[1]
|
M. Bamiloshin, A. Ben-Efraim, O. Farràs and C. Padró, Common information, matroid representation, and secret sharing for matroid ports, CoRR, (2020), abs/2002.08108.
doi: 10.1007/s10623-020-00811-1.
|
[2]
|
A. Beimel, Secret-sharing schemes: A survey, in International Conference on Coding and Cryptology, Springer, 2011, 11–46.
doi: 10.1007/978-3-642-20901-7_2.
|
[3]
|
A. Beimel, A. Ben-Efraim, C. Padró and I. Tyomkin, Multi-linear secret-sharing schemes, in Theory of Cryptography Conference, Springer, 2014,394–418.
doi: 10.1007/978-3-642-54242-8_17.
|
[4]
|
A. Beimel and B. Chor, Universally ideal secret-sharing schemes, IEEE Transactions on Information Theory, 40 (1994), 786-794.
doi: 10.1109/18.335890.
|
[5]
|
A. Beimel and Y. Ishai, On the power of nonlinear secret-sharing, in Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, 2001,188–202.
|
[6]
|
A. Beimel and N. Livne, On matroids and nonideal secret sharing, IEEE Trans. Information Theory, 54 (2008), 2626–2643.
doi: 10.1109/TIT.2008.921708.
|
[7]
|
A. Beimel and N. Livne, On matroids and nonideal secret sharing, IEEE Transactions on Information Theory, 54 (2008), 2626-2643.
doi: 10.1109/TIT.2008.921708.
|
[8]
|
M. Bertilsson and I. Ingemarsson, A construction of practical secret sharing schemes using linear block codes, in Advances in Cryptology - AUSCRYPT '92, Workshop on the Theory and Application of Cryptographic Techniques, Gold Coast, Queensland, Australia, December 13-16, 1992, Proceedings, 1992, 67–79.
|
[9]
|
G. R. Blakley, Safeguarding cryptographic keys, Proc. of the National Computer Conference 1979, 48 (1979), 313-317.
|
[10]
|
E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology, 4 (1991), 123-134.
doi: 10.1007/0-387-34805-0_25.
|
[11]
|
H.-L. Chan and R. W. Yeung, A combinatorial approach to information inequalities, in 1999 Information Theory and Networking Workshop (Cat. No. 99EX371), IEEE, 1999, 63.
|
[12]
|
T. Chan and A. J. Grant, Dualities between entropy functions and network codes, IEEE Trans. Information Theory, 54 (2008), 4470–4487.
doi: 10.1109/TIT.2008.928963.
|
[13]
|
T. H. Chan, A. Grant and T. Britz, Properties of quasi-uniform codes, in 2010 IEEE International Symposium on Information Theory, IEEE, 2010, 1153–1157.
|
[14]
|
T. H. Chan and R. W. Yeung, On a relation between information inequalities and group theory, IEEE Trans. Information Theory, 48 (2002), 1992–1995.
doi: 10.1109/TIT.2002.1013138.
|
[15]
|
L. Csirmaz, Secret sharing and duality, CoRR, abs/1909.13663, 2019.
doi: 10.1515/jmc-2019-0045.
|
[16]
|
P. Gács and J. Körner, Common information is far less than mutual information, Problems of Control and Information Theory, 2 (1973), 149-162.
|
[17]
|
J. Gallian, Contemporary Abstract Algebra, Nelson Education, 2012.
|
[18]
|
L. Guille, T. Chan and A. J. Grant, The minimal set of ingleton inequalities, IEEE Trans. Information Theory, 57 (2011), 1849–1864.
doi: 10.1109/TIT.2011.2111890.
|
[19]
|
P. Hall, Complemented groups, Journal of the London Mathematical Society, 1 (1937), 201-204.
doi: 10.1112/jlms/s1-12.2.201.
|
[20]
|
M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 72 (1989), 56-64.
doi: 10.1002/ecjc.4430720906.
|
[21]
|
A. Jafari and S. Khazaei, On abelian and homomorphic secret sharing schemes, Cryptology ePrint Archive, Report 2019/575, 2019.
|
[22]
|
A. Jafari and S. Khazaei, Partial secret sharing schemes, Cryptology ePrint Archive, Report 2020/448, 2020.
|
[23]
|
R. Kaboli, S. Khazaei and M. Parviz, On group-characterizability of homomorphic secret sharing schemes, Cryptology ePrint Archive, Report 2019/576, 2019.
|
[24]
|
T. Kaced, Almost-perfect secret sharing, in 2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 - August 5, 2011, 2011, 1603–1607.
|
[25]
|
T. Kaced, Secret Sharing and Algorithmic Information Theory. (Partage de Secret et The'orie Algorithmique de L'information), Ph.D thesis, Montpellier 2 University, France, 2012.
|
[26]
|
M. Karchmer and A. Wigderson, On span programs, in Proceedings of the Eighth Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, 1993,102–111.
doi: 10.1109/SCT.1993.336536.
|
[27]
|
E. Karnin, J. Greene and M. Hellman, On secret sharing systems, IEEE Transactions on Information Theory, 29 (1983), 35–41, 1983.
doi: 10.1109/TIT.1983.1056621.
|
[28]
|
A. D. Keedwell and J. Dénes, Latin Squares and their Applications, Elsevier, 2015.
|
[29]
|
F. Matúš, Algebraic matroids are almost entropic, Proceedings of the AMS, to appear.
|
[30]
|
F. Matúš, Matroid representations by partitions, Discrete Mathematics, 203 (1999), 169-194.
doi: 10.1016/S0012-365X(99)00004-7.
|
[31]
|
F. Matús, Classes of matroids closed under minors and principal extensions, Combinatorica, 38 (2018), 935-954.
doi: 10.1007/s00493-017-3534-y.
|
[32]
|
B. D. McKay and I. M. Wanless, On the number of latin squares, Annals of Combinatorics, 9 (2005), 335-344.
doi: 10.1007/s00026-005-0261-7.
|
[33]
|
C. Mejia and J. A. Montoya, On the information rates of homomorphic secret sharing schemes, Journal of Information and Optimization Sciences, 39 (2018), 1463-1482.
doi: 10.1080/02522667.2017.1367513.
|
[34]
|
J. G. Oxley, Matroid theory, 3, Oxford University Press, USA, 2006.
doi: 10.1093/acprof:oso/9780198566946.001.0001.
|
[35]
|
C. Padró, Lecture notes in secret sharing, IACR Cryptology ePrint Archive, 674 (2012).
|
[36]
|
P. D. Seymour, On secret-sharing matroids, J. Comb. Theory, Ser. B, 56 (1992), 69–73.
doi: 10.1016/0095-8956(92)90007-K.
|
[37]
|
A. Shamir, How to share a secret, Communications of the ACM, 22 (1979), 612-613.
doi: 10.1145/359168.359176.
|
[38]
|
J. Simonis and A. E. Ashikhmin, Almost affine codes, Des. Codes Cryptogr., 14 (1998), 179-197.
doi: 10.1023/A:1008244215660.
|
[39]
|
F. Wei, M. Langberg and M. Effros, Towards an operational definition of group network codes, CoRR, abs/2002.00781, 2020.
|
[40]
|
Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Information Theory, 44 (1998), 1440–1452.
doi: 10.1109/18.681320.
|