In this paper, fractional order integral operators are applied to the study of inequalities, which is also a research hotspot of fractional order integral operators in recent years. After introducing some basic concepts, we establish some new Volterra-Fredholm-type fractional integral inequalities. They can be used as an effective tool to study the properties of solutions of fractional differential equations and fractional integral equations. In addition, several examples are given to illustrate the effectiveness of the research results.
Citation: |
[1] | D. D. Bainov and P. S. Simeonov, Integral Inequalities and Applications, 1$^{nd}$ edition, Springer Science and Business Media, 1992. doi: 10.1007/978-94-015-8034-2. |
[2] | S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam and W. Gao, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., (2020), Paper No. 508, 25 pp. doi: 10.1186/s13662-020-02967-5. |
[3] | X.-L. Ding and B. Ahmad, A generalized Volterra-Fredholm integral inequality and its applications to fractional differential equations, Adv. Differ. Equ., (2018), Paper No. 91, 8 pp. doi: 10.1186/s13662-018-1548-4. |
[4] | M. Doubbi Bounoua and J. Tang, On some Volterra-Fredholm and Hermite-Hadamard-type fractional integral inequalities, J. Inequal. Appl., (2022), Paper No. 36, 20 pp. doi: 10.1186/s13660-022-02772-6. |
[5] | Z. Y. Hou and W. S. Wang, A class of nonlinear volterra-fredholm type integral inequality with variable lower limit and its application, Journal of Southwest China Normal University(Natural Science Edition, (2016). |
[6] | C. Huang and W. Wang, A class of nonlinear volterra-fredholm type integral inequalities with maxima, Journal of Sichuan Normal University(Natural Science), (2016). |
[7] | R. Liu and R. Xu, Hermite-Hadamard type inequalities for harmonical $(h_{1}, h_{2})$-convex interval-valued functions, Math. Found. Comp., 4 (2021), 89-103. |
[8] | Y. Lu, W. S. Wang, X. Zhou and Y. Huang, Generalized nonlinear Volterra-Fredholm type integral inequality with two variables, J. Appl. Math., (2014), Art. ID 359280, 14 pp. doi: 10.1155/2014/359280. |
[9] | T. U. Khan and M. A. Khan, Generalized conformable fractional integral operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018. |
[10] | Q.-H. Ma and J. Pe$\breve{c}$ari$\acute{c}$, Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities, Nonlinear Anal.-Theor., 69 (2008), 393-407. doi: 10.1016/j.na.2007.05.027. |
[11] | S. Mubeen, S. Habib and M. N. Naeem, The Minkowski inequality invoving generalized k-fractional conformable integral, J. Ineq. Appl., 81 (2019), 1-18. doi: 10.1186/s13660-019-2040-8. |
[12] | B. G. Pachpatte, Explicit bound on a retarded integral inequality, Math. inequal. Appl., 7 (2004), 7-11. doi: 10.7153/mia-07-02. |
[13] | G. Rahman, A. Khan, T. Abdeljawad and K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., (2019), Paper No. 287, 14 pp. doi: 10.1186/s13662-019-2229-7. |
[14] | R. Xu and X. T. Ma, Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications, J. Inequal. Appl., (2017), Paper No. 187, 25 pp. doi: 10.1186/s13660-017-1460-6. |
[15] | L. Zhao, S. Wu and W. S. Wang, A generalized nonlinear Volterra-Fredholm type integral inequality and its application, J. Appl. Math., (2014), Art. ID 865136, 13 pp. doi: 10.1155/2014/865136. |
[16] | Y. Zhao, H. Sang, W. Xiong and Z. Cui, Hermite-Hadamard-type inequalities involving $\psi$-Riemann-Liouville fractional integrals via s-convex functions, J. Ineq. Appl., (2020), Paper No. 128, 13 pp. doi: 10.1186/s13660-020-02389-7. |
[17] | B. Zheng, Some new Gronwall-Bellman type and Volterra-Fredholm type fractional integral inequalities and their applications in fractional differential equations, IAENG International Journal of Applied Mathematics, 48 (2018), 288-296. |
[18] | B. Zheng, Some new fractional integral inequalities in the sense of conformable fractional derivative, Eng. Let., 27 (2019), 287-294. |