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Abstract

Many important NP-hard combinatorial problems can be efficiently
approximated using semidefinite programming relaxations. We propose
a new hierarchy of semidefinite relaxations for classes of such problems
that are based on graphs and for which the projection of the problem
onto a subgraph shares the same structure as the original problem. This
includes the well-studied max-cut and stable-set problems. Each level k
of the proposed hierarchy consists of the basic semidefinite relaxation of
the problem augmented by the constraints enforcing the structural projec-
tion condition on every k-node subgraph of the problem. This hierarchy
has the distinguishing feature that all the relaxations are formulated in
the space of the original semidefinite relaxation. Because the size of the
relaxations increases rapidly with the number of subgraphs, we explore
the possibility of adding the projection constraints only for selected sub-
graphs. Preliminary computational results show that the proposed hier-
archy yields improved bounds when compared to the initial relaxation for
benchmark instances of the max-cut and stable-set problems, and that the
improved bounds result in significantly smaller enumeration trees when
the relaxation is used in a branch-and-bound scheme.
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9020 Klagenfurt, Austria, angelika.wiegele@aau.at

1



1 Introduction

It is well known that many important combinatorial problems are NP-hard in
general. The inherent difficulty of these problems makes finding global optimal
solutions hard, and therefore there is great interest in finding tighter convex
relaxations that are tractable. For this reason semidefinite programming (SDP)
relaxations that often produce strong bounds for these combinatorial optimiza-
tion problems are of great interest. Surveys by Goemans [17] and Lovász [24]
outline the connection between SDP and NP-hard problems. SDP relaxations
exist for a variety of such problems, and many ways to tighten them have been
proposed, see e.g. [1].

In particular, several hierarchies of relaxations have been proposed that pro-
vide increasingly tight bounds. Well-known hierarchies include the Sherali-
Adams reformulation-linearization technique (RLT) [28], the Lovász-Schrijver
lift-and-project [25], and the Lasserre relaxations [22]. For combinatorial prob-
lems, these hierarchies have the property that they converge to the integral hull
in a finite number of steps. On the other hand, their size grows exponentially
in terms of the numbers of variables in the combinatorial problem.

This paper introduces a new hierarchy of SDP relaxations for the classes of
NP-hard graph problems that satisfy a certain projection property. Specifically
we are interested in problems for which the projection of the graph problem onto
a subgraph shares the same structure as the original problem. This includes the
well-studied max-cut and stable-set problems. For max-cut for example, the
projection of any cut of the original graph onto a subgraph induces a cut in
every subgraph. In the same way, a stable set in the original graph induces a
stable set in every subgraph.

The level k of the proposed hierarchy consists of the basic SDP relaxation
for the problem at hand augmented by the constraints that the solution pro-
jected onto every k-node subgraph should satisfy the structure of the problem
on that subgraph. This hierarchy has the distinguishing feature that all the SDP
relaxations are formulated in the space of the original SDP relaxation. In this
paper we focus on cases where the projected problem has a “simple” description
but the hierarchy we propose applies to any class of problems that shares the
required projection property.

The size of the relaxations increases rapidly with k because of the large
number of subgraphs. For this reason we also explore the possibility of adding
the projection constraints only for selected subgraphs. Such a selective addition
of constraints provides flexibility in the construction of the SDP relaxation and
results in more efficient computation of improved bounds.

We provide computational results showing that the proposed hierarchy yields
improved bounds when compared to the basic SDP relaxations for benchmark
instances of the max-cut and stable-set problems. We also report results showing
that the improved bounds result in significantly smaller enumeration trees when
the SDP relaxation is used in a branch-and-bound scheme to solve the problems
to optimality or near-optimality.

The paper is organized as follows: Section 2 gives a general description of our
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hierarchy of relaxations. The hierarchy is further examined within the context
of the max-cut and stable-set problems in Sections 3 and 4 respectively. Pre-
liminary computational results for both small and large examples are reported
for both problems. Section 5 contains concluding remarks.

2 A Hierarchy of Relaxations Based on k-Projections

For a general description of our hierarchy of SDP relaxations, let us assume that
N := {1, . . . , n} denotes the vertex set of the graph in the combinatorial problem
at hand, and that the combinatorial optimization problem under consideration
is given through its set of feasible solutions {X1, . . .} ⊆ Sn, where Sn denotes
the set of symmetric matrices of order n. We further denote by P the convex
hull of all feasible points, i.e.,

P = conv{X1, . . .}.

