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Abstract. Zero-difference balanced (ZDB) functions can be employed in many
applications, e.g., optimal constant composition codes, optimal and perfect dif-
ference systems of sets, optimal frequency hopping sequences, etc. In this pa-
per, two results are summarized to characterize ZDB functions, among which
a lower bound is used to achieve optimality in applications and determine the
size of preimage sets of ZDB functions. As the main contribution, a generic
construction of ZDB functions is presented, and many new classes of ZDB
functions can be generated. This construction is then extended to construct a
set of ZDB functions, in which any two ZDB functions are related uniformly.
Furthermore, some applications of such sets of ZDB functions are also intro-
duced.

1. Introduction

Let (A,+) and (B,+) be two abelian groups of orders n and ℓ, respectively.
For a function f from A onto B, define

Nb(a) :=
∣

∣{x ∈ A : f(x+ a)− f(x) = b}
∣

∣.

If Nb(a) =
n
ℓ for all b ∈ B and all nonzero a ∈ A, the function f is called planar or

perfect nonlinear [4,24]. IfN0(a) =
n+1
ℓ −1 for each nonzero a ∈ A andNb(a) =

n+1
ℓ

for each nonzero b ∈ B and each nonzero a ∈ A, f is called a difference balanced
function [16,30]. Here we consider a relaxation of these two types of functions: if
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N0(a) = λ for all nonzero a ∈ A, where λ is a nonnegative integer, the function f
is called an (n, ℓ, λ)-zero-difference balanced (ZDB) function.

Zero-difference balanced (ZDB) functions were first defined by Ding [6], and
since then have found many applications: they can be used to construct optimal
and perfect difference systems of sets [6,30], optimal constant composition codes [5,
9,10], etc. For the background of difference systems of sets, we refer to [6,19,20,28],
and for more information on constant composition codes, see [5,10,22]. In design
theory, ZDB functions correspond to partitioned difference families.

Let (A,+) be an abelian group of order n. Let P be a collection of ℓ subsets
(blocks) B0,B1, . . . ,Bℓ−1 of A. The collection P is said to be an (n,K, λ)-difference
family (DF) in A, where K = {∗ |Bi| : 0 ≤ i < ℓ ∗}, if for 0 ≤ i < ℓ, the list
of differences b − b′, with b, b′ ∈ Bi and b 6= b′, covers all nonzero elements in A
exactly λ times. Furthermore, if P forms a partition of A, it is called an (n,K, λ)-
partitioned difference family (PDF). Clearly, ZDB functions and PDFs are basically
two equivalent objects.

Proposition 1. Let (A,+) and (B,+) be two abelian groups of orders n and
ℓ, respectively, where B = {b0, b1, . . . , bℓ−1}. Let f be a function from A onto B.
Define Bi := {x ∈ A : f(x) = bi} for 0 ≤ i < ℓ, and P = {B0,B1, . . . ,Bℓ−1}.
Then f is an (n, ℓ, λ)-ZDB function if and only if P is an (n,K, λ)-PDF, where
K = {∗ |Bi| : 0 ≤ i < ℓ ∗}.

Recently, Zhou, Tang, Wu and Yang [30] constructed some new classes of ZDB
functions from difference balanced functions, and then presented several applica-
tions. For more information on ZDB functions, we also refer to a recent survey [8].
In this paper, we are mainly concerned with new classes of single ZDB functions,
new sets of ZDB functions, and applications of sets of ZDB functions. The re-
mainder of the present paper is organized as follows. In Section 2, we present two
results to characterize ZDB functions. We then propose a generic construction of
ZDB functions in Section 3, which can give many new classes of ZDB functions. In
Section 4, we extend this generic construction naturally to construct a set of ZDB
functions, in which any two ZDB functions are related uniformly. In Section 5, we
give two applications of such sets of ZDB functions. We then conclude this paper
with some open problems in Section 6.

Throughout this paper, if not stated otherwise, we use the following notations:

– q is a prime power.
– m is a positive integer.
– θ is a primitive element of Fqm .
– Zn = {0, 1, 2, . . . , n − 1} associated with the integer addition modulo n
and integer multiplication modulo n operations.

– Tr denotes the trace function from Fqm to Fq.
– ⌈x⌉ denotes the ceiling function, and ⌊x⌋ is the floor function.

2. Characterizations of ZDB functions

In this section, to characterize ZDB functions, we give two results: a lower
bound on the parameter λ of ZDB functions, and general bounds on the size of
preimage sets of ZDB functions.

2.1. A lower bound on λ. Let (A,+) and (B,+) be two abelian groups of
orders n and ℓ, respectively, where B = {b0, b1, . . . , bℓ−1}. Suppose that f is an
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(n, ℓ, λ)-ZDB function from A onto B. To characterize ZDB functions, we have the
following result directly from the definition of PDF and Proposition 1.

Lemma 2.1. Define Bi := {x ∈ A : f(x) = bi} for 0 ≤ i < ℓ. Then
{

∑ℓ−1
i=0 τi = n,

∑ℓ−1
i=0 τ

2
i = n+ λ(n− 1),

where τi = |Bi| for 0 ≤ i < ℓ.

Based on the two equations above, we have the following lower bound on λ.

Lemma 2.2. For any (n, ℓ, λ)-ZDB function f from A onto B, we have

(1) λ ≥
⌈

(n− ǫ)(n+ ǫ− ℓ)

ℓ(n− 1)

⌉

,

where n = kℓ+ ǫ with 0 ≤ ǫ < ℓ. In particular,

λ =
(n− ǫ)(n+ ǫ− ℓ)

ℓ(n− 1)

if and only if, for 0 ≤ i < ℓ, τi = k for ℓ − ǫ times and τi = k + 1 for the other ǫ
times.

Proof. By Lemma 2.1, we have

λ ≥ 1

n− 1

(

min
ℓ−1
∑

i=0

τ2i − n

)

.

Note that
∑ℓ−1

i=0 τi = n. By integral programming, {τ0, τ1, . . . , τℓ−1} attains the
minimum value if and only if f is as balanced as possible. Since n = kℓ+ ǫ, if and
only if τi = k for ℓ − ǫ times and τi = k + 1 for the other ǫ times, we obtain the
lower bound of λ as stated. �

Remark 1. Since the bound of (1) coincides with the bound on frequency
hopping sequences in [18, Lemma 4] (see also Lemma 5.1), ZDB functions meeting
the lower bound of (1) can be used to define optimal frequency hopping sequences
(e.g., see [7,11,13–15]). Furthermore, by [5, Proposition 3] and [30, Lemma 6], if
there exists an (n, ℓ, λ)-ZDB function achieving the bound of (1), the corresponding
constant composition codes and difference systems of sets are both optimal.

