We study entanglement-assisted quantum error-correcting codes (EAQECCs) arising from classical one-point algebraic geometry codes from the Hermitian curve with respect to the Hermitian inner product. Their only unknown parameter is $ c $, the number of required maximally entangled quantum states since the Hermitian dual of an AG code is unknown. In this article, we present an efficient algorithmic approach for computing $ c $ for this family of EAQECCs. As a result, this algorithm allows us to provide EAQECCs with excellent parameters over any field size.
Citation: |
Table 1.
Normalized reductions for
Table 2.
Algorithm 1 for
0 | 0 | 0 | |||
3 | 9 | 9 | |||
4 | 12 | 12 | |||
6 | 18 | 18 | |||
7 | 21 | 21 | |||
8 | 24 | 24 | |||
9 | 3 | 3 | |||
10 | 22 | 22 | |||
11 | 25 | 25 | |||
12 | 12 | 4 | |||
13 | 15 | 15 | |||
14 | 26 | 26 | |||
15 | 21 | 13 |
Table 3. Examples of code's parameters and comparative analysis by means of coding bounds
Parameters | Singleton defect | Exceeding GV |
6 | ✔ | |
6 | ✔ | |
6 | ✔ | |
6 | ✔ | |
12 | ✔ | |
12 | ✔ | |
10 | ✔ | |
12 | ✔ | |
20 | ✔ | |
20 | ✔ | |
20 | ✔ | |
20 | ✔ | |
18 | ✔ |
Table 4.
Monomials in the support of
Table 5.
Results of the modified algorithm for
0 | 0 | 0 | |||
3 | 9 | 9 | |||
4 | 12 | 12 | |||
6 | 18 | 18 | |||
7 | 21 | 21 | |||
8 | 24 | 24 | |||
9 | 3 | 3 | |||
10 | 22 | 22 | |||
11 | 25 | 25 | |||
12 | 12 | 4 | |||
13 | 15 | 15 | |||
14 | 26 | 26 | |||
15 | 21 | 13 |
Table 6. Hermitian EAQECCs exceding the GV bound
2 | 8 | 0–3 |
3 | 27 | 1–16 |
4 | 64 | 3–45 |
5 | 125 | 4–96 |
7 | 343 | 10–288 |
8 | 512 | 9–441 |
9 | 729 | 14–640 |
11 | 1331 | 38–1200 |
13 | 2197 | 51–2016 |
16 | 4096 | 45–3825 |
[1] | A. Allahmadi, A. Alkenani, R. Hijazi, N. Muthana, F. Özbudak and P. Solé, New constructions of entanglement-assisted quantum codes, Cryptography and Communications. |
[2] | A. Ashikhmin, S. Litsyn and M. Tsfasman, Asymptotically good quantum codes, Physical Review A, 63 (2001), 032311. doi: 10.1103/PhysRevA.63.032311. |
[3] | D. Bartoli, M. Montanucci and G. Zini, On certain self-orthogonal AG codes with applications to quantum error- correcting codes, Des. Codes Cryptogr., 89 (2021), 1221-1239. doi: 10.1007/s10623-021-00870-y. |
[4] | T. Brun, I. Devetak and M.-H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439. doi: 10.1126/science.1131563. |
[5] | A. Calderbank, E. Rains, P. Shor and N. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387. doi: 10.1109/18.681315. |
[6] | N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly, 54 (1947), 589-592. doi: 10.2307/2304500. |
[7] | C. Galindo, F. Hernando, R. Matsumoto and D. Ruano, Entanglement-assisted quantum error-correcting codes over arbitrary finite fields, Quantum Inf. Process., 18 (2019), Paper No. 116, 18 pp. doi: 10.1007/s11128-019-2234-5. |
[8] | D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A, 54 (1996), 1862-1868. doi: 10.1103/PhysRevA.54.1862. |
[9] | G. G. L. Guardia, Quantum Error Correction, Quantum Science and Technology. Springer, Cham, 2020. doi: 10.1007/978-3-030-48551-1. |
[10] | A. Guo, S. Kopparty and M. Sudan, New affine-invariant codes from lifting, Proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science, ACM Press, (2013), 529–540. |
[11] | F. Hernando, G. McGuire, F. Monserrat and J. J. Moyano-Fernández, Quantum codes from a new construction of self-orthogonal algebraic geometry codes, Quantum Inf. Process., 19 (2020), Paper No. 117, 25 pp. doi: 10.1007/s11128-020-2616-8. |
[12] | T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes, Handbook of Coding Theory, North-Holland, Amsterdam, (1998), 871–961. |
[13] | A. Ketkar, A. Klappenecker, S. Kumar and P. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914. doi: 10.1109/TIT.2006.883612. |
[14] | J.-L. Kim and G. L. Matthews, Quantum error-correcting codes from algebraic curves, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, 5 (2008), 419–444. doi: 10.1142/9789812794017_0012. |
[15] | R. Lidl and H. Niederreiter, Finite Fields, 2$^{nd}$ edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997. |
[16] | E. Lucas, Théorie des Nombres, Gauthier-Villars et fils, Paris, 1891. |
[17] | R. Matsumoto, Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes, IEEE Trans. Inform. Theory, 48 (2002), 2122-2124. doi: 10.1109/TIT.2002.1013156. |
[18] | C. Munuera, W. Tenório and F. Torres, Quantum error-correcting codes from algebraic geometry codes of Castle type, Quantum Inf. Process., 15 (2016), 4071-4088. doi: 10.1007/s11128-016-1378-9. |
[19] | F. R. F. Pereira, R. Pellikaan, G. G. L. Guardia and F. M. de Assis, Application of complementary dual AG codes to entanglement-assisted quantum codes, 2019 IEEE International Symposium on Information Theory (ISIT), (2019), 2559–2563. |
[20] | F. R. F. Pereira, R. Pellikaan, G. G. L. Guardia and F. M. de Assis, Entanglement-assisted quantum codes from algebraic geometry codes, IEEE Trans. Inform. Theory, 67 (2021), 7110-7120. doi: 10.1109/TIT.2021.3113367. |
[21] | P. K. Sarvepalli and A. Klappenecker, Nonbinary quantum codes from Hermitian curves, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer Berlin Heidelberg, 3857 (2006), 136–143. doi: 10.1007/11617983_13. |
[22] | H. Stichtenoth, Algebraic Function Fields and Codes, 2$^{nd}$ edition, Graduate Texts in Mathematics, Springer, 2009. |
[23] | H. Tiersma, Remarks on codes from Hermitian curves, IEEE Trans. Inform. Theory, 33 (1987), 605-609. doi: 10.1109/TIT.1987.1057327. |
[24] | K. Yang and P. V. Kumar, On the true minimum distance of Hermitian codes, Coding Theory and Algebraic Geometry Lecture Notes in Mathematics, 1518 (1992), 99-107. doi: 10.1007/BFb0087995. |