled form if it is in L-
normal form and does not contain unlabelled existential modal operators ♦i. A modal
atom4E is in L-normal (labelled) form if4 is in L-normal (labelled) form. Given a
ground modal atom, the NFL operator converts it to L-normal form.

Given a modal atom α, one can derive other modal atoms from α using axioms
of L. The corresponding operator is called the SatL operator (where Sat stands for
“saturation”). The direct consequence operator TL,P is defined using SatL and NFL.
An SLD-resolution calculus can be viewed as a reversed analogue of a direct conse-
quence operator. Hence, to define an SLD-resolution calculus for L-MProlog we need
reversed analogues of the operators SatL and NFL. These operators are called the
rSatL operator and the rNFL operator, respectively. See (Nguyen, 2006) for formal
definitions of the operators SatL, NFL, rSatL, and rNFL.

The rSatL and rNFL operators are each specified by a finite set of rules of the
form α ← β, where α and β are (schemata of) modal atoms. The rules are used as
meta-clauses in SLD-derivations. Such rules can be accompanied by conditions which
specify when the rule are applicable.4

For example, the rNFL and rSatL operators for L = KDI4s5 are specified by
the following rules, where X is a fresh atom variable:5

rNFL: (a) ∇E ← 〈X〉i∇E;
rSatL: (a) ∇∇′E ← ∇′E,

(b) ♦iE ← ♦jE if i > j,
(c) ♦iE ← 〈X〉iE.

A goal is a clause of the form ← α1, . . . , αk, where each αi is a modal atom.
Resolvents of a goal ← α1, . . . , αk and an rSatL/rNFL rule α ← β are defined
in the usual way (Nguyen, 2006). For example, resolving ← �1♦2p(x) with the
rule ∇∇′E ← ∇′E results in ← ♦2p(x), since ∇ is instantiated to �1, and ∇′ is
instantiated to ♦2.

For each specific modal logic L, we define a pre-order �L to compare modal op-
erators. For example, for L = KDI4s5, the pre-order �L is the least reflexive and
transitive binary relation between modal operators such that: ♦i �L 〈S〉i �L �i,
and if i < j then �i �L �j and ♦j �L ♦i. If ∇ �L ∇′ then we say that ∇ is an
L-instance of∇′. We say that an atom4E is an L-instance of4′E′ if4 and4′ have

4. In general, a rule is of the form (α← ϕ, β, ψ), where α and β stand for modal atoms, ϕ is a
pre-condition, and ψ is a post-computation.
5. This means that standardizing variables apart is also needed for atom variables.



172 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

the same length k and there exists a substitution θ such that E = E′θ and the modal
operator at position i of4 is an L-instance of the modal operator at position i of4′θ
for every 1 ≤ i ≤ k.

If � and �′ are universal modalities, and furthermore, � is the modal context of
an L-MProlog program clause, then we say that �′ is an L-context instance of � if
�ϕ → �′ϕ is a theorem in L for an arbitrary ϕ. For example, �1 is a KDI4s5-
context instance of �2.

The forward labelled form of an atom α is the atom α′ such that if α is of the form
4♦iE then α′ = 4〈E〉iE, else α′ = α. For example, the forward labelled form of
♦1s(a) is 〈s(a)〉1s(a).

Let G = ← α1, . . . , αi, . . . , αk be a goal and ϕ = �(A ← B1, . . . , Bn) a pro-
gram clause. ThenG′ is derived fromG and ϕ in L using a most general unifier (mgu)
θ, and called an L-resolvent of G and ϕ, if the following conditions hold:

– αi = 4′A′, with4′ in L-normal labelled form, is called the selected atom.
– 4′ is an L-instance of �′ which in turn is an L-context instance of �.
– θ is an mgu such that: A′θ has the same classical atom as Aθ, and A′θ is an

L-instance of the forward labelled form of Aθ.
– G′ is the goal← (α1, . . . , αi−1,4′B1, . . . ,4′Bn, αi+1, . . . , αk)θ.