Given a cost matrix C, our goal is to find the solution Xi that maximizes 〈C,Xi〉:

zP := max
i
〈C,Xi〉 = max{〈C,X〉 : X ∈ P}.

For a set I ⊆ N , let
πI(X) = XI

denote the (orthogonal) projection mapping X to XI , the principal submatrix
of X indexed by I. Similarly

πI(P) = conv{πI(X1), . . .}

denotes the projection of P onto I. We are particularly interested in problems
for which πI(P) has a “simple” description in the sense described below.

As a first example we consider the max-cut problem on a graph with n nodes.
The feasible solutions X are cut matrices of the form X = ccT with c ∈ {−1, 1}n.
We denote the convex hull of cut matrices by CUTn. This is generally known
as the cut polytope. It follows from the definition that if |I| = k then

πI(CUTn) = conv{ccT : c ∈ {−1, 1}k} = CUTk. (1)

A similar situation occurs for the stable-set problem. Let G be a given graph
on n nodes. We consider

STAB(G) := conv{si : si is the incidence vector of a stable set in G}. (2)

Note that STAB(G) ⊆ Rn and that

πI(STAB(G)) = STAB(GI), (3)
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where GI denotes the subgraph induced by I. In a slight abuse of notation we
also denote by πI(x) the projection of the vector x onto the coordinates in I.

The important observation is that the projection properties in (1) and (3)
are a consequence of the fact that cuts and stable sets, when restricted to GI ,
induce cuts and stable sets (in GI).

This property does not hold for combinatorial problems in general. In con-
trast, the convex hull HAM(G) of Hamiltonian cycles in a graph G does not
have this property. In particular, the restriction of a Hamiltonian cycle to a
proper subgraph will not be a cycle.

From now on we consider optimization problems where the convex hull of
feasible solutions, defined on some graph G and denoted by P(G), satisfies the
following projection property:

πI(P(G)) = P(GI). (4)

To simplify notation we write in the following P instead of P(G) and PI instead
of P(GI).

A formal description of our new hierarchy of relaxations starts with a super-
set R of P, R ⊇ P, that is tractable in the sense that

zR := max{〈C,X〉 : X ∈ R} (5)

can be solved efficiently. We are particularly interested in cases where R is a
spectrahedron, i.e., the intersection of the cone of semidefinite matrices S+n with
an affine linear space.

For k ∈ N fixed, we tighten the relaxation (5) by adding the k-projection
constraints:

πI(X) ∈ πI(P) ∀I ⊆ N, |I| = k.

Under our assumption (4), this simplifies to

XI ∈ PI .

For small values of k, we can express this condition in a more convenient way
by exploiting the fact that the vertices vIi of PI can be enumerated explicitly,
and requiring that XI lay in the convex hull of the vertices of PI :

XI =
∑
i

λIi v
I
i with λIi ≥ 0,

∑
i

λIi = 1. (6)

Thus level k of our hierarchy reads

zR,k := max
{
〈C,X〉 : X ∈ R, XI =

∑
i

λIi v
I
i with

λIi ≥ 0,
∑
i

λIi = 1 ∀I ⊆ N, |I| = k
}
. (7)

It is clear from the definitions that

zR ≥ zR,1 ≥ . . . ≥ zR,n = zP .
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Remark 1 In our applications we focus mostly on relaxations where R is some
spectrahedron. It is a nontrivial task to actually identify subsets I so that the
current iterate x violates x ∈ PI by a substantial amount. We select the cardi-
nality of I in such a way that PI has a relatively small number of vertices. In
this case we prefer maintaining the vertex-based description (6) of πI(P), which
imposes much more structure than adding a single cutting plane.

Remark 2 An important distinguishing feature of our hierarchy, as compared
to other generic hierarchies or SDP relaxations such as the Anjos-Wolkowicz [2]
relaxation, lies in the crucial fact that all our relaxations are formulated in the
original space Sn, and only the number of constraints in the hierarchies increases
exponentially. In the other constructions mentioned previously, the dimension
of the matrix space also grows exponentially, hence even the smallest levels in
these hierarchies are computationally challenging.