2.2. General bounds on the size of preimage sets. Using Lemma 2.2, we
can explicitly determine the size of preimage sets of an (n, ℓ, λ)-ZDB function for
a specific λ prescribed as in Lemma 2.2. Now we give general bounds on the size
of preimage sets of ZDB functions. The sizes of all preimage sets constitute the
parameter K in the corresponding PDF, and are also important in applications.

Lemma 2.3. Suppose that f is an (n, ℓ, λ)-ZDB function from (A,+) onto
(B,+). For each 0 ≤ i < ℓ, we have

(2)
n−

√
∆

ℓ
≤ τi ≤

n+
√
∆

ℓ
,

where ∆ = (n+ λn− λ)ℓ2 − (n2 + n+ λn− λ)ℓ + n2. In particular,

• if λ =
n

ℓ
, we have

n− (ℓ− 1)
√
n

ℓ
≤ τi ≤

n+ (ℓ− 1)
√
n

ℓ
;

• if λ =
n+ 1

ℓ
− 1, we have

n− ℓ+ 1

ℓ
≤ τi ≤

n+ ℓ− 1

ℓ
.
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Proof. Without loss of generality, it suffices to prove the bound for τ0. Note
that

0 ≤
∑

1≤i,j<ℓ
i6=j

(τi − τj)
2

=
∑

1≤i,j<ℓ
i6=j

(τ2i + τ2j − 2τiτj)

= 2(ℓ− 2)
ℓ−1
∑

i=1

τ2i − 2
∑

1≤i,j<ℓ
i6=j

τiτj .

It then follows that

(3) (ℓ− 2)

ℓ−1
∑

i=1

τ2i ≥
∑

1≤i,j<ℓ
i6=j

τiτj .

By Lemma 2.1, we have

n+ λ(n− 1)

=

ℓ−1
∑

i=0

τ2i − τ20 + τ20

=

ℓ−1
∑

i=1

τ2i +

(

n−
ℓ−1
∑

i=0

τi + τ0

)2

=
ℓ−1
∑

i=1

τ2i +

(

n−
ℓ−1
∑

i=1

τi

)2

= 2

ℓ−1
∑

i=1

τ2i + n2 − 2n

ℓ−1
∑

i=1

τi +
∑

1≤i,j<ℓ
i6=j

τiτj .(4)

With (3) and (4), we have

ℓ

ℓ−1
∑

i=1

τ2i − 2n

ℓ−1
∑

i=1

τi + n2 ≥ n+ λ(n− 1).

Applying Lemma 2.1, we obtain

ℓ(n+ λ(n− 1)− τ20 )− 2n(n− τ0) + n2 ≥ n+ λ(n− 1).

It then follows that

(τ0 −
n

ℓ
)2 ≤ ∆

ℓ2
,

where ∆ = (n+λn−λ)ℓ2− (n2+n+λn−λ)ℓ+n2, which completes the proof. �

Remark 2. The two special cases in Lemma 2.3 correspond to perfect nonlinear
functions and difference balanced functions, respectively. For the case of perfect
nonlinear functions, the bounds were also given in [2].



SETS OF ZDB FUNCTIONS AND APPLICATIONS 5

3. A generic construction of ZDB functions

In this section, we describe a generic construction of ZDB functions, and present
two special cases of this construction.

3.1. The construction. To present the construction of ZDB functions, we
need the following results.

Lemma 3.1. Let e = l · r be a divisor of q − 1 with gcd(e,m) = 1. Define

D0 := 〈θr〉, C0 := 〈θe〉 and α = θ
qm−1

q−1 . Then

F∗
qm =

˙⋃r−1

i=0
Di,

and

D0 =
˙⋃l−1

i=0
Ci,

where Di = αiD0 for 0 ≤ i < r, Ci = αirC0 for 0 ≤ i < l, and ˙⋃ denotes the
disjoint union.

Proof. Since the first assertion is a special case of the second one, we only

need to prove the second assertion. Note that α = θ
qm−1

q−1 is a primitive element of
Fq. Since |D0| = l · |C0|, it suffices to prove that αir 6∈ C0 for all i = 1, . . . , l − 1.
Assume to the contrary that there exists some j such that αjr ∈ C0, we then have

αjr· q
m

−1

e = 1, which means

jr · q
m − 1

e
≡ 0 (mod (q − 1)).

It follows that

jr · q
m − 1

q − 1
≡ 0 (mod e).

Since e is a divisor of q − 1, we have q ≡ 1 (mod e). Thus,

jr · q
m − 1

q − 1
≡ jr ·m (mod e).

We then obtain that jr·m ≡ 0 (mod e), which implies that e|jr since gcd(e,m) = 1.
This is a contradiction to the choice of j, i.e., 0 < j ≤ l − 1. Therefore, αirC0 for
i = 0, 1, . . . , l − 1 are pairwise disjoint. The proof is then completed. �

Corollary 1. With the same notations as in Lemma 3.1, assume that h is
a d-homogeneous function on F∗

qm over Fq, i.e., for all a ∈ Fq and x ∈ F∗
qm ,

h(ax) = adh(x). Then we have
∣

∣{x ∈ D0 : h(x) = 0}
∣

∣ = l ·
∣

∣{x ∈ Ci : h(x) = 0}
∣

∣,

for each i = 0, 1, . . . , l− 1.

Proof. Let x0 ∈ C0 be a root of h(x) = 0, then for each 0 ≤ i < l, αirx0 ∈ Ci

is also a root of it, because

h(αirx0) = αirdh(x0) = 0.

Since by Lemma 3.1 D0 = ˙⋃l−1

i=0Ci = ˙⋃l−1

i=0α
irC0, all the solutions of h(x) = 0

in D0 are equally distributed into each of the l cosets Ci’s. Thus, we have
∣

∣{x ∈ D0 : h(x) = 0}| = l · |{x ∈ Ci : h(x) = 0}
∣

∣

for each i = 0, 1, . . . , l − 1. �
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Lemma 3.2. With the same notations as in Lemma 3.1, let u be a divisor of
q − 1 with gcd(u,m) = 1. Define

Na,i :=
∣

∣{x ∈ Ci : Tr(ax
u) = 0}

∣

∣,

then for each a ∈ F∗
qm and 0 ≤ i < l, we have

Na,i =
qm−1 − 1

l · r .