For example, the only KDI4s5-resolvent of← �1p(x) and �2(p(x)← ♦2q(x))
is ← �1♦2q(x) (here, � = �2 and 4′ = �′ = �1). As another example, the
only KDI4s5-resolvent of← 〈Y 〉1〈X〉1r(x), 〈X〉1s(x) and �1(�1r(x) ← s(x)) is
← 〈Y 〉1s(x), 〈X〉1s(x) (here, � = �′ = �1 and4′ = 〈Y 〉1).

SLD-derivation from an L-MProlog program and an L-MProlog goal in L is defined
using two kinds of steps: a) deriving an L-resolvent of a goal and a variant of a program
clause, b) deriving a resolvent of a goal and a variant of an rSatL/rNFL rule. The
notions of SLD-refutation and computed answer for L-MProlog are defined in the
usual way. See Figure 1 for an example of SLD-refutation.

A selection rule is a function that maps an SLD-derivation with the last goal
← α1, . . . , αk to some atom αi (1 ≤ i ≤ k). Let P be an L-MProlog program, G
an L-MProlog goal, andR a selection rule. An SLD-refutation of P ∪ {G} in L viaR
is an SLD-refutation of P ∪ {G} in L that usesR to select atoms.

Using the given framework, in (Nguyen, 2003; Nguyen, 2006; Nguyen, 2007)
we have specified SLD-resolution calculi for L-MProlog in basic serial/almost serial
monomodal logics, multimodal logics of belief, the classBSMM of basic serial mul-
timodal logics, and the class sCFG of serial context-free grammar logics.

THEOREM 1. — The SLD-resolution calculi given in (Nguyen, 2003; Nguyen, 2006;
Nguyen, 2007) for L-MProlog in various modal logics L are sound and strongly com-
plete:

Soundness: Let P be an L-MProlog program and G an L-MProlog goal. Then every
computed answer in L for P ∪ {G} is a correct answer in L for P ∪ {G}.



Modal logic programming revisited 173

Consider the goal G =← �1p(x) and the following program P :

ϕ1 = �2(p(x)← ♦2q(x))
ϕ2 = �1(q(x)← r(x), s(x))
ϕ3 = �1(�1r(x)← s(x))
ϕ4 = ♦1s(a)←

Here is an SLD-refutation of P ∪ {G} in L = KDI4s5:

Goals Input clauses/rules MGUs
← �1p(x)
← �1♦2q(x) ϕ1 {x1/x}
← ♦2q(x) rSatL(a)
← ♦1q(x) rSatL(b)
← 〈X〉1q(x) rSatL(c)
← 〈X〉1r(x), 〈X〉1s(x) ϕ2 {x5/x}
← 〈Y 〉1〈X〉1r(x), 〈X〉1s(x) rNFL(a)
← 〈Y 〉1s(x), 〈X〉1s(x) ϕ3 {x7/x}
← 〈X〉1s(a) ϕ4 {x/a, Y/s(a)}
the empty clause ϕ4 {X/s(a)}
(Variables of the input clause of step i are subscripted by i.)

Figure 1. An example of SLD-resolution for MProlog

Strong completeness: Let P be an L-MProlog program, G an L-MProlog goal, and
R a selection rule. For every correct answer θ in L of P ∪ {G}, there exists
an SLD-refutation of P ∪ {G} in L via R with computed answer γ such that
Gθ = Gγδ for some substitution δ.

See (Nguyen, 2003; Nguyen, 2006; Nguyen, 2008a) for the proofs of this theorem.

3. Optimizations

3.1. The standard form for resolution cycles

Roughly speaking, an SLD-derivation from a program P and a goal G in L is an
application of a sequence of program clauses of P and rSatL/rNFL rules to the
goal G. (By an application of a program clause or a rule we mean an application of its
variant.) A resolution cycle is defined to be a fragment of an SLD-derivation that starts
either immediately after an application of a program clause or from the beginning of
the derivation, and ends with an application of a program clause. Note that an SLD-
refutation can be divided into a sequence of resolution cycles.



174 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

A selection rule is standard if in every resolution cycle only atoms at the same
position are selected. A resolution cycle in an SLD-derivation via a standard selection
function is thus an application of a sequence of rSatL/rNFL rules with a program
clause at the end to the selected atom.

