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Québec, Canada

{alexander.garver,patriasr}@lacim.ca

Submitted: Jul 9, 2018; Accepted: Jul 25, 2019; Published: Aug 3, 2019

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

R. Sulzgruber’s rim hook insertion and the Hillman–Grassl correspondence are
two distinct bijections between the reverse plane partitions of a fixed partition
shape and multisets of rim-hooks of the same partition shape. It is known that
Hillman–Grassl may be equivalently defined using the Robinson–Schensted–Knuth
correspondence, and we show the analogous result for Sulzgruber’s insertion. We
refer to our description of Sulzgruber’s insertion as diagonal RSK. As a consequence
of this equivalence, we show that Sulzgruber’s map from multisets of rim hooks to
reverse plane partitions can be expressed in terms of Greene–Kleitman invariants.

Mathematics Subject Classifications: 05E99, 05A19

1 Introduction

Reverse plane partitions are prominent combinatorial objects with connections to areas
like symmetric functions and representation theory (see for example [9]). A generating
function for reverse plane partitions was discovered by Stanley. Let h(u) denote the hook
length of the cell u in partition λ and |π| denote the sum of the entries in reverse plane
partition π.

Theorem 1. [9] The generating function for reverse plane partitions of shape λ with
respect to the sum of its entries is∑

π

q|π| =
∏
u∈λ

1

1− qh(u)
.
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The first bijective proof of this generating function was found by Hillman and Grassl
in [5]. The authors give a bijection between nonnegative integer arrays of shape λ—
representing multisets of rim hooks of λ—and reverse plane partitions of λ, which is
now known as the Hillman–Grassl correspondence. This correspondence has since been
well studied, for example by Gansner in [2] and by Morales, Pak, and Panova in [7]. In
particular, Gansner relates Hillman–Grassl to the Robinson–Schensted–Knuth (RSK) cor-
respondence and shows that the correspondence has the same Greene–Kleitman invariants
as RSK.

Recently, Sulzgruber defined a new bijection between multisets of rim hooks of λ and
reverse plane partitions of λ that takes the form of a rim hook insertion algorithm, which
we call Sulzgruber insertion [11]. It is easy to check that Sulzgruber insertion is distinct
from Hillman–Grassl, and so his correspondence gives an alternative bijective proof of
Theorem 1.

In this paper, we explicitly phrase Sulzgruber insertion in terms of RSK insertion
with the goal of proving that Sulzgruber insertion can be expressed in terms of Greene–
Kleitman invariants (see Theorem 23). Each diagonal of the reverse plane partition asso-
ciated to a multiset of rim hooks encodes the Greene–Kleitman partition associated to a
certain poset on a subset of the rim hooks–namely, the rim hooks whose support intersects
the given diagonal. This idea is relevant to future work of the authors with Hugh Thomas
that relates reverse plane partitions to the theory of quiver representations [3].

We remark that since announcing our paper on the arXiv, Sulzgruber has proven in
[12, Theorem 7.4] that his insertion is equivalent to a bijection of Pak [8]. Thus a corollary
of our work together with this result of Sulzgruber is the fact that Pak’s procedure has
the same Greene–Kleitman invariant, which refines Theorem 6 of [8].

The paper proceeds as follows. In Section 2, we set up notation and review the nec-
essary combinatorial background related to tableaux, the RSK correspondence, Knuth
equivalence, and the Hillman–Grassl correspondence. Section 3 defines Sulzgruber inser-
tion as well as its inverse. In Section 4, we define a rim hook insertion algorithm we
call diagonal RSK, and we show that diagonal RSK is equivalent to Sulzgruber insertion.
Section 5 reminds the reader how to phrase Hillman–Grassl in terms of RSK in the same
spirit as our diagonal RSK and states the corresponding Greene–Kleitman invariants.
We conclude by showing that Sulzgruber insertion has a Greene–Kleitman invariant in
Section 6.

2 Preliminaries

2.1 Reverse plane partitions and rim hooks

A partition is a finite, weakly decreasing sequence of positive integers λ = (λ1 > · · · > λk).
Let |λ| = λ1 + · · ·+ λk. To each partition, we associate a Young diagram: a left-justified
array of boxes where row sizes weakly decrease from top to bottom. Throughout this
paper, we refer to both the partition and its Young diagram as λ. We count the rows of a
Young diagram from top to bottom and the columns from left to right, and we refer to a
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box in a Young diagram by its row and column index. We let λ′ = (λ′1, . . . , λ
′
k) denote the

conjugate or the transpose of partition λ—the partition obtained by swapping the roles
of the rows and columns in λ. Thus λ′i is the size of the ith column of λ.

We impose a partial ordering on the boxes of a Young diagram by defining (i, j) �
(i′, j′) if i 6 i′ and j 6 j′; in other words, (i, j) � (i′, j′) if (i, j) is weakly northwest of
(i′, j′). We say that a box (i, j) ∈ λ is in diagonal d of λ if d = j − i. With respect to
the partial order ≺, each diagonal d of λ has a unique maximal element rd = (i, j), the
southeasternmost entry in the diagonal. We refer to rd as a border box of λ.