Proof. Since Tr(ax) is a 1-homogeneous function on F∗
qm over Fq for each

a ∈ F∗
qm , by Corollary 1, we have

∣

∣{x ∈ 〈θu〉 : Tr(ax) = 0}
∣

∣ =
qm−1 − 1

u
,

which implies that

∣

∣{0 ≤ j <
qm − 1

u
: Tr(aθuj) = 0}

∣

∣ =
qm−1 − 1

u
,

and further
∣

∣{x ∈ F∗
qm : Tr(axu) = 0}

∣

∣ = qm−1 − 1.

Since Tr(axu) is a u-homogeneous function on F∗
qm over Fq for each a ∈ F∗

qm ,
applying Corollary 1 again, we have

∣

∣{x ∈ D0 : Tr(axu) = 0}
∣

∣ =
qm−1 − 1

r
.

Thus,

(5) Na,i :=
∣

∣{x ∈ Ci : Tr(ax
u) = 0}

∣

∣ =
qm−1 − 1

l · r ,

for each a ∈ F∗
qm and 0 ≤ i < l, which completes the proof. �

Now we are ready to present a generic construction of ZDB functions with

parameters
(

qm−1
r , q, q

m−1−1
r

)

, where r is a divisor of q − 1 with gcd(r,m) = 1.

Theorem 3.3. Let e and u be two divisors of q−1 with gcd(e,m) = gcd(u,m) =

1 and e = l · r. Set D0 = 〈θr〉, C0 = 〈θe〉, and α = θ
qm−1

q−1 . Define the function
f : (Zn,+) → (Fq,+) by

f(t) := Tr(ρ(t)θrut),

where n = qm−1
r and ρ(t) is defined as

ρ(t) := di, if θrt ∈ Ci,

with Ci = αirC0 and di ∈ F∗
qm for 0 ≤ i < l . If the following two conditions

(i) {x ∈ C0 : xu = 1 and x 6= 1} = ∅;
(ii) dj/dk+j 6∈ Cuk for each k 6= 0 and 0 ≤ j < l, where the subscripts uk and

k + j are performed modulo l,

are satisfied, the function f(t) is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function.

Proof. By definition, we need to prove

N0(a) =
∣

∣{t ∈ Zn : f(t+ a)− f(t) = 0}
∣

∣ =
qm−1 − 1

r
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for each nonzero a ∈ Zn. To this end, without loss of generality, assume that
θra ∈ Ck for some 0 ≤ k < l. By Lemma 3.1, we then have

∣

∣{t ∈ Zn : f(t+ a)− f(t) = 0}
∣

∣

=
∣

∣{t ∈ Zn : Tr
(

(ρ(t+ a)θrau − ρ(t))θrut
)

= 0}
∣

∣

=

l−1
∑

j=0

∣

∣{x ∈ Cj : Tr ((dk+jθ
rau − dj)x

u) = 0}
∣

∣.

On one hand, if k = 0, i.e., θra ∈ C0, since {x ∈ C0 : xu = 1 and x 6= 1} = ∅,
we have djθ

rau − dj 6= 0 for each nonzero a ∈ Zn and each 0 ≤ j < l. On the other
hand, if k 6= 0, we have θrau ∈ Cuk, where uk 6≡ 0 mod l. Since dj/dk+j 6∈ Cuk

for 0 ≤ j < l, we also have dk+jθ
rau − dj 6= 0 for each nonzero a ∈ Zn and each

0 ≤ j < l. Thus, from Lemma 3.2, it follows that
∣

∣{t ∈ Zn : f(t+ a)− f(t) = 0}
∣

∣

=

l−1
∑

j=0

Ndk+jθrau−dj ,j

=
qm−1 − 1

r
.

The proof is then completed. �

In Theorem 3.3, we presented the ZDB function f from (Zn,+) onto (Fq,+).

Since D0
∼= (Zn,+) where n = qm−1

r , in the sequel sometimes we use the mul-
tiplicative group D0 instead of (Zn,+). We hope that this would not bring any
confusion.

Remark 3. The two sufficient conditions in Theorem 3.3 can be satisfied. It is
easily checked that the condition (i) is equivalent to that for all 1 ≤ j < qm−1

e , the
relation j · e ·u 6≡ 0 (mod qm − 1) holds, of which u = 1 is a simple example. Thus,
the condition (i) always holds by choosing suitable e, u and r. By Lemma 3.1, we
have

F∗
qm =

˙⋃r−1

i=0
αiD0 =

˙⋃lr−1

i=0
αiC0,

where α = θ
qm−1

q−1 . If dj ∈ αj1D0 and dk+j ∈ αj2D0 with 0 ≤ j1 6= j2 ≤ r − 1, the
condition (ii) is always satisfied. We now consider two extreme cases:

• suppose that di ∈ D0 for each 0 ≤ i < l, i.e., di ∈ α−sirC0 with 0 ≤ si < l.
Then the condition (ii) is equivalent to

−sj + sk+j 6≡ uk (mod l),

for all k 6= 0 and 0 ≤ j < l, which can be also written as sj − si 6≡ u(j− i)
(mod l), i.e.,

(sj − ju)− (si − iu) 6≡ 0 (mod l),

for all j 6= i and 0 ≤ i, j < l. Hence the condition (ii) can be expressed as

{si − iu (mod l) : 0 ≤ i < l} = {0, 1, · · · , l − 1},
and there are totally l!|C0|l different ρ(t)’s satisfying this condition.
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• suppose that l ≥ r. Let each of r − 1 different di’s belong to each of
r− 1 different cyclotomic classes Di’s. There are

(

l
r−1

)

ways to do this. If

dj , dk+j don’t belong to the same Di, the condition (ii) is always satisfied.

Thus, for these r−1 di’s, there are
(

l
r−1

)

|D0|r−1 possible choices. Now we
only need to consider the remaining l− r+1 di’s, which belong to the rest
one cyclotomic class D0 without loss of generality. With similar argument,
there are totally

(

l
r−1

)

(l − r + 1)!|C0|l−r+1|D0|r−1 different ρ(t)’s.

Thus, there are always exponentially many ρ(x)’s satisfying the condition (ii).

3.2. Two special cases. By Remark 3, the construction in Theorem 3.3 is
generic in the sense that we can choose different ρ(x), u, e and r to get many new
classes of ZDB functions. Now we give two special cases of the construction in
Theorem 3.3, which in fact extended the previously known constructions [5,6,30].

3.2.1. Special case I. Let q be an odd prime power, m be odd, e = 2, and
u = r = 1. We have the following construction of ZDB functions.

Corollary 2. Let q be an odd prime power and m be an odd integer. Define
the function f : F∗

qm → Fq as

f(x) := Tr(ρ(x)x),

where ρ(x) is defined as

ρ(x) :=

{

d0, if x is a square in F∗
qm ,

d1, if x is a nonsquare in F∗
qm ,

with d0, d1 ∈ F∗
qm . If d0d1 is a square, then the function f is a (qm−1, q, qm−1−1)-

ZDB function. Furthermore, if qm is large enough, when d0 6= ±d1, we can always
choose suitable d0 and d1 such that for each square δ ∈ Fqm \ {0, 1}, Nb(δ) = qm−1,
and for some nonsquare δ ∈ Fqm \ {0, 1}, Nb(δ) 6= qm−1 for all b ∈ F∗

q, i.e., the
function f(x) is not difference balanced, where

Nb(δ) :=
∣

∣{x ∈ F∗
qm : f(δx)− f(x) = b}

∣

∣.

The first argument of Corollary 2 directly follows from Theorem 3.3. To prove
the second one, we need some results on quadratic forms over Fq. A quadratic
form in m indeterminates over Fq is a homogeneous polynomial in Fq[x1, . . . , xm]
of degree 2 or the zero polynomial. If q is odd, any quadratic form f over Fq can
be represented as

f(x1, . . . , xm) =

m
∑

i,j=1

aijxixj , with aij = aji.

The matrix A = (aij)m×m associated with f is called the coefficient matrix of f .
Lemma 3.4. [21, Theorem 6.27] Let f be a non-degenerate quadratic form over

Fq, q odd, in an odd number m of indeterminates. Then for b ∈ Fq, the number of
solutions of the equation f(x1, . . . , xm) = b in Fm

q is

qm−1 + q(m−1)/2η
(

(−1)(m−1)/2b∆
)

,

where η is the quadratic character of Fq, ∆ = det(A) and A is the coefficient matrix
of f .
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Lemma 3.5. [3] [21, Exercise 6.72] Let a1, a2, b1, b2 ∈ F∗
q with a1b2 6= a2b1

where q is a prime power and let n, n1, n2 ∈ N. The number N of common solutions
(x1, x2, x3) ∈ F3

q of the equations

{

xn1

1 = a1 + b1x
n
3

xn2

2 = a2 + b2x
n
3

satisfies |N − q| ≤ Cq1/2 for some constant C independent of q.

Lemma 3.6. Let q be an odd prime power and m be an odd integer. For each
δ ∈ F∗

qm , the equation Tr(δx2) = 0 has exactly qm−1 solutions in Fqm , and the

equation Tr(δx2) = b, with b ∈ F∗
q, has exactly qm−1 ± q(m−1)/2 solutions depending

on the quadratic characters of δ and b. Furthermore, if the equation Tr(δx2) = b,
for some δ ∈ F∗

qm and b ∈ F∗
q, has exactly qm−1 + q(m−1)/2 solutions, then the

equation Tr(aδx2) = b has exactly qm−1 − q(m−1)/2 solutions, where a ∈ F∗
q is a

nonsquare, and vice versa.

Proof. Note that the bilinear form

B(x, y) = Tr(δ(x+ y)2)− Tr(δx2)− Tr(δy2) = Tr(2δxy)

is non-degenerate. Therefore, f(x) = Tr(δx2) could be viewed as a non-degenerate
quadratic form in m indeterminates over Fq. Since a is a nonsquare in F∗

q, we have

Tr(aδx2) = b is equivalent to Tr(δx2) = ba−1. Note that both q and m are odd.
Then from Lemma 3.4, the conclusion follows. �

Now we present the proof of the second assertion of Corollary 2.

Proof of Corollary 2. By Theorem 3.3, N0(δ) = qm−1 − 1 for each δ ∈
Fqm \{0, 1} if d0d1 is square. We now discuss the possible values of Nb(δ) for b ∈ F∗

q .
If δ is a square, we have ρ(δx) = ρ(x). Since d0d1 is a square, there are two

cases. On one hand, if both d0 and d1 are squares in F∗
qm , without loss of generality,

suppose that d0 = u2 and d1 = v2 with u, v ∈ F∗
qm , we then have

f(δx)− f(x)

= Tr((δ − 1)ρ(x)x)

=

{

Tr((δ − 1)d0y
2), if x = y2,

aTr((δ − 1)d1y
2), if x = ay2,

=

{

Tr((δ − 1)u2y2), if x = y2,
aTr((δ − 1)v2y2), if x = ay2,

=

{

Tr((δ − 1)(uy)2), if x = y2,
aTr((δ − 1)(vy)2), if x = ay2,

where a ∈ F∗
q is a nonsquare. It then follows from Lemma 3.6 that

Nb(δ) =
qm−1 + q(m−1)/2

2
+

q(m−1) − q(m−1)/2

2
= qm−1.

On the other hand, if d0 and d1 are both nonsquares, the argument is similar and
we also obtain

Nb(δ) = qm−1.
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If δ is a nonsquare, we have

f(δx)− f(x)

= Tr(δxρ(δx) − xρ(x))

=

{

Tr((δd1 − d0)y
2), if x = y2,

aTr((δd0 − d1)y
2), if x = ay2,

(6)

where a ∈ F∗
q is a nonsquare. By Lemma 3.6 and (6), we have Nb(δ) = qm−1 if and

only if

η(δd1 − d0) = η(δd0 − d1),

where η is the quadratic character of Fqm . This means that both of the following
two systems of equations

(7)

{

az2d1 − d0 = x2

az2d0 − d1 = ay2

and

(8)

{

az2d1 − d0 = ax2

az2d0 − d1 = y2

have no solution, where a is a nonsquare in F∗
q . The system of equations (7) is

equivalent to
{

x2 = −d0 + ad1z
2

y2 = −d1/a+ d0z
2.

