
A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

A Remote Laboratory for Real-Time Digital
Image Processing on Embedded Systems

doi:10.3991/ijoe.v5i4.1064

A. Kalantzopoulos, D. Markonis and E. Zigouris
University of Patras, Patras, Greece

Abstract—The purpose of this paper is to present a Remote
Laboratory on embedded systems focused in real-time digi-
tal image processing. This laboratory consists of a Main
Web Server and several Workstations which are designed
for digital image retrieval from a CMOS Image Sensor and
real-time image processing on a Digital Signal Processor
development platform. The Main Web Server redirects the
authorised remote users to available Workstations in order
to execute and verify their image processing algorithms or
test their system designs using a developed Application Pro-
gramming Interface. Through user-friendly web pages users
can interfere with the hardware parameters and observe the
results of their solutions.

Index Terms—Digital Signal Processors, e-learning, Real-
time Image Processing, Remote Laboratories.

I. INTRODUCTION
Distance learning is an area which is gaining ground

rapidly on the educational process during the last decades.
However, a certain limitation arose due to the fact that
physical presence of the students was required on tradi-
tional hands-on laboratories during practical sessions.
Remote Laboratories [1, 2] is the newest approach that
came to overcome this obstacle while offering higher
availability of laboratory equipment and reduction of the
total cost. It provides better exploitation of students’ and
tutors’ time as it allows the conducting of experiments by
the students on their own place without time restrictions.
This approach also enables the sharing of hardware be-
tween institutions for minimization of expense and en-
courages co-operation between scientific faculty.

This paper presents the design and implementation of a
Remote Laboratory for real-time digital image processing

on embedded systems based on Digital Signal Processors
(DSPs). Due to the rapid growth of the scientific research
on the fields of embedded systems and digital image proc-
essing, the development of such a laboratory is of great
interest. The limitations on both computational speed and
storage space of embedded systems prescribe for a differ-
ent approach on digital image processing algorithms,
much more so if real-time processing is necessary. This
renders existing Remote Laboratories which concern ex-
clusively embedded systems [3] or digital image process-
ing, insufficient for this purpose.
The proposed Remote Laboratory, named Remote Digital
Image Processing Laboratory (R-DImPr Lab), is ac-
cessed by the students through internet via a common
Web Browser (Internet Explorer, Mozilla Firefox) and
grants control of the laboratory equipment using a user-
friendly Graphical User Interface (GUI). Through this
GUI, there is the capability of carrying out laboratory
exercises such as image filtering, edge detection, histo-
gram equalization etc. During the conduction of these
exercises students are asked to develop their solutions
using Code Composer Studio (CCS) and upload the ex-
ecutable codes to the R-DImPr Lab. As an additional as-
sistance to them with the implementation of their own
real-time image processing solutions and the communica-
tion with the Workstation application, a high-level Appli-
cation Programming Interface (API) was developed. The
students are also able to observe both the images that
were captured by the CMOS Image Sensor based embed-
ded system and the results of the processing algorithms
through the GUI.

Figure 1. R-DImPr Lab’s Architecture.

24 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v5i4.1064�

A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

II. ARCHITECTURE
The R-DImPr Lab is based on the flexible and upgrad-

able architecture of the R-DSP Lab [4]. The structural
elements of R-DImPr Lab architecture (Fig.1) are the
Main Web Server and the Workstations. The Main Web
Server can be connected to one or more Workstations via
Ethernet or Internet. The number of Workstations that can
be used depends on the occasional needs and may be dy-
namically increased or decreased without influencing the
operation of the R-DImPr Lab.

A. Main Web Server
The Main Web Server undertakes the reception and re-

direction of users to the appropriate Workstation. The user
that wishes to carry out a predefined laboratory exercise or
to verify the functionality of his own executable code,
should follow the Login process. During this process, the
user is asked to give his Username and Password. Those
users, who have successfully completed the identification
procedure, by accessing the Experiment Selection Web
Page, are able to select one of the predefined laboratory
exercises or to upload their executable files. The main
Web Server redirects the authorized user to an available
Workstation.