A rim hook of a Young diagram λ is a connected strip of border boxes in λ such
that deleting these boxes from λ yields a Young diagram. To each box (i, j) of λ, we
associate the unique rim hook of λ that has its southwesternmost box in column j and
northeasternmost box in row i. We denote the rim hook associated to box (i, j) of fixed
shape λ by h(i,j).

A reverse plane partition of shape λ is an order-preserving map λ → {0, 1, 2, . . .},
i.e., a filling of the boxes of a Young diagram with nonnegative integers such that entries
weakly increase across rows and down columns. An N-tableau is a filling of shape λ with
nonnegative integers. A semistandard Young tableau of shape λ is a filling of the boxes of
λ with positive integers such that entries weakly increase across rows and strictly increase
down columns. A standard Young tableau is a semistandard Young tableau where the
entries 1, 2, . . . , |λ| each appear exactly once. See Figure 1.

.

0 0 1 1 2
0 1 1
3 3 5
3

1 0 0 2 1
0 5 0
7 0 0
2

1 1 2 2 4
2 3 4
4 5 5
6

Figure 1: From left to right, we have the rim hook h(1,2) inside shape λ = (5, 3, 3, 1), a
reverse plane partition of shape λ, an N-tableau of shape λ, and a semistandard Young
tableau of shape λ.

2.2 RSK insertion

There is a well-known bijective correspondence between words in the alphabet of posi-
tive integers and pairs consisting of a semistandard Young tableau and a standard Young
tableau of the same shape called the Robinson–Schensted–Knuth (RSK) correspondence.
We briefly review the correspondence here and refer the reader to [10] for more informa-
tion.

Given a word w = w1w2 · · ·wr in the positive integers, the RSK correspondence maps
w to a pair of tableaux via a row insertion algorithm consisting of inserting a positive
integer into a tableau. The algorithm for inserting positive integer k into a row of a
semistandard tableau is as follows. If k is greater than or equal to all entries in the row,
add a box labeled k to the end of the row. Otherwise, find the first y in the row with
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y > k. Replace y with k in this box, and proceed to insert y into the next row. To
insert k into semistandard tableau P , we start by inserting k into the first row of P . To
create the insertion tableau of a word w = w1w2 · · ·wr, we first insert w1 into the empty
tableau, insert w2 into the result of the previous insertion, insert w3 into the result of
the previous insertion, and so on until we have inserted all letters of w. We denote the
resulting insertion tableau by P (w). The insertion tableau will always be a semistandard
tableau.

To obtain a standard Young tableau from w, we define the recording tableau, Q(w),
of w to be the tableau with the same shape as P (w) and label s in the box added to
P (w1 · · ·ws−1) during the insertion of ws. For example, w = 14252 has insertion tableau
and recording tableau

P (w) = 1 2 2
4 5

Q(w) = 1 2 4
3 5

.

Given a pair (P,Q) of a semistandard and standard Young tableau of the same shape,
one can easily reverse the procedure to recover w by using Q to determine which entry of
P to reverse insert at each step.

We next discuss a few important properties of RSK insertion that we will use later.
The first is known as the Greene–Kleitman invariant.

Theorem 2 ([4]). Let δk(w) denote the largest cardinality of a disjoint union of k non-
decreasing subwords of the word w with δ0(w) = 0, and let γk(w) denote the largest car-
dinality of a disjoint union of k strictly decreasing subwords of w with γ0(w) = 0. Then
P (w) has shape (λ1, . . . , λk) with

λi = δi(w)− δi−1(w) and

λ′i = γi(w)− γi−1(w)

for all i = 1, . . . , k.

We will also need the following easy lemma, which follows from the fact that larger
numbers never bump smaller numbers in RSK insertion. Let w|[1,k] denote the restriction
of the word w to the alphabet [1, k] and P[1,k] denote the restriction of semistandard Young
tableau P to boxes containing [1, k].

Lemma 3. We have that P (w|[1,k]) = P (w)[1,k].

Next, we define the bumping path of RSK insertion of a positive integer into a semis-
tandard Young tableau T to be the set of cells of T that are added or whose entries change
during the insertion process. We order the list from top to bottom row. For example,
the bumping path for the insertion of 1 into P (14252) shown above is (1, 2), (2, 1), (3, 1).
Let (T ← i) denote the result of inserting i into semistandard Young tableau T . The
following lemma can be found, for example, in [10].

Lemma 4. (a) When we insert positive integer k into semistandard Young tableau T ,
the bumping path moves weakly left.

(b) Let T be a semistandard Young tableau and let i 6 j. Then the bumping path of i
in (T ← i) lies strictly to the left of the bumping path of j in ((T ← i)← j).
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2.3 Knuth equivalence

We recall the Knuth equivalence relations on words in the alphabet of positive integers.
The elementary Knuth relations are given below, where x, y, z are positive integers:

yzx ≡ yxz whenever x < y 6 z

xzy ≡ zxy whenever x 6 y < z.

We then say that two words are Knuth equivalent if one can be obtained from the other
by a finite sequence of the elementary Knuth relations. For example, 221343 ≡ 241233
because of the sequence below, where the underlined triplets show to which three letters
the equivalence was applied:

221343 ≡ 212343 ≡ 212433 ≡ 214233 ≡ 241233.

One of the main motivations for Knuth equivalence is the connection to RSK insertion.

Theorem 5 ([6]). Let u and v be two words. Then P (u) = P (v) if and only if u ≡ v.

We define the reading word of a tableau T , r(T ), to be the word obtained by reading
the entries of T row by row from left to right starting with the bottom row. For example,
r(T ) = 645523411224 for the rightmost tableau T in Figure 1. The following fact is well
known, and the interested reader may find a proof in [10].

Theorem 6. For any word w, r(P (w)) ≡ w.

We will use Theorem 6 in Section 4 in the following way. Suppose we have a word
w on the set of positive integers a1 < · · · < an. In addition, suppose that w|[ak,an] is
weakly increasing for some k ∈ [1, n]. It follows from the definition of the Knuth relations
that u|[ak,an] will be weakly increasing for any u ≡ w. In particular, r(P (w))|[ak,an] will
be weakly increasing. This implies that the boxes of P (w) with entries in [ak, an] form
a horizontal strip (i.e., no two of the boxes lie in the same column). We state this as a
lemma.

Lemma 7. Suppose w is a word on positive integers a1 < · · · < ak < · · · < an and w|[ak,an]
is weakly increasing. Then the boxes of P (w) containing ak, . . . , an form a horizontal strip.

2.4 The Hillman–Grassl correspondence

We next review the Hillman–Grassl correspondence. We will start with a reverse plane
partition π of shape λ and obtain a multiset of rim hooks of λ.

Let π0 = π. Scan the columns of π0 from bottom to top and left to right to find the
cell with the first nonzero entry, and call this cell v0. We inductively form a lattice path
L0 in π starting at v0 and taking only north and east steps as follows. Suppose we have
constructed the path up to some box v ∈ λ.

• If there is a box directly above v and its entry is equal to the entry in v, the lattice
path travels to the box directly above v.
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• If there is not a box directly above v or its entry is strictly less than the entry in
v and there is a box directly to the right of v, the path travels to the box directly
right of v.

• If there is not a box directly above v or its entry is strictly less than the entry in v
and there is not a box directly to the right of v, the path ends at v.

Next, associate a rim hook h0 of λ to L0 by taking the rim hook with southwesternmost
and northeasternmost cells the same as the starting and ending cells of L0. Define a new
reverse plane partition π1 to be the result of subtracting 1 from each entry of π0 that
intersects L0.

Continue this process until πk is the reverse plane partition filled with all zeros. The
multiset of rim hooks of λ that corresponds to π under Hillman–Grassl is then M =
{h0, . . . , hk−1}.

Example 8. Starting with reverse plane partition π = π0, we end with multiset M.

π0 = 0 0 1
1 2 2
3 4

π1 = 0 0 1
1 2 2
2 3

π2 = 0 0 1
1 2 2
1 2

π3 = 0 0 1
0 1 1
0 2

π4 = 0 0 1
0 1 1
0 1

π5 = 0 0 0
0 0 0
0 0

M =




One can also easily describe the inverse algorithm, which shows that the Hillman–
Grassl correspondence is a bijection between reverse plane partitions of shape λ and
multisets of rim hooks of λ.

3 Sulzgruber insertion

In [11], Sulzgruber defines a bijection between reverse plane partitions of shape λ and
multisets of rim hooks of λ in the form of an insertion and reverse insertion procedure.
We now follow his exposition to review how to insert a rim hook h into a reverse plane
partition π of shape λ. We will think of h as a rigid object consisting of 3-dimensional
cubes and of π as stacks of cubes lying on top of shape λ. For further details, see [11].

First try placing h on top of π such that the cubes of h are above their corresponding
cells of λ. If the stacks of cubes below h all have the same height, we are done. This is
because placing h as a rigid object on top of π yields a reverse plane partition; there are
no empty spaces within any stack of cubes.
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If the stacks of cubes below h do not all have the same height, let j denote the height
of the stack of cubes lying below the northeasternmost block if h.

Split the rim hook h into two parts as follows. One part consists of the cubes of h that
cover a stack of cubes of height j. This part of h will not move in the next step. Each
cube in this part will result in adding 1 to the corresponding cell in π.

The second part of h consists of all other cubes in h—those that do not cover a stack of
cubes of height j. Move this part of h diagonally northwest one cell and start this process
over again. Note that many iterations of this process may be necessary to complete the
insertion. If the end result is a reverse plane partition, then h may be inserted into π, and
we denote the result by h ∗ π. If this procedure fails to produce a reverse plane partition,
then h may not be inserted into π.

Move the remaining portion of h diagonally northeast one cell and start the process
over again. Note that multiple cuts and shifts may be necessary to complete this process.
If the result is a reverse plane partition, then h may be inserted into π, and we denote
the result by h ∗