This informal description of the new hierarchies leaves open several issues
which are relevant in a practical implementation. It may for instance not be a
good idea to include all projection constraints πI(X) ∈ πI(P) at once, as there
are

(
n
k

)
of them altogether. After surveying some related work in the litera-

ture in Section 2.1, we provide in the rest of the paper some very preliminary
computational experience applied to max-cut and stable-set problems.

2.1 Related work

The idea of generating cutting planes for P from smaller polytopes PI has a long
history in polyhedral combinatorics. In the context of graph-based optimization
problems, these smaller polytopes have been obtained either by shrinking the
graph (as done in Applegate et al. [3]) or by considering subgraphs of the graph.
Our interest here is in the latter approach.

Given some polyhedral relaxation R it seems natural to consider the fol-
lowing scheme. Suppose we have solved the relaxation over R with optimal
solution x. One way to further tighten this relaxation would be to check
whether πI(x) ∈ πI(P) for some set I of small cardinality. If it turns out
that πI(x) /∈ πI(P), then one of the facets of πI(P) defines a “local” cutting
plane, which separates πI(x) from the small polytope πI(P). Lifting it back to
Rn yields a linear constraint that is violated by the current iterate x but is valid
for P. Christof and Reinelt [9] apply the same idea to the linear ordering and
the betweenness problem. The relaxation, obtained from lifting facets of PI to
facets of P is called ‘small instance relaxation’ by Christof and Reinelt. They
also address computational issues like heuristics for the separation of facets of
PI and parallel implementation, see also [8, 10] by the same authors. More re-
cently Buchheim, Liers and Oswald [7] introduce target cuts to improve polyhe-
dral relaxations. These correspond to liftings of facets of polytopes PI . Finally,
Bonato, Jünger, Reinelt and Rinaldi [5] apply this approach to the cut polytope.
Boros, Crama and Hammer [11] introduce a hierarchy of polyhedral relaxations
for max-cut which agrees with our hierarchy when started from the metric poly-
tope relaxation. More recently Boros and Lari [6] study polyhedral hierarchies
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for max-cut and compare hierarchies based on functions of k variables, degree
k posiforms and lift-and-project hierarchies.

From a worst-case point of view it is known that the metric polytope relax-
ation of max-cut has an integrality gap of 2− ε, see Poljak and Tuza [26]. Even
worse, de la Vega and Kenyon-Mathieu [12] show that for any fixed k, the level
k hierarchy of the metric polytope relaxation obtained by including all valid
inequalities for the cut polytope on at most k vertices still has integrality gap
of 2− ε.

Cutting planes generated from small polytopes have also been used for non-
polyhedral relaxations R. Helmberg and Rendl [20] consider the semidefinite
relaxation (9) for the max-cut problem and combine it with clique inequalities
and general hypermetric inequalities from small subgraphs.

While we also generate cutting planes for P from smaller polytopes, we
do not use cutting planes expressed via valid inequalities. Instead we use the
complete inner (vertex) description of PI for the smaller problem to tighten the
relaxation of the larger (original) problem. It is important to note that our
approach is only applied to problems satisfying the projection property (4); for
example, the travelling salesman problem does not fit in this category.

3 The New Hierarchy for Max-Cut

An instance of the max-cut problem is given through the weighted adjacency
matrix A of the underlying graph G. It is assumed that diag(A) = 0 (no loops)
and A = AT (G is undirected). The Laplacian associated to A is given by
L = Diag(Ae)−A with e the all-ones vector. The max-cut problem is

zmaxcut = max{xTLx : x ∈ {−1, 1}n} = max{〈L,X〉 : X ∈ CUTn}. (8)

The cut polytope CUTn is contained in the set C of correlation matrices:

C := {X ∈ Sn : diag(X) = e, X � 0}.

Optimizing over C yields one of the most well-studied semidefinite optimization
problems,

zC := max{〈L,X〉 : X ∈ C}. (9)

It was introduced (in dual form) by Delorme and Poljak [13]. An interior-point
method for solving this relaxation is provided in Helmberg, Rendl, Vanderbei
and Wolkowicz [21]. Goemans and Williamson [18] provide a theoretical error
analysis showing that

zmaxcut ≥ 0.878zC for graphs with A ≥ 0.

The cut polytope is also contained in the metric polytope M:

M := {X ∈ Sn : diag(X) = e, fTXf ≥ 1 ∀f ∈ {−1, 0, 1}n, support(f) = 3}.
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The metric polytope therefore contains all matrices with main diagonal equal
to the vector of all-ones that also satisfy the triangle inequalities:

xij + xik + xjk ≥ −1, xij − xik − xjk ≥ −1 ∀i, j, k.