The functions of the Main Web Server were developed
using the features of PHP and HTML. For the hosting of
Web Pages the Apache HTTP Server is used. Further-
more, a MySQL database is installed in the Main Web
Server. Inside the database, the users’ information, the
executable files that have been uploaded and certain statis-
tical information are stored.

B. Workstation
Each Workstation consists of a Windows based PC, a

DSK C6416 development platform by Spectrum Digital
based on fixed-point TMS320C6416 DSP by Texas In-
struments (TI) and a DSK-Eye Gigabit daughter card by
Bitec which is used for interfacing between an Omnivi-
sion OV5610 CMOS Image Sensor and the DSK [5-8].
This equipment allows the acquisition of an image frame
with resolution up to 5 Mpixels from the sensor and its
storage in Bayer format in the DSK C6416 SDRAM for
further processing. Moreover, data can be transferred to a
PC and vice versa through a TCP/IP connection using the
DSK-Eye gigabit Ethernet interface adaptor.

For the control of each Workstation and the communi-
cation between the user and the available laboratory
equipment, an application using LabVIEW v8.0 has been
developed. With this application, the complete control of
the CCS v3.1 and DSK C6416 is achieved, using the fea-
tures of the toolkit LabVIEW to CCS Link [9]. The cap-
tured by the CMOS Image Sensor frame in the predefined
resolution, as well as the processed one, are transferred to
the application’s GUI over a TCP/IP connection. This
application also grants the user with real-time control over
the values of the CMOS Image Sensor control registers
through the program running on the DSP. Moreover, it
gives the user the capability to control the Workstation
through the environment of a suitably designed Web Page
which is hosted by an embedded LabVIEW Web Server.
Additional assistance to the students with building the
executable codes of their solutions, was given by the de-
velopment of a high level API.

III. APPLICATION PROGRAMMING INTERFACE (API)
The presented, open source R-DImPr API [10] consists

of both system control and image processing C functions.
This constitutes this Remote Laboratory useful to a variety
of courses that are focused in either the design of image
processing embedded systems or the implementation of
image processing algorithms. For convenience purposes
the R-DImPr API is divided into two sections, the System
Design API and the Image Processing API.

A. System Design API
The System Design section is a high-level API based on

the DSK-Eye Gigabit API [8, 10], which enables design-
ing and testing user-made image processing systems based
on the laboratory equipment. It includes functions which
initialize the system, set the system’s IP, port and Gate-
way, control the values of the CMOS Image Sensor’s reg-
isters, undertake the TCP/IP image transfer etc. A brief
description of the System Design API’s high-level func-
tions is given below, as well as a sample code of one of
the functions.

System_Init: Initializes the system in order to use the
TCP/IP protocol for the communication between the sys-
tem and the GUI. Additionally, it resets the CMOS Image
Sensor parameters such as the resolution of the CMOS
Image Sensor, the brightness of the captured image, the
data transfer rate between the DSK-Eye Gigabit daughter
card and the DSK C6416.

Set_Socket: Creates a TCP socket for the connection
between the system - server and the GUI - client. To ac-
complish this, at first it sets the IP address and port of the
server and the Gateway which are given as arguments.
Then it creates the TCP socket using these parameters and
returns the number of the TCP socket.

Wait_for_Command: Sets the system - server to the lis-
ten mode and waits to receive a command word from the
GUI - client. It takes as an argument the number of the
TCP socket and returns the command word.

Get_Frame: Is the main interface for frame grabbing.
This function returns a pointer to the memory region con-
taining the Bayer raw image frame and suspends the call-
ing task until a new frame is available.

Send_RGB_Image: Undertakes the transfer of an RGB
image frame through the TCP socket to the GUI. This
function (Fig.2) takes as an argument a pointer to the im-
age to be transferred. Depending on the value of the
pointer, either the original or the processed image is sent.