Then by Lemma 3.5, the number N1 of solutions of (7) satisfies

|N1 − qm| ≤ Cqm/2,

for some constant C independent of q when d0 6= ±d1. Thus, for a large enough
qm, we can always choose suitable d0 and d1 such that N1 6= 0. Then we have
Nb(δ) 6= qm−1 for each b ∈ F∗

q , which completes the proof. �

Remark 4. a) The trace function can be viewed as a subcase of the
construction of ZDB functions in Corollary 2 (if d0 = d1, also see [30]). We
note that this construction is new since for large qm, we can always choose
suitable d0 and d1 such that the ZDB functions are not difference balanced,
while all previously known ZDB functions with the same parameters are
difference balanced.

b) Since every ZDB function f(x) constructed in Corollary 2 has the param-
eters (qm − 1, q, qm−1 − 1), by Lemma 2.2, there are q − 1 preimage sets
of size qm−1 and the rest one preimage set of size qm−1 − 1.

Example 1. Let q = 3, m = 3. Define d0 := 1, d1 := θ2 where θ is a root of
the irreducible polynomial x3+2x+1 ∈ Fq[x]. Then for the function f : F∗

qm → Fq,
defined as in Corollary 2, N0(δ) = 9 for each δ ∈ F33 \ {0, 1}, and the distribution
of Nb(δ) for all b 6= 0 is:

Nb(δ) 6 9 12
multiplicity 4 17 4
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3.2.2. Special case II. Let q be a prime power and u = 1. We have the second
special case of Theorem 3.3 as follows.

Corollary 3. Let q be a prime power, e be a divisor of q−1 with gcd(e,m) = 1

and e = l · r. Let D0 = 〈θr〉, C0 = 〈θe〉, and α = θ
qm−1

q−1 . Define the function
f : D0 → Fq by

f(x) := Tr(ρ(x)x),

and ρ(x) is defined as

ρ(x) := di, if x ∈ Ci,

where Ci = αirC0 and di ∈ F∗
qm for 0 ≤ i ≤ l − 1. If dj/dk+j 6∈ Ck for each k 6= 0

and 0 ≤ j < l, then the function f(x) is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function.

Proof. The conclusion follows from Theorem 3.3. �

Remark 5. The construction in [6, Theorem 9] can be viewed as a subcase of
the construction of ZDB functions given in Corollary 3 (if d0 = d1 = · · · = dl−1, see
also [5, Proposition 7]).

We give the following example to compare our construction in Corollary 3 with
the construction in [6, Theorem 9].

Example 2. Let q = 32, m = 3, l = r = 2, e = 4, and θ be a root of the
irreducible polynomial x6 + 2x4 + x2 + 2x+ 2 ∈ F3[x]. Define ρ(x) as

ρ(x) :=

{

θ4, if x ∈ 〈θ4〉,
θ8, if x ∈ θ2〈θ4〉.

Then for the function f : D0 = 〈θ2〉 → Fq, defined in Corollary 3, N0(δ) = 40, and
for b 6= 0, Nb(δ) has exactly three possible values: 36, 45, and 54; in comparison,
for the function f : D0 → Fq defined in [6, Theorem 9], N0(δ) = 40, and for b 6= 0,
Nb(δ) has only two possible values: 36 and 45.

4. New sets of ZDB functions

The construction of ZDB functions in Theorem 3.3 can generate many new
single ZDB functions. In this section, we show that it can be extended in a natural
way to construct a set of ZDB functions in which any two distinct ZDB functions
are also related uniformly. Furthermore, we present some constructions of ZDB
functions with flexible parameters.

4.1. The construction.

Theorem 4.1. With the same notations as in Theorem 3.3, define the set

S := {fi : 0 ≤ i < r}, and each fi : (Zn,+) → (Fq,+) where n = qm−1
r as

fi(t) := Tr(αiρ(t)θrut),

where ρ(t) is defined as

ρ(t) = di, if θrt ∈ Ci,

with Ci = αirC0 and di ∈ D0 for 0 ≤ i < l . If the two following conditions

(i) {x ∈ C0 : xu = 1 and x 6= 1} = ∅;
(ii) dj/dk+j 6∈ Cuk for each k 6= 0 and 0 ≤ j < l, where the subscripts uk and

k + j are performed modulo l,
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are satisfied, then each function fi(t) ∈ S is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function,

and any two distinct functions fi1(t), fi2(t) ∈ S satisfy

∣

∣{t ∈ Zn : fi1(t+ a)− fi2(t) = 0}
∣

∣ =
qm−1 − 1

r
,

for 0 ≤ i1 6= i2 < r and every a ∈ Zn.

Proof. By definition, fi(t) = αiTr(ρ(t)θrut). Then from Theorem 3.3 it fol-

lows that each fi(t) ∈ S is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function if the conditions (i)

and (ii) are satisfied.
For any two distinct functions fi1(t), fi2 (t) ∈ S, without loss of generality,

assume that θra ∈ Ck for some 0 ≤ k < l. We then have
∣

∣{t ∈ Zn : fi1(t+ a)− fi2(t) = 0}
∣

∣

=
∣

∣{t ∈ Zn : αi1Tr
(

(ρ(t+ a)θrau − ρ(t)αi2−i1)θrut
)

= 0}
∣

∣

=

l−1
∑

j=0

∣

∣{x ∈ Cj : Tr
(

(dk+jθ
rau − djα

i2−i1)xu
)

= 0}
∣

∣.

If k = 0, i.e., θra ∈ C0, suppose that djθ
rau− djα

i2−i1 = 0 for some 0 ≤ i1 6= i2 < r

and α = θ
qm−1

q−1 , which means there exists some 0 ≤ c < qm−1
e , such that

(9) c · e · u ≡ qm − 1

q − 1
· i (mod qm − 1),

for some i = ±1,±2, . . . ,±(r − 1). Since gcd(e,m) = gcd(u,m) = 1, both e and u

are co-prime to qm−1
q−1 . Thus, c in (9) must possess a divisor qm−1

q−1 . The relation (9)

is then equivalent to that there exists a 0 ≤ c′ < q−1
e , such that

(10) e · u · c′ − i ≡ 0 (mod q − 1),

for some i = ±1,±2, . . . ,±(r − 1). However, since e ∤ i, (10) cannot hold anyway.
Therefore, djθ

rau − djα
i2−i1 6= 0 for θra ∈ C0 and any 0 ≤ i1 6= i2 < r. Then by

Lemma 3.2, we have

∣

∣{t ∈ Zn : fi1(t+ a)− fi2(t) = 0}
∣

∣ =
qm−1 − 1

r
,

for θra ∈ C0 and any 0 ≤ i1 6= i2 < r.
If k 6= 0, since di ∈ D0 for each 0 ≤ i < l, by Lemma 3.1, we have dk+jθ

rau −
djα

i2−i1 6= 0 for each θra ∈ Ck and any 0 ≤ i1 6= i2 < r. By Lemma 3.2, we also
have

∣

∣{t ∈ Zn : fi1(t+ a)− fi2(t) = 0}
∣

∣ =
qm−1 − 1

r
,

for θra ∈ Ck with 0 < k < l and any 0 ≤ i1 6= i2 < r. The proof is then
completed. �

Remark 6. According to Remark 3, the two sufficient conditions in Theo-
rem 4.1 can be satisfied easily, and there are exponentially many ρ(t)’s satisfying
the conditions.