The intersection C ∩ M is thus another relaxation of CUTn and leads to the
following SDP relaxation:

max{〈L,X〉 : X ∈ C ∩M}.

This semidefinite optimization problem can be solved in polynomial time up to
a fixed prescribed precision. However it contains O(n3) inequality constraints,
and hence it is a challenge to standard SDP solvers. A computationally efficient
way to deal with this relaxation was introduced by Fischer, Gruber, Rendl and
Sotirov [16]. It combines interior-point methods with the bundle method to deal
with the triangle inequalities. An exact method where this relaxation is used in
a branch-and-bound setting was proposed by Rendl, Rinaldi and Wiegele [27].

Numerous strengthenings of these relaxations have been suggested in the
literature. The cut polytope is for instance contained in the hypermetric cone
investigated by Deza, Grishukhin and Laurent [14]. Hence hypermetric inequal-
ities can be used to strengthen the relaxations.

Finally, the semidefinite relaxations have been refined by introducing hi-
erarchies of relaxations of increasing matrix size. Anjos and Wolkowicz [2]
introduced and investigated a lifting of the basic relaxation on C. Later on,
Lasserre [22] proposed another lifting procedure which yields the integer op-
timum after at most n lifting steps. These liftings have the computational
drawback that their matrix dimensions increase in each step, and even the first
nontrivial lifting step leads to matrices of order

(
n
2

)
which is prohibitive even

for very modest values of n such as n ≈ 50.

To apply our new hierarchy, we take the SDP relaxation over the intersection
R := C ∩M as our initial relaxation:

zR = max{〈L,X〉 : X ∈ R}.

The motivation for this choice is that this relaxation provides one of the most
competitive bounds if both practical efficiency and strength of the relaxation
are taken into account.

The new hierarchy applied to max-cut starting from (7) with R = C ∩M
reads

zR,k = max{〈L,X〉 : X ∈ R, XI ∈ CUTk ∀I ⊆ N, |I| = k}. (10)

In [4] it is shown that triangle inequalities give a complete description of the
cut polytope for n ≤ 4. Therefore the smallest interesting value for k in our
hierarchy (10) is k = 5.

To get a vertex-based inner description for XI ∈ CUTk we recall that CUTk

is the convex hull of 2k−1 cut matrices Cr ∈ Sk of the form Cr = crc
T
r with
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cr ∈ {−1, 1}k. The standard simplex in Rm is denoted by

∆m := {λ ∈ Rm : λ ≥ 0,
∑
i

λi = 1}.

Thus k-projection constraint XI ∈ CUTk corresponding to the k-subset I can
be conveniently expressed as

XI =

2k−1∑
r=1

λIrCr, λ
I ∈ ∆2k−1 .

(To improve readability, we write ∆ for ∆2k−1 if the dimension is clear from the
context.)

The new hierarchy (10) therefore has the following form.

zR,k = max{〈L,X〉 : X ∈ R, XI =

2k−1∑
r=1

λIrCr, λ
I ∈ ∆, ∀I ⊆ N, |I| = k}.

(11)
Trivially, this hierarchy yields zmaxcut for k = n. Moreover, it can be computed
in polynomial time for fixed k. Since there are

(
n
k

)
distinct subsets I to be

considered in (11) and k should be at least 5, it is impractical to work directly
with this model. We use a simple enumeration approach to separate k-projection
constraints for max-cut in Section 3.2 below. First we provide some insight into
the behaviour of the new hierarchy with some small computational examples.

3.1 Small examples

In this subsection we illustrate the behaviour of the hierarchy (10) on selected
small max-cut instances. Because these instances are small, all the relaxations
in the hierarchy can be solved to optimality.

We first consider the 7× 7 matrix

Q = −1
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0 1 1 1 −2 −1 0
1 0 1 1 −2 0 −1
1 1 0 1 −2 −1 0
1 1 1 0 −2 0 −1
−2 −2 −2 −2 0 1 1
−1 0 −1 0 1 0 −1

0 −1 0 −1 1 −1 0


.