A resolution cycle is in the standard form if it is a resolution cycle via a standard
selection function with the property that, rSatL rules are applied before rNFL rules,
which in turn are applied before the used program clause.6

THEOREM 2. — The SLD-resolution calculi given in (Nguyen, 2003; Nguyen, 2006;
Nguyen, 2007) for L-MProlog in various modal logics L are still strongly complete
when adopting the restriction that resolution cycles are in the standard form.

See (Nguyen, 2008a, Section 5.1) for the proof of this theorem.

3.2. Optimizing the set of rSatL rules

Consider, for example, the SLD-resolution calculus given in (Nguyen, 2006) for
KDI4s-MProlog. This calculus uses the following rSatKDI4s

rules:

4♦iE ←4〈X〉iE
4∇iα←4�jα if i ≤ j
4♦iE ←4♦jE if i > j
4∇�iα←4�iα
4♦iE ←4〈X〉j♦iE

Recall that E stands for a classical atom, while α stands for a modal atom (of the
form 4E). As shown in (Nguyen, 2008a), without loss of (strong) completeness of
the SLD-resolution calculus for KDI4s-MProlog, the occurrences of α in the above
rules can be replaced by E (a more restricted form). The change results in a more
efficient SLD-resolution calculus for KDI4s-MProlog.

The intuition behind such an optimization is based on properties of the SatL oper-
ator of the fixpoint semantics. When constructing a least L-model for P and realizing a
formula of the form (A← B1, . . . , Bn) at a possible world w, to check B1, . . . , Bn at
w, or equivalently, to derive modal atoms4B1, . . . ,4Bn, where4 = w, only SatL
rules that manipulate suffixes of modal atoms are needed. This kind of optimization
for the set of rules specifying SatL makes a corresponding optimization for the set of
rules specifying rSatL.

The mentioned optimization is applicable for SLD-resolution calculi of L-MProlog
in a number of other modal logics. See (Nguyen, 2008a, Section 5.2) for a proof of
the following theorem.

6. Note that a resolution cycle may use no rSatL/rNFL rules. The operator rNFL is usually
deterministic and one application of an rNFL rule is usually enough for one resolution cycle.



Modal logic programming revisited 175

THEOREM 3. — Let L be any serial monomodal logic considered in (Nguyen, 2003)
or any multimodal logic of belief considered in (Nguyen, 2006). By changing every
rSatL rule of the form 44′α ← 44′′α of the SLD-resolution calculus given in
(Nguyen, 2003; Nguyen, 2006) for L-MProlog to the more restricted form 44′E ←
44′′E, the obtained SLD-calculus is still sound and strong complete for L-MProlog
(independently from whether resolution cycles are required to be in the standard form
or not).

The mentioned optimization, however, is not applicable for the SLD-resolution cal-
culi given in (Nguyen, 2006; Nguyen, 2007) for MProlog in the large classesBSMM
and sCFG of multimodal logics. The reason is that, a chain of applications of rSatL
rules for L ∈ {BSMM, sCFG} may be too complex, and we may need to apply the
first rules of that chain on the middle of the considered modality.

As another optimization, we can avoid explicit use of the (general) �-lifting rule
“4∇α ← 4�iα if ∇ �L �i ” by embedding it into the other rSatL rules. For
example, the optimized set of rSatKDI4s rules consists of the following:

4♦iE ←4〈X〉iE
4♦iE ←4♦jE if i > j
4∇∇′iE ←4�iE
4♦iE ←4〈X〉j♦iE

where ∇′i denotes an arbitrary modal operator with index i. See (Nguyen, 2008a) for
optimized sets of rSatL rules for L-MProlog in other modal logics.

3.3. The case of MProlog-�

An L-MProlog-� program (resp. goal) is an L-MProlog program (resp. goal) with-
out existential modal operators. In this subsection, let L denote one of the modal
logics considered in (Nguyen, 2003; Nguyen, 2006; Nguyen, 2007) except BSMM .
Consider the original or optimized SLD-resolution calculus given in (Nguyen, 2003;
Nguyen, 2006; Nguyen, 2007; Nguyen, 2008a) for L-MProlog. We show that the cal-
culus can be significantly simplified for L-MProlog-�.