The following construction of sets of ZDB functions is more general.
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Corollary 4. Let {g0, g1, . . . , gr−1} be a complete set of representatives for
the cyclotomic classes of order r in Fqm . Define the set S := {fi : 0 ≤ i < r}, and
each fi : (Zn,+) → (Fq,+) where n = qm−1

r as

fi(t) := Tr(giρ(t)θ
rut),

where ρ(t) is defined as

ρ(t) = di, if θrt ∈ Ci,

with Ci = αirC0, α = θ
qm−1

q−1 , and di ∈ D0 for 0 ≤ i < l . If the following two
conditions

(i) {x ∈ C0 : xu = 1 and x 6= 1} = ∅;
(ii) dj/dk+j 6∈ Cuk for each k 6= 0 and 0 ≤ j < l, where the subscripts uk and

k + j are performed modulo l,

are satisfied, then each function fi(t) ∈ S is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function,

and any two distinct functions fi1(t), fi2(t) ∈ S satisfy

∣

∣{t ∈ Zn : fi1(t+ a)− fi2(t) = 0}
∣

∣ =
qm−1 − 1

r
,

for each 0 ≤ i1 6= i2 < r and every a ∈ Zn.

Proof. Without loss of generality, suppose that gi ∈ Di. By Lemma 3.1, we
have gi = αig′i where g′i ∈ D0. The proof is then straightforward from that of
Theorem 4.1. �

Remark 7. The construction in Corollary 4 can be viewed as a generalization
of the existing constructions in [7,11,15] (if d0 = d1 = · · · = dl−1). Furthermore,
Theorem 5.7 in Section 5 indicates that the construction in Theorem 4.1 can really
generate many new classes of sets of ZDB functions.

To illustrate the generic construction in Corollary 4, we give the following ex-
ample.

Example 3. Let q = 32, m = 3, l = r = 2, e = 4, u = 1, and θ be a root of the
irreducible polynomial x6 + 2x4 + x2 + 2x+ 2 ∈ F3[x]. Define ρ(t) as

ρ(t) :=

{

θ4, if rt ≡ 0 (mod e),
θ8, if rt ≡ r (mod e).

Then the set of ZDB functions is defined as

S := {f0, f1},
where f0(t) := Tr (ρ(t)θrt), and f1(t) := Tr

(

θ91ρ(t)θrt
)

. The fi(t) is a (364, 9, 40)-
ZDB function for i = 1, 2, and

∣

∣{t ∈ Z364 : f0(t+ a)− f1(t) = 0}
∣

∣ = 40,

for each a ∈ Z364.

4.2. ZDB functions with flexible parameters. In [30], difference balanced
functions were used to construct ZDB functions with flexible parameters. It turns
out that the functions given in Theorem 3.3 could also be employed to construct

ZDB functions with parameters
(

qm−1
r , qv, qm−v−1

r

)

, and further can generate a set

of ZDB functions with such parameters.
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Theorem 4.2. With the same notations as in Theorem 3.3, suppose that f(t) =

Tr(ρ(t)θrut) is a
(

qm−1
r , q, qm−1−1

r

)

-ZDB function from (Zn,+) onto (Fq,+) defined

in Theorem 3.3, where n = qm−1
r . Let a0, a1, . . . , av−1 be v elements in F∗

qm , which
are linearly independent over Fq. Define the function fv : (Zn,+) → (Fq,+)v as

fv(t) :=
(

Tr(a0ρ(t)θ
rut),Tr(a1ρ(t)θ

rut), . . . ,Tr(av−1ρ(t)θ
rut)

)

,

then the function fv(t) is a ZDB function with parameters
(

qm−1
r , qv, qm−v−1

r

)

.

Similar to the proof of Theorem 3.3, using the result on the number of solutions
of linear systems, one can easily give a proof for Theorem 4.2.

Corollary 5. Suppose that S = {f0, f1, . . . , fr−1} is the set of ZDB functions
constructed in Corollary 4, i.e., fi(t) = Tr(giρ(t)θ

rut), where {g0, g1, . . . , gr−1} is
a complete set of representatives for the cyclotomic classes of order r in Fqm . Let
a0, a1, . . . , av−1 be v elements in F∗

qm , which are linearly independent over Fq. De-
fine the set S ′ of ZDB functions as S ′ := {f ′

0, f
′
1, . . . , f

′
r−1}, where f ′

i : (Zn,+) →
(Fq,+)v is

f ′
i(t) :=

(

Tr(a0giρ(t)θ
rut),Tr(a1giρ(t)θ

rut), . . . ,Tr(av−1giρ(t)θ
rut)

)

.

Then the set S ′ is a set of r ZDB functions with parameters
(

qm−1
r , qv, qm−v−1

r

)

,

and any two distinct functions f ′
i1
(t), f ′

i2
(t) ∈ S ′ satisfy

∣

∣{t ∈ Zn : f ′
i1(t+ a)− f ′

i2(t) = 0}
∣

∣ =
qm−v − 1

r
,

for 0 ≤ i1 6= i2 < r and every a ∈ Zn.

With a set of ZDB functions, using the idea in [30, Theorem 6], we can give a
new construction of ZDB functions with more flexible parameters.

Theorem 4.3. Suppose that f ′
0, f

′
1, . . . , f

′
k−1 are any k functions in the set of

ZDB functions constructed in Corollary 5 with 1 ≤ k ≤ r and gcd(k, n) = 1 where

n = qm−1
r . Define the function f : (Zkn,+) → (Fv

q ,+) as f(t) := f ′
i(j), where

t = jk + i with j ∈ Zn and i ∈ Zk. Then f(t) is a
(

k qm−1
r , qv, k qm−v−1

r

)

-ZDB

function.

Proof. For each nonzero a ∈ Zkn, since gcd(k, n) = 1, we may write a =
a1k + a2 where (a1, a2) ∈ Zn × Zk and a1 6= 0 or a2 6= 0. Note that

∣

∣{t ∈ Zkn : f(t+ a)− f(t) = 0}
∣

∣

=
∣

∣{(j, i) ∈ Zn × Zk : f(jk + i+ a1k + a2)− f(jk + i) = 0}
∣

∣.

If a2 = 0 and a1 6= 0, we have
∣

∣{t ∈ Zkn : f(t+ a)− f(t) = 0}
∣

∣

=

k−1
∑

i=0

∣

∣{j ∈ Zn : f ′
i(j + a1)− f ′

i(j) = 0}
∣

∣

= k
qm−v − 1

r
.
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If a2 6= 0, we have
∣

∣{t ∈ Zkn : f(t+ a)− f(t) = 0}
∣

∣

=

k−1−a2
∑

i=0

∣

∣{j ∈ Zn : f ′
i+a2

(j + a1)− f ′
i(j) = 0}

∣

∣

+

k−1
∑

i=k−a2

∣

∣{j ∈ Zn : f ′
i+a2−k(j + a1 + 1)− f ′

i(j) = 0}
∣

∣

= k
qm−v − 1

r
.

The proof is then completed. �

5. Two applications of sets of ZDB functions

In this section, we present two applications of sets of ZDB functions: one is
optimal sets of frequency hopping (FH) sequences, and the other is optimal constant
weight codes. In the literature, ZDB functions or corresponding PDFs have been
used to construct optimal frequency-hopping sequences [7,11,13–15].

5.1. Optimal sets of frequency hopping sequences. In frequency hopping
(FH) CDMA communication systems, a transmitter changes its carrier frequency at
regular intervals as prescribed by an FH sequence [27]. Let B = {b0, b1, . . . , bℓ−1}
be a set of available frequencies (also called alphabet) and (s0, s1, . . . , sn−1) be an
FH sequence of length n over B, where si ∈ B. In FH CDMA communication
systems, long messages are transmitted by repeating the FH sequence as often as
necessary. For any two FH sequences X,Y of length n over B, their Hamming
correlation HX,Y is defined as

HX,Y (t) :=

n−1
∑

i=0

h[xi, yi+t], 0 ≤ t < n

where h[a, b] = 1 if a = b, and 0 otherwise, and all operations among the position
indices are performed modulo n. To maximize the throughput, the Hamming corre-
lation is required as small as possible. For one single FH sequence, in 1974, Lempel
and Greenberger developed the following lower bound [18].

Lemma 5.1. For every FH sequence X of length n over an alphabet of size ℓ,
define

H(X) := max
1≤t<n

{HX,X(t)},
then

(11) H(X) ≥
⌈

(n− ǫ)(n+ ǫ− ℓ)

ℓ(n− 1)

⌉

,

where ǫ is the least nonnegative residue of n modulo ℓ.

Let (n, ℓ, λ) denote an FH sequenceX of length n over an alphabet of size ℓ with
λ = H(X). In Section 2, the lower bound on λ of ZDB functions in Lemma 2.2, in
fact coincides with the lower bound of (11). A set F of FH sequences is call optimal,
if one of the following bounds on M(F) is met, where

M(F) := max

{

max
X∈F

H(X), max
X,Y ∈F ,X 6=Y

H(X,Y )

}

,
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and H(X,Y ) := max0≤t<n{HX,Y (t)}. By convention, let (n,N, λ; ℓ) denote a set
of N FH sequences of length n over an alphabet of size ℓ, where λ = M(F).

Lemma 5.2. [25,26] Let F be a set of N sequences of length n over an alphabet
size of ℓ. Define I := ⌊nN/ℓ⌋. Then

M(F) ≥
⌈

(nN − ℓ)n

(nN − 1)ℓ

⌉

and

M(F) ≥
⌈

2InN − (I + 1)Iℓ

(nN − 1)N

⌉

.

By the definition of sets of ZDB functions, we have the following bridge between
sets of ZDB functions and sets of FH sequences.

Lemma 5.3. Suppose that S = {f0, f1, . . . , fN−1} is a set of N (n, ℓ, λ)-ZDB
functions from (Zn,+) onto an abelian group (B,+) of order ℓ. Define the sequence
set F := {s0, s1, . . . , sN−1}, where si(t) := fi(t) for 0 ≤ i < N and 0 ≤ t < n. Then
F is an (n,N, λ; ℓ) set of FH sequences.

Using our construction of sets of ZDB functions, we can construct optimal sets
of FH sequences, of which each FH sequence is also optimal with respect to the
bound of (11).

Theorem 5.4. Suppose that S = {f0, f1, . . . , fr−1} is the set of ZDB functions
constructed in Corollary 5. Define the set of sequences

F := {s0, s1, . . . , sr−1},
where si(t) := fi(t) for 0 ≤ i < r and 0 ≤ t < qm−1

r . Then F is an optimal set

of FH sequences with parameters
(

qm−1
r , r, qm−v−1

r ; qv
)

. Furthermore, each si for

0 ≤ i < r is an optimal
(

qm−1
r , qv, qm−v−1

r

)

FH sequence.

In applications, FH sequences over a finite field are required to have large linear
complexity [17]. For a sequence s = (st) of period N over a finite field F, the linear
complexity LC(s) is defined to be the least positive integer L such that there exist
constants c0 = 1, c1, . . . , cL ∈ F such that

−si = c1si−1 + c2si−2 + · · ·+ cLsi−L

for all i ≥ L. A polynomial of the form

M(x) = c0 + c1x+ · · ·+ cLx
L ∈ F[x],

is called the minimal polynomial of the sequence s. The following lemma is useful
to determine the minimal polynomial and the linear complexity.

Lemma 5.5. [1] Every sequence s = (st) over Fq of period qm− 1 has a unique
expansion of the form

st =

qm−2
∑

i=0

ciβ
it, for all 0 ≤ t ≤ qm − 2,

where β is a primitive element of the extension field Fqm and ci ∈ Fqm for 0 ≤ i ≤
qm − 2. Define the index set I := {i : ci 6= 0, 0 ≤ i ≤ qm − 2}, then the minimal
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polynomial M(x) of the sequence s is

M(x) =
∏

i∈I

(x− βi),

and the linear complexity of s is the cardinality |I| of the set I.

To determine the linear complexity of the FH sequences generated by Theo-
rem 5.4, we also need the following lemma.

Lemma 5.6. [23] For a positive divisor e of q − 1 and d0, d1, . . . , de−1 ∈ Fq,
the cyclotomic mapping polynomial fd0,d1,...,de−1

= ρ(x)xu is given by

fd0,d1,...,de−1
= (ae−1x

(e−1)(q−1)/e + · · ·+ a1x
(q−1)/e + a0)x

u

with

ai = e−1
e−1
∑

j=0

djα
−ij(q−1)/e, i = 0, 1, . . . , e− 1,

where e−1 denotes the inverse of e modulo the characteristic of Fq, and α is a
primitive element of Fq.

Now we are able to determine the linear complexity of the FH sequences in
Theorem 5.4.

Theorem 5.7. Let F = {s0, s1, . . . , sr−1} be the set of FH sequences constructed
in Theorem 5.4 with v = 1. Then the linear complexity of each sequence si ∈ F
satisfies

m ≤ LC(si) ≤ lm,

and both of the two equalities can be achieved by choosing suitable ρ(t).

Proof. By definition, si ∈ F is defined as

si(t) := Tr(αiρ(t)θrut),

where α = θ
qm−1

q−1 . By Lemma 5.6, the cyclotomic mapping polynomial can be
written as

ρ(t) = al−1θ
(l−1)(qm−1)t/l + · · ·+ a1θ

(qm−1)t/l + a0

with

ai = l−1
l−1
∑

j=0

djθ
−ij(qm−1)/l,

where l−1 denotes the inverse of lmodulo the characteristic of Fq, and θ is a primitive
element of Fqm . Thus, the sequence si can be written as

si(t) = αiTr
(

ρ(t)θrut
)

= αiTr





l−1
∑

j=0

ajθ
(qm−1)jt/lθrut





= αi
m−1
∑

k=0

l−1
∑

j=0

aq
k

j θq
k(j(qm−1)/l+ru)t.(12)

Suppose that there exist 0 ≤ j1, j2 ≤ l − 1 and 0 ≤ k1, k2 ≤ m− 1, such that

qk1(j1(q
m − 1)/l+ ru) ≡ qk2(j2(q

m − 1)/l+ ru) (mod qm − 1).
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We then have

(13)
qm − 1

l
qk2(qk1−k2j1 − j2) + ruqk2(qk1−k2 − 1) ≡ 0 (mod qm − 1).

It follows that
qm − 1

l

∣

∣ruqk2(qk1−k2 − 1),

which holds if and only if k1 = k2 since gcd(e,m) = gcd(u,m) = 1 and e = l · r.
Back to (13), we obtain j1 = j2. Hence, all the exponents of θ in (12) are pairwise
distinct. Then by Lemma 5.5, we have

LC(si) = m · |I|,
where I = {ai 6= 0 : 0 ≤ i < l} and |I| ≤ l. Recall that

ai = l−1
l−1
∑

j=0

djθ
−ij(qm−1)/l.

It is easily seen that |I| = 1 if d0 = d1 = · · · = dl−1. We now argue that ai 6= 0 for
each 0 ≤ i < l by choosing suitable ρ(t) and u. Specifically, let u = 1 and dj = θrj

for 0 ≤ j < l. It is then checked that the two conditions in Theorem 4.1 are satisfied,
and ai 6= 0 for each 0 ≤ i < l. With such ρ(t) and u, we have LC(si) = lm for each
0 ≤ i < r. The proof is then completed. �

Remark 8. If v = 1, the construction in Theorem 5.4 generates optimal sets
of FH sequences with the same parameters as [15, Theorem 4.7] (see also [7,11]).
In [29], it was determined that the linear complexity of FH sequences generated by
[15, Theorem 4.7] is m. Then by comparing the linear complexity of the generated
FH sequences, Theorem 5.7 indicates that Theorem 5.4 can generate new optimal
sets of FH sequences when |I| > 1.

5.2. Optimal constant weight codes. An (n,N, d, w)ℓ constant weight code
is a code over an abelian group {b0, b1, . . . , bℓ−1} with length n, sizeN , and minimum
distance d such that the Hamming weight of each codeword is the constant w. Let
Aℓ(n, d, w) denote the maximum size of an (n,M, d, w)ℓ constant weight code. An
(n,M, d, w)ℓ constant weight code is called optimal if the following bound is met.

Lemma 5.8. [12] If nd− 2nw + ℓ
ℓ−1w

2 > 0, then

Aℓ(n, d, w) ≤
nd

nd− 2nw + ℓ
ℓ−1w

2
.

Recently, Zhou et al. presented a method to construct constant weight codes
from a set of ZDB functions [30]. Using this method, we give the following con-
struction of optimal constant weight codes.

Theorem 5.9. Let S be the set of ZDB functions constructed in Corollary 5.
For each fi ∈ S with 0 ≤ i < r, define a code Ci as

Ci :=
{

cij = (fi(t0 + tj), . . . , fi(tn−1 + tj)) : tj ∈ Zn

}

.

Then the code C :=
⋃r−1

i=0 Ci is an optimal constant weight code over Fv
q with param-

eters
(

qm − 1

r
, qm − 1,

qm − qm−v

r
,
qm − qm−v

r

)

qv
.
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6. Concluding remarks

In this paper, we summarized two results to characterize zero-difference bal-
anced (ZDB) functions. As the main contribution, we presented a generic construc-
tion of single ZDB functions. Based on this construction, we further gave a generic
construction of sets of ZDB functions. We also extended these two results to con-
struct new ZDB functions with flexible parameters. As applications of sets of ZDB
functions, we constructed optimal sets of FH sequences, and also optimal constant
weight codes. Furthermore, by determining the linear complexity, we argued that
our construct can generate many new optimal sets of FH sequences.

For the ZDB functions constructed in Theorem 3.3, it seems hard to determine
the sizes of the preimage sets explicitly. The sizes of the preimage sets are also
important parameters, e.g., they constitute the parameter K in the corresponding
partitioned difference family. It would also be nice if the linear complexity of FH
sequences generated by Theorem 5.4 could be determined explicitly.
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