Send_GrayScale_Image: Transfers a single component
of the processed image frame through the TCP socket to
the GUI. If this single component is the luminance com-
ponent, then a grayscale image is sent. This function is
particularly useful when the result of an image processing
algorithm is a grayscale or a black and white image (e.g.
edge detection).

Register_Write: Changes any parameter of the CMOS
Image Sensor. This is accomplished by assigning a new
value to the appropriate control register whose internal
address and the new value are given as arguments.

Register_Read: Reads the current value of any CMOS
Image Sensor control register. The register internal ad-
dress is given as an argument.

iJOE – Volume 5, Issue 4, November 2009 25

A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

 void Send_RGB_Image(int cs, unsigned char *rgb,
 int offset)
{
 int y, Buff_ptr;
 Buff_ptr = 0;

 for (y=0; y<RGB_SIZE; y++)
 {
 if(Buff_ptr == BUFF_SIZE)

 {
 if(send(cs, (unsigned char*) Buffer,
 BUFF_SIZE,0) != BUFF_SIZE)
 return;
 Buff_ptr = 0;
 }
 Buffer[Buff_ptr++] = *(rgb+y+offset);
 Buffer[Buff_ptr++] = *(rgb+y+offset + RGB_SIZE);
 Buffer[Buff_ptr++] = *(rgb+y+offset + RGB_SIZE*2);
 }
 if(send(cs, (unsigned char*)Buffer, BUFF_SIZE,0)
 != BUFF_SIZE)
 return;
}

Figure 2. The Send_RGB_Image function.

B. Image Processing API
The Image Processing section is a high-level API [10]

designed from scratch, which contains functions imple-
menting image processing algorithms such as color space
conversions, filtering, edge detection etc, specially de-
signed for the fixed point arithmetic DSPs. A brief de-
scription of the Image Processing API’s high-level func-
tions is given below, as well as a sample code of one of
the functions.

Bayer_to_RGB: Converts a Bayer raw image stored in
the memory region pointed by a pointer which is given as
an argument, into the RGB color space. It returns a pointer
to the memory region containing the converted image.

YCbCr_to_RGB: Converts a YCbCr image stored in the
memory region pointed by a pointer which is given as an
argument, into the RGB color space. This function re-
places the YCbCr image with the result image.

RGB_to_YCbCr: Converts an RGB image stored in the
memory region pointed by a pointer which is given as an
argument, into the YCbCr color space. This function
(Fig.3) stores the result right after the end of the RGB
image.

3x3_Filter: Applies a 3x3 mask to the luminance com-
ponent of the image. This function takes as arguments a
pointer which indicates the memory region containing the
luminance component and a 3x3 filtering mask array.
Then it replaces the luminance component with the filter-
ing result.

void RGB_to_YCbCr(unsigned char *rgb)
{
 int i,offset = RGB_SIZE*3 ;
 int b,g,r;

 for (i=offset; i<offset+RGB_SIZE; i++)
 {
 b = *(rgb+i - offset);
 g = *(rgb+i - offset +RGB_SIZE);
 r = *(rgb+i - offset +RGB_SIZE*2);
 *(rgb+i) = (b*3736 + g*19235 + r*9798)>>15;
 *(rgb+i+RGB_SIZE) = ((b*16384 - g*10856
 -r*5528)>>15) + 128;
 *(rgb+i+RGB_SIZE*2) = ((- b*2664 - g*13720
 +r*16384)>>15) + 128;
 }
}

Figure 3. The RGB_to_YCbCr function.

Figure 4. Block diagram of code architecture.

Sobel: Performs a sobel edge detection algorithm. It
takes as an argument a pointer which indicates the mem-
ory region containing the luminance component. Then it
replaces the luminance component with the algorithm
result.

C. Using theR-DImPr API
The main purpose of the R-DImPr API is to provide

students with handy tools for developing real-time image
processing embedded systems. The proposed code archi-
tecture using the R-DImPr API is presented in the block
diagram shown in Fig.4.