Grishukhin [19] showed that 〈Q,X〉 ≥ 5 is a facet of the cut polytope CUT7.
Hence maximizing 〈Q,X〉 over various supersets of CUT7 shows how close we
come to this facet using the respective relaxations. The results are reported in
Table 1.

A similar distinction between the relaxations occurs in case of the clique
web inequalities [15]. Recall that these inequalities are defined as follows: Let
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Relaxation (bound) Bound Gap (%)

C7 (zC) 6.9518 39.04
C7 ∩M7 (zR) 6.0584 21.17
C7 ∩M7 and all CUT5s (zR,5) 5.8000 16.00
C7 ∩M7 and all CUT6s (zR,6) 5.6667 13.33
Anjos & Wolkowicz 5.7075 14.15
Lasserre level 2 5.6152 12.30
CUT7 (zP) 5.0000 0.00

Table 1: Bounds and relative gaps to optimality (%) obtained from various
relaxations for the Grishukhin inequality of CUT7.

n, p, q, r be integers such that n = p + q, p − q = 2r + 1, q ≥ 2 and let b :=
(1, . . . , 1,−1, . . . ,−1)T be a vector of length n where the first p coefficients are
equal to +1 and the last q coefficients are equal to −1. AWr

p defines the antiweb
as the graph with vertex set Vp = {1, 2, . . . , p} and edge set defined by the pairs
(i, i+ 1), (i, i+ 2), . . . , (i, i+ r), ∀i ∈ Vp. Then the clique web inequalities are∑

1≤i<j≤n

bibjxij −
∑

ij∈AWr
p

xij ≤ 0

We consider the cases n = 9 and n = 11 and compare again the various levels
of our new hierarchy. These inequalities are parametrized by the integer r with
0 ≤ r ≤ n−5

2 . The results are reported in Tables 2 and 3.

Relaxation (bound) r = 1 r = 2

C9 (zC) 8.40 8.99
C9 ∩M9 (zR) 7.12 7.12
C9 ∩M9 and all CUT5s (zR,5) 6.86 7.07
C9 ∩M9 and all CUT6s (zR,6) 6.86 7.07
C9 ∩M9 and all CUT7s (zR,7) 6.75 6.57
C9 ∩M9 and all CUT8s (zR,8) 6.64 6.56
Anjos & Wolkowicz 6.72 6.79
Lasserre level 2 6.59 6.55
CUT9 (zP) 6.00 6.00

Table 2: Bounds for the clique web inequality with n = 9.

These first examples (Tables 1-3) show that our new hierarchy is competi-
tive, even compared to the level 2 of the Lasserre hierarchy. Even though we
have included the projection constraints for all subsets of cardinality k in these
computations, a closer look at the computational results shows that in fact only
a small fraction of these constraints are necessary to get the given bounds. It
is also quite striking that going down to level k = n − 1 still leaves a rather
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Relaxation (bound) r = 1 r = 2 r = 3

C11 (zC) 10.83 13.31 12.10
C11 ∩M11 (zR) 9.28 10.62 9.28
C11 ∩M11 and all CUT5s (zR,5) 9.21 10.62 9.25
C11 ∩M11 and all CUT6s (zR,6) 9.21 10.62 9.25
C11 ∩M11 and all CUT7s (zR,7) 9.00 9.96 8.87
C11 ∩M11 and all CUT8s (zR,8) 8.86 9.96 8.87
C11 ∩M11 and all CUT9s (zR,9) 8.79 9.59 8.52
C11 ∩M11 and all CUT10s (zR,10) 8.56 9.50 8.44
Anjos & Wolkowicz 8.87 10.02 8.93
Lasserre level 2 8.72 9.62 8.59
CUT11 (zP) 8.00 9.00 8.00

Table 3: Bounds for the clique web inequality with n = 11.

large gap on these instances. Since the objective function corresponds to a facet
of the cut polytope, this is an illustration of the worst case behaviour of our
hierarchy.

We next turn to larger instances, address the practical issue of finding good
projection constraints, and investigate the new hierarchy on some graphs from
the literature.