Let P be an L-MProlog-� program and G an L-MProlog-� goal. Observe that:

1) For every rule specifying rSatL or rNFL, if the r.h.s. atom contains an unla-
belled existential modal operator then the l.h.s. atom also contains an unlabelled ex-
istential modal operator. Hence all the rSatL rules containing unlabelled existential
modal operators can be deleted without affecting SLD-refutations of P ∪ {G} in L.

2) If we replace the operators 〈X〉i, 〈X〉j , and 〈X〉 in the rules specifying rNFL

respectively by �i, �j , and �, then all SLD-refutations of P ∪ {G} change accord-
ingly and remain correct. So, we can assume this replacement for L-MProlog-�.
Similarly, we can replace the rSatL rule 4α ← 4〈X〉�α for L ∈ {KDB,B} by
4α←4��α.



176 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

3) With the modifications mentioned in the two preceding items, every SLD-
derivation from P ∪ {G} in L does not contain any (labelled or unlabelled) existential
modal operator. Consequently, modal operators of the form ∇i in the (remaining)
rules specifying rSatL or rNFL can be replaced by �i. In general, the rules can be
reformulated so that they contain no operators of the form∇.

The mentioned modifications create a more efficient, sound and strong complete
SLD-resolution calculus for L-MProlog-�. For example, we need only one rSatKDI4s

rule4�j�iE ← 4�iE (and no rNFKDI4s
rules) for KDI4s-MProlog-�. As an-

other example, for KDI4s5-MProlog-� we need only the following rules:

rNFKDI4s5 : �iE ← �j�iE
rSatKDI4s5 : �j�iE ← �iE

3.4. Restrictions and iterative deepening search

In this and the next subsection, we present additional optimizations that have been
implemented for the modal logic programming MProlog version 2.0 (Nguyen, 2008b).

It is not easy for users to imagine and control the behaviour of MProlog programs.
One of the reasons is that MProlog uses rSatL/rNFL rules as meta clauses and the
users may not be fully aware of all possible effects of the rules. Even when they under-
stand the rules well, they may not have enough control on the rules without modifying
the interpreter of the used MProlog system. Another reason is that a complete SLD-
resolution for L-MProlog may need a rule like 4�iE ← 4�i�iE, which can be
applied repeatedly forever. This difficulty suggests that programming in MProlog is
better treated as a mixture of “programming” and theorem proving for the modal Horn
fragment.

To restrict the search space for MProlog, one can apply some restrictions like:

1) a limit on the lengths of modalities that can occur in derivations,
2) a limit on the number of applications of rSatL (resp. rNFL) rules in a resolu-

tion cycle,
3) a limit on the nesting depth of function symbols occurring in modal atoms,
4) a limit on the length of derivation,
5) a limit on the number of applications of rSatL/rNFL rules in a derivation.

These restrictions may affect completeness of the used calculus. For real applica-
tions, however, it is reasonable to set the limits mentioned in the first three items of
the above list to some low values. The remaining limits can be dealt with by iterative
deepening search. For example, iterative deepening search w.r.t. the number of ap-
plications of rSatL/rNFL rules in a derivation can be done by ignoring the limit on
the length of derivation (or setting it to a high enough value), and at each deepening
iteration, increasing the limit on the number of applications of rSatL/rNFL rules by
a certain value (e.g. by a constant specified by a parameter).



Modal logic programming revisited 177

3.5. Tabulation

Setting the limits mentioned in the previous subsection to some concrete values,
using the depth first search strategy an execution of an MProlog program may still
loop forever as in the case of Prolog. A solution for this is to use some tabulation
(tabling) mechanism.

There are advanced tabulation methods for Prolog like OLDT-resolution (Tamaki
et al., 1986), linear tabulated resolution (Shen et al., 2001; Zhou et al., 2003). These
methods use sophisticated techniques (e.g. the suspension-resumption mechanism and
the stack-wise representation of OLDT) that are better implemented by the underlying
Prolog abstract machine. Besides, these methods try to reach “answer completion” for
subgoals as early as possible.

For the MProlog system (version 2.0), which has been written in Prolog as a mod-
ule, we adopted a tabulation mechanism with the essential feature that, looping for
answer completion is done only at the most outer level for the top goal. The main loop
continues when more answers have been tabulated (for some subgoals) during the last
iteration. At each iteration of the loop, when the system encounters a subgoal that has
a variant called earlier during the iteration, the subgoal is resolved only with the tab-
ulated answers of its variant. As applications of different sequences of rSatL/rNFL

rules may give the same effect, our tabulation method that delays answer completion
for subgoals has an advantage in quickly finding the first answer for the top goal.

EXAMPLE 4. — Consider the goal G =← ♦s(x) and the following program P in
the modal logic KD:

ϕ1 = ♦p(x)← q(x)
ϕ2 = ♦p(x)← r(x)
ϕ3 = q(a)←
ϕ4 = r(a)←
ϕ5 = �(s(x)← p(x), t(x), u(x))
ϕ6 = �(t(x)← p(x))

Here is an SLD-derivation from P ∪ {G} in KD:

Goals Input clauses/rules
G =← ♦s(x)
G1 =← 〈Y 〉s(x) rSatKD

G2 =← 〈Y 〉p(x), 〈Y 〉t(x), 〈Y 〉u(x) ϕ5

G3 =← q(x), 〈p(x)〉t(x), 〈p(x)〉u(x) ϕ1

G4 =← 〈p(a)〉t(a), 〈p(a)〉u(a) ϕ3

G5 =← 〈p(a)〉p(a), 〈p(a)〉u(a) ϕ6

G6 =← q(a), 〈p(a)〉u(a) ϕ1

G7 =← 〈p(a)〉u(a) ϕ3

failure



178 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

At the failure with G7 the system backtracks to G2 and resolves the goal atom
〈Y 〉p(x) with the next program clause ϕ2, resulting in:

Goals Input clauses/rules
G?

3 =← r(x), 〈p(x)〉t(x), 〈p(x)〉u(x) ϕ2

G?
4 =← 〈p(a)〉t(a), 〈p(a)〉u(a) ϕ4

As the goal atom 〈p(a)〉t(a) has been called earlier and succeeded (the information
remains through the mentioned backtracking), the next goal is G?

5 =← 〈p(a)〉u(a),
which fails. At this point, the systems backtracks to the top goal G. Since some
new answers for subgoals (namely, q(a), 〈p(a)〉p(a), 〈p(a)〉t(a)) have been tabulated,
the system makes another round for solving G after deleting information about what
subgoals have been called. This round does not tabulate any new answer for subgoals,
so when the system backtracks again to the top goal G, it stops with failure result. �

4. On the usefulness of the direct approach

The relationship between the direct approach and the translation approaches
(Debart et al., 1992; Nonnengart, 1994) for modal logic programming has been dis-
cussed in our papers (Nguyen, 2003; Nguyen, 2006). Further information can be found
in (Nguyen, 2008a). In this section, we give some additional remarks on the usefulness
of the direct approach.

As shown in our works (Nguyen, 2003; Nguyen, 2006), the direct approach man-
ages very well with modal logics with variants of axiom (5). As discussed in (Ohlbach,
1988), functional translation cannot deals with axiom (5) in a pure way. Hence it is not
straightforward to extend the functional translation approach by Debart et al. for pro-
gramming in modal logics with axiom (5). The semi-functional translation approach
by Nonnengart does not share this problem, but note that it produces atoms of the ac-
cessibility relations (for translating universal modal operators), which are loosely re-
lated with atoms of the other predicates. Hence, it is harder to use the semi-functional
translation approach to develop an efficient search procedure for modal logic program-
ming.

In the rest of this section, we argue that the labelling technique used in our direct
approach is relatively better than the Skolemization technique used in the translation
approaches for modal logic programming.

Consider the following logic program P in the modal logic L = KD:

♦p← q q ←
♦p← r r ←

The direct consequence operator TL,P of our fixpoint semantics has the least fixpoint
{q, r, 〈p〉p}. The functional translation of P results in the following program P ′:

p(ε!a)← q(ε) q(ε)←
p(ε!b)← r(ε) r(ε)←



Modal logic programming revisited 179

The semi-functional translation of P results in P ′′ = P ′ ∪ {R(x, x!y)←}.7 The di-
rect consequence operator of P ′ has the least fixpoint {q(ε), r(ε), p(ε!a), p(ε!b)}.
Thus, the bottom-up computation for P ′ or P ′′ gives two atoms p(ε!a) and p(ε!b) in-
stead of one atom 〈p〉p that is created by our bottom-up computation for P . As shown
below, this problem corresponds to another problem in top-down computation.

Reconsider the program P and the goal G given in Example 4. Functional transla-
tion of G and P gives G′ =← s(ε!z, x) and the following program P ′:

ψ1 = p(ε!f(x), x)← q(ε, x)
ψ2 = p(ε!g(x), x)← r(ε, x)
ψ3 = q(ε, a)←
ψ4 = r(ε, a)←
ψ5 = s(ε!y, x)← p(ε!y, x), t(ε!y, x), u(ε!y, x)
ψ6 = t(ε!y, x)← p(ε!y, x)

Consider SLD-resolution with tabulation for P ′ ∪ {G′}. The first derivation is:

Goals Input clauses
G′ =← s(ε!z, x)
G′1 =← p(ε!z, x), t(ε!z, x), u(ε!z, x) ψ5

G′2 =← q(ε, x), t(ε!f(x), x), u(ε!f(x), x) ψ1

G′3 =← t(ε!f(a), a), u(ε!f(a), a) ψ3

G′4 =← p(ε!f(a), a), u(ε!f(a), a) ψ6

G′5 =← q(ε, a), u(ε!f(a), a) ψ1

G′6 =← u(ε!f(a), a) ψ3

failure

At the failure with G′6 the system backtracks to G′1 and resolves the goal atom
p(ε!z, x) with the next program clause ψ2, resulting in:

Goals Input clauses
G′′2 =← r(ε, x), t(ε!g(x), x), u(ε!g(x), x) ψ1

G′′3 =← t(ε!g(a), a), u(ε!g(a), a) ψ3

G′′4 =← p(ε!g(a), a), u(ε!g(a), a) ψ6

G′′5 =← q(ε, a), u(ε!g(a), a) ψ1

G′′6 =← u(ε!g(a), a) ψ3

failure

The problem is that tabulation does not work as it did in Example 4 for the di-
rect approach, because t(ε!g(a), a) is not the same as t(ε!f(a), a). That is, using the
functional translation approach, more computation is needed for this example.

7. (Debart et al., 1992) uses ‘!’ to construct path expressions, while (Nonnengart, 1994) uses ‘:’.



180 Journal of Applied Non-Classical Logics. Volume 19 – No. 2/2009

The same problem occurs for the semi-functional translation approach. We give
below the translation for the considered program P and goal G and leave detailed
analysis for the reader. The results of the translation (using the modal logic KD) are
the goal G′′ =← s(z, x), R(ε, z) and the following program P ′′:

p(ε!f(x), x)← q(ε, x)
p(ε!g(x), x)← r(ε, x)
q(ε, a)←
r(ε, a)←
s(y, x)← p(y, x), t(y, x), u(y, x), R(ε, y)
t(y, x)← p(y, x), R(ε, y)
R(x, x!y)←

5. Concluding remarks

We have presented significant optimizations for the theory of MProlog. They are
very useful for increasing efficiency of the implemented system MProlog. We have
also shown that the labelling technique used in our direct approach is relatively better
than the Skolemization technique used in the translation approaches.

There are some problems deserving investigation: i) developing semantics for
modal logic programs with negation, ii) developing a good methodology for practi-
cal programming in modal logics (i.e. a methodology with conceivable behaviour of
modal logic programs), iii) applying modal logic programming for practical problems.

Acknowledgements

This work has been supported by grant N N206 3982 33 from the Polish Ministry
of Science and Higher Education. I would like to thank also Professor Andrzej Szałas
for reading the draft of this paper and giving useful comments.

6. References

Akama S., “A Meta-Logical Foundation of Modal Logic Programming”, 1-20-1, Higashi-
Yurigaoka, Asao-ku, Kawasaki-shi, 215, Japan, 1989.

Balbiani P., Fariñas del Cerro L., Herzig A., “Declarative Semantics for Modal Logic Pro-
grams”, Proceedings of the 1988 International Conference on Fifth Generation Computer
Systems, ICOT, pp. 507–514, 1988.

Balbiani P., Herzig A., Lima-Marques M., “TIM: The Toulouse Inference Machine for Non-
Classical Logic Programming”, PDK’91: International Workshop on Processing Declara-
tive Knowledge, Springer-Verlag, pp. 365–382, 1991.



Modal logic programming revisited 181

Balbiani P., Herzig A., Lima-Marques M., “Implementing Prolog Extensions: A Parallel In-
ference Machine”, Proceedings of the 1992 International Conference on Fifth Generation
Computer Systems, ICOT, pp. 833–842, 1992.

Baldoni M., Giordano L., Martelli A., “A Framework for a Modal Logic Programming”, Joint
International Conference and Symposium on Logic Programming, MIT Press, pp. 52–66,
1996.

Debart F., Enjalbert P., Lescot M., “Multimodal Logic Programming Using Equational and
Order-Sorted Logic”, Theoretical Computer Science, vol. 105, pp. 141–166, 1992.

Fariñas del Cerro L., “MOLOG: A System that Extends PROLOG with Modal Logic”, New
Generation Computing, vol. 4, pp. 35–50, 1986.

Fariñas del Cerro L., Herzig A., “MOLOG - a tool for non-classical logic programming”, http:
//www.irit.fr/ACTIVITES/EQ_ALG/Herzig/molog.html, 1986.

Nguyen L. A., “A Fixpoint Semantics and an SLD-Resolution Calculus for Modal Logic Pro-
grams”, Fundamenta Informaticae, vol. 55, num. 1, pp. 63–100, 2003.

Nguyen L. A., “The Modal Logic Programming System MProlog”, in J. Alferes, J. Leite (eds),
Proceedings of JELIA 2004, LNCS 3229, Springer, pp. 266–278, 2004.

Nguyen L. A., “Multimodal Logic Programming”, Theoretical Computer Science, vol. 360,
pp. 247–288, 2006.

Nguyen L. A., “Foundations of Modal Deductive Databases”, Fundamenta Informaticae,
vol. 79, num. 1–2, pp. 85–135, 2007.

Nguyen L. A., “Foundations of Modal Logic Programming: The Direct Approach (release
2.0)”, manuscript (provided as a technical report), available at http://www.mimuw.edu.
pl/~nguyen/papers.html, 2008a.

Nguyen L. A., “Source Files, Calculi, and Examples of MProlog (version 2.0)”, available at
http://www.mimuw.edu.pl/~nguyen/mprolog, 2008b.

Nonnengart A., “How to Use Modalities and Sorts in Prolog”, in C. MacNish, D. Pearce,
L. Pereira (eds), Proceedings of JELIA’94, LNCS 838, Springer, pp. 365–378, 1994.

Ohlbach H., “A Resolution Calculus for Modal Logics”, Proceedings of CADE-88, LNCS 310,
Springer, pp. 500–516, 1988.

Orgun M. A., Ma W., “An Overview of Temporal and Modal Logic Programming”, D.M. Gab-
bay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal Logic - LNAI 827,
Springer-Verlag, pp. 445–479, 1994.

Shen Y.-D., Yuan L.-Y., You J.-H., Zhou N.-F., “Linear Tabulated Resolution Based on Prolog
Control Strategy”, TPLP, vol. 1, num. 1, pp. 71–103, 2001.

Tamaki H., Sato T., “OLD Resolution with Tabulation”, in E. Shapiro (ed.), Proceedings of
ICLP’1986, LNCS 225, Springer, pp. 84–98, 1986.

Zhou N.-F., Sato T., “Efficient Fixpoint Computation in Linear Tabling”, Proceedings of
PPDP’2003, ACM, pp. 275–283, 2003.

http://www.irit.fr/ACTIVITES/EQ_ALG/Herzig/molog.html
http://www.irit.fr/ACTIVITES/EQ_ALG/Herzig/molog.html
http://www.mimuw.edu.pl/~nguyen/papers.html
http://www.mimuw.edu.pl/~nguyen/papers.html
http://www.mimuw.edu.pl/~nguyen/mprolog

	Introduction
	Preliminaries
	Considered modal logics
	The logical formalism MProlog
	A framework of SLD-resolution for MProlog

	Optimizations
	The standard form for resolution cycles
	Optimizing the set of rSatL rules
	The case of MProlog-
	Restrictions and iterative deepening search
	Tabulation

	On the usefulness of the direct approach
	Concluding remarks
	References