According to the proposed code architecture the user-
made program at first calls the System_Init function ini-
tializing the system parameters. Then the Set_Socket
function creates a TCP Socket for the communication with
the Workstation’s Application GUI. By using the
Wait_for_Command function the program waits until a
command word (Cmnd) is sent through the GUI from the
user. Depending on the Cmnd, the program can perform a
variety of tasks. If the value of Cmnd is “Orig” the system
captures a frame from the CMOS Image Sensor in Bayer
format, converts it into RGB color space and sends it to
the appropriate GUI’s picture indicator. In case the value
of Cmnd is “Proc” the system executes the user’s image
processing algorithm. Otherwise, if the value of Cmnd is
“Reg” the system calls either the Read_Register or the

26 http://www.i-joe.org

A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

Write_Register function depending on the value of the
Read_Flag. After the end of each task the program calls
the Wait_for_Command waiting for a new Cmnd.

IV. LABORATORY EXPERIMENT
In order to demonstrate the functionality of the R-

DImPr Lab, an executable code that implements a Sobel
edge detection algorithm using the laboratory’s API was
built on CCS according to the code architecture shown in
Fig.4. For this purpose, the functions RGB_to_YCbCr,
Sobel and Send_GrayScale_Image were added to the
“User’s Algorithm” section. It is worth to be mentioned
that with the use of the API and the proposed code archi-
tecture, the development of complicated image processing
applications on DSPs is greatly simplified.

After following the R-DImPr Lab’s identification pro-
cedure, the executable code was uploaded to an available
Workstation and the Workstation Web Page (Fig.5) was
used to monitor the algorithm result. Through this Web
Page the user, by pressing the “Get Original Image” but-
ton, can obtain the original image in predefined resolution
which was captured by the CMOS Image Sensor and was
converted on DSP from Bayer format to the RGB color
space. The “Get Processed Image” button activates the
“User’s Algorithm” code section and that way the result of
the real-time Sobel edge detector was displayed on the
appropriate picture indicator. The original image and the

algorithm result when the CMOS Image Sensor automati-
cally handles image features such as exposure time, color
channel gains and white balance correction are presented
in Fig.5a. This level of use is sufficient for courses, whose
subject lies mostly on the image processing part.
However, for courses that focus more on the DSP system
design, access to the CMOS Image Sensor Control Regis-
ters at bit level is provided. The user can monitor and
remotely control the values of parameters such as color
channel gains, exposure time etc. A brief description of
each register function [7] for online assistance is also
available. Through the “CMOS Sensor Control Register”
menu the user is able to select the desirable register and
by pressing the buttons “Read” and “Write”, can view
and change its content at bit level. The “Register Descrip-
tion” field provides information about
each register’s usage.

Simple examples of remotely adjusting the system pa-
rameters are shown in Fig.5b and Fig.5c. By changing the
value of a certain control register (COMI), the CMOS
Image Sensor’s automatic mode was deactivated. Then
the gain register (GAIN) value was increased giving im-
proved algorithm results (Fig 5b). Further gain and expo-
sure time increase enhanced the processed image even
more (Fig 5c).

Figure 5a. Workstation’s Web Page – Automatic image sensor register adjustment.

iJOE – Volume 5, Issue 4, November 2009 27

A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

Figure 5b. Workstation’s Web Page – Remotely increased image sensor gain.

Figure 5c. Workstation’s Web Page – Remotely increased image sensor gain and exposure.