3.2 Larger instances

This section reports the results of our computational experiments with the new
hierarchy on larger instances of max-cut. The inclusion of all k-projection poly-
topes for some k ≥ 5 is computationally prohibitive. Instead, we run through
all 5-projection polytopes and include only the 100 most violated ones, iterat-
ing this process. To check whether or not XI ∈ CUT|I| we could compute the
projection of XI to CUT|I|. This requires in general the solution of a convex

quadratic problem in 2k−1 variables if |I| = k.
For the case k = 5 we exploit the fact that the facets of CUT5 are given

by the triangle inequalities, which are always satisfied as we assume X ∈ M,
and the pentagonal inequalities fTXIf ≥ 1 for all f ∈ {−1, 1}5. We scan
through all pentagonal inequalities and select the 100 subsets I corresponding
to the largest violations. We add the corresponding projection constraints to
the SDP relaxation, solve the resulting relaxation using SDPT3, and iterate this
process. In the tables below, the number of these iterations is limited to 10.
The final bound approximates zC∩M,5 from above. The following tables contain
representative results from our experiments.

We first look at max-cut for random unweighted graphs from the Erdős-
Renyi model where each edge appears with probability p independent of the
other edges. We consider graphs on n = 80 nodes with p = 1

2 . These instances
can be found at the website http://biqmac.uni-klu.ac.at/biqmaclib.html.
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For a comparison, we also provide the number of nodes used to prove optimality
by the software package BiqMac [27]. The results are reported in Table 4.

We observe that our new bound is strong enough to solve most of the in-
stances either at the root node or at the first two levels of the branching tree.
In sharp contrast with the results for BiqMac, only two out of the ten instances
could not be solved within the first two levels of a branch-and-bound procedure
when using the new bound. (Note that for the instance g05 80.1, the relaxation
C ∩M already closes the gap.)

Graph Optimal Optimizing over New Nodes with Nodes with
name cut value C C ∩M bound BiqMac new bound

g05 80.0 929 950.92 934.24 931.01 59 5
g05 80.1 941 957.25 941.76 – 3 –
g05 80.2 934 955.55 937.24 934.52 17 1
g05 80.3 923 947.59 932.32 929.15 523 >7
g05 80.4 932 955.31 936.53 933.83 39 3
g05 80.5 926 947.51 931.42 928.41 65 7
g05 80.6 929 948.68 933.24 930.40 31 3
g05 80.7 929 949.86 932.63 929.58 23 1
g05 80.8 925 946.67 930.53 927.42 73 7
g05 80.9 923 943.66 929.95 926.67 157 >7

Table 4: Bounds and number of nodes in a branch-and-bound tree for un-
weighted graphs on n = 80 nodes.

We also look at larger instances of size n = 100. We consider graphs with
both positive and negative edge weights and collect a sample of results in Ta-
ble 5. Again these instances can be found in the BiqMac Library. Here we report
the percentage gap between the optimal cut value and each of the bounds (with
respect to the optimal). We again see that our rather simple-minded improve-
ment strategy limited to k = 5 yields a significant improvement of the bounds.

It is far beyond the scope of this initial paper to provide an efficient im-
plementation of the new SDP relaxations. We observe that the resulting SDP
problems have a very special structure that should be exploited in a specialized
implementation. Moreover, it may be worthwhile to include subsets of cardinal-
ities larger than 5, and generally to vary the size of the subsets. The results of
exploring these directions will be reported in a separate forthcoming paper.

To further emphasize the potential of our new bounding procedure, we in-
clude in the next section a short discussion of the new hierarchy applied to the
stable-set problem.

11



Graph Optimal Optimizing over New Gap for Gap for
name cut value C C ∩M bound C ∩M new bound

w09 100.0 2121 2500.30 2234.39 2189.54 5.35 3.23
w09 100.1 2096 2522.03 2263.82 2218.30 8.01 5.83
w09 100.2 2738 3129.99 2880.60 2833.92 5.21 3.50
w09 100.3 1990 2333.05 2131.55 2084.76 7.11 4.76
w09 100.4 2033 2424.98 2154.71 2109.86 5.99 3.78
w09 100.5 2433 2733.64 2454.66 2433.08 0.89 0.00
w09 100.6 2220 2552.11 2281.17 2241.92 2.76 0.99
w09 100.7 2252 2639.73 2355.48 2312.90 4.60 2.70
w09 100.8 1843 2213.12 1924.37 1882.62 4.42 2.15
w09 100.9 2043 2409.78 2161.63 2116.84 5.81 3.61

Table 5: Bounds and relative gaps to optimality (%) for dense graphs with
positive and negative weights on n = 100 nodes.

4 The Projection Bound for the Stable-Set Prob-
lem

We now take a closer look at the projection bound in the case of the stable-set
problem. The stable-set polytope STAB(G) (see (2)) of a graph G with vertex
set V (G) = N is contained in Rn. The stability number α(G) of a graph G,
giving the cardinality of the largest stable set, is given by

α(G) = max{
∑

xi : x ∈ STAB(G)}.

One of the most well-studied relaxations of STAB(G) is based on the theta body
TH(G) introduced by Lovász [23]:

TH(G) := {x ∈ Rn : ∃X ∈ Sn, x = diag(X), X−xxT � 0, xij = 0 ∀[i, j] ∈ E(G)}.

Note that any characteristic vector s ∈ {0, 1}n of a stable set in G yields a
stable-set matrix S := ssT such that

s = diag(S), S − ssT � 0, (S)ij = sisj = 0 ∀ [i, j] ∈ E(G).

Hence STAB(G) ⊆ TH(G).
A direct application of the projection approach would impose, for given

x ∈ Rn, the constraint xI ∈ STAB(GI) for subsets I ⊆ N . On the other
hand, the set TH(G) can also be viewed as a matrix relaxation of the stable-set
problem projected to the main diagonal. We define STAB2(G) to be the convex
hull of stable-set matrices:

STAB2(G) := conv{ssT : s characteristic vector of stable set}.

Thus the projection of STAB2(G) to the main diagonal gives STAB(G):

diag(STAB2(G)) = STAB(G).
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We propose to apply the subgraph projection idea to STAB2(G). Our start-
ing point is the relaxation over TH(G). It is also called the Lovász theta function
and can be formulated as

θ(G) := max{tr(X) : X ∈ Sn, xij = 0 ∀[i, j] ∈ E(G), x = diag(X), X−xxT � 0}.

This relaxation is now strengthened by the k-projection polytopes

XI ∈ STAB2(GI) ∀I ⊆ N, |I| = k.

We emphasize the fact that it is possible to haveXI /∈ STAB2(GI), but diag(XI) ∈
STAB(GI). This could even happen for subsets I = {r, s} if xrs < 0.

As in the previous section, we close with some preliminary computational
experiments. Here we iteratively include only the most violated k-projection
polytopes for k ≤ 6. We consider random graphs with edge density 25% (g60-
25, g80-25) and a graph with density 10% (g100-10). We also consider a cubic
graph with n = 74 (CubicVT74-9) available through the internet at http:

//www.matapp.unimib.it/~spiga/census.html, and finally a 3-dimensional
grid graph (spin5). For these graphs there is a significant difference between θ
and α.

In all cases the new bound (with 100 projection polytope constraints) pro-
vides a clear improvement over the theta number θ(G). This fact is particularly
impressive for the cubic graph and the grid graph.

Graph n θ(G) New bound α(G)
g60-25 60 15.0058 14.71 14
cubic 74 34.8561 33.34 ≥ 32
g80-25 80 17.1670 17.01 17
g100-10 100 32.1166 31.52 ≥ 29
spin5 125 55.9017 51.61 ≥ 50

Table 6: Results for instances of stable-set problems of various sizes and densi-
ties.

5 Conclusions

We have presented a hierarchical approach for tightening relaxations of NP-hard
graph problems. The approach is based on projections to smaller polytopes
corresponding to subgraphs of the original graph and has the distinguishing
feature that all the resulting relaxations are formulated in the original matrix
space.

The following observations can be made regarding our computational results
for instances of max-cut and stable-set:

1. The hierarchy may not reach optimality until the final level and in the
worst case situation the gap can still be quite large at the k = n− 1 level.
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2. Significant improvements in the bound can be reached at the first level
(k = 5) of the hierarchy. This strong bound can greatly reduce the number
of nodes BiqMac requires.

3. Although there are
(
n
k

)
k-projection polytopes at each level in the hier-

archy, already after including a small fraction of these we attain a value
close to the bound at that level. Therefore a good separation algorithm
will be essential for the proposed approach to be efficient.

4. On the other hand, it is possible that including all k-projection polytope
constraints from a level will not improve the bound from the previous
level. However, this outcome seems to be atypical.

This paper does not provide an efficient implementation towards the new
bound. A serious implementation will require exploiting the special structure
of the relaxations. Future work will also examine the addition of k-projection
polytopes with k ≥ 5. This will require a more general separation algorithm to
identify promising subgraphs.
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