28 http://www.i-joe.org

A REMOTE LABORATORY FOR REAL-TIME DIGITAL IMAGE PROCESSING ON EMBEDDED SYSTEMS

V. CONCLUSIONS
In this paper the architecture, development and opera-

tion of a Remote Laboratory for real-time digital image
processing on embedded systems based on DSPs was
presented. This laboratory has an upgradable and flexible
architecture, is accessed through a common Web browser
and it is applicable to courses of different academic de-
grees rendering it a powerful tool for the educational
process. In order to assist users with the development of
their, compatible to the Workstation’s GUI executable
code, a high-level API was also introduced. The proposed
code architecture for the use of the API greatly simplifies
the implementation and verification of image processing
applications, while it provides users with system design
functions, too. Such an example of a real-time image
processing system using the API was given to demon-
strate the functionality of the laboratory. Future plans
include the expansion of the API in order to give to the
users more programming options, both in application
complexity and variety. Moreover, the design of a toolkit
for the communication between the workstation and GUIs
created by users will enhance the operation of R-DImPr
Lab and fully exploit the API’s potential.

REFERENCES
[1] C. Gravier, J.Fayolle, B. Bayard, M.Ates & J.Lardon, “State of Art

About Remote Laboratories Paradigms – Foundations of Muta-
tions”, International Journal of Online Engineering (iJOE), vol.4,
issue 1, pp. 19-25, February 2008.

[2] Dr. Gokhan Gercek & Dr. Naveed Saleem, “Transforming Tradi-
tional Labs into Virtual Computing Labs for Distance Education”,
International Journal of Online Engineering (iJOE), vol.4, issue
1, pp. 46-51, February 2008.

[3] D. Hercog, B. Gergic, S. Uran and K. Jezernik, “A DSP-Based
Remote Control Laboratory”, IEEE Transactions On Industrial
Electronics, vol. 54, No. 6, pp. 3057-3068, December 2007.
(doi:10.1109/TIE.2007.907009)

[4] A. Kalantzopoulos, D. Karageorgopoulos & E. Zigouris, "A Lab-
VIEW Based Remote DSP Laboratory", International Journal of
Online Engineering (iJOE), vol. 4, special issue 1: REV 2008, pp.
36-44, July 2008.

[5] Spectrum Digital, TMS320C6416 DSK, Technical Reference,
Rev.B, November 2003.

[6] Texas Instruments, TMS320C6414,TMS320C6415, TMS320C6416
Fixed-Point Digital Signal Processors, SPRS 146, Rev. N, May
2005.

[7] Omnivision, OV5610 Color CMOS QSXGA (5.17 MPixels) Cam-
era Chip with Omnipixel Technology, Datasheet Version 1.6,
March 2005.

[8] Bitec, DSKeye gigabit, Users Manual, Version 1.0, 2007.
[9] E. Zigouris, A. Kalantzopoulos & E. Vassalos, “LabVIEW to CCS

Link for Automating Digital Signal & Image Processing Applica-
tions”, 8th International Symposium on Signals, Circuits & Sys-
tems, ISSCS 2007, pp. 445-448, Iasi, Romania, 12-13 July 2007.

[10] D. Markonis and E. Zigouris, Design and Implementation of an
API for Digital Image Processing Systems Based on DSPs, Inter-
nal Report, Electronics Lab, Electronics and Computers Div.,
Physics Dept., Patras University, 2009.

AUTHORS
A. Kalantzopoulos is with the Electronics Laboratory,

Electronics and Computers Div., Department of Physics,
University of Patras, Rio Patras, GR-26500 (e-mail:
kalan@upatras.gr).

D. Markonis is with the Electronics Laboratory, Elec-
tronics and Computers Div., Department of Physics, Uni-
versity of Patras, Rio Patras, GR-26500 (e-mail:
dnmarkon@upatras.gr).

E. Zigouris is with the Electronics Laboratory, Elec-
tronics and Computers Div., Department of Physics, Uni-
versity of Patras, Rio Patras, GR-26500 (e-mail:
ez@physics.upatras.gr).

Submitted, January, 17, 2009. Published as resubmitted by the authors on
May, 16, 2009.

iJOE – Volume 5, Issue 4, November 2009 29

http://www.i-joe.org/�
http://www.i-joe.org/�
http://dx.doi.org/10.1109/TIE.2007.907009�
http://www.i-joe.org/�
http://www.i-joe.org/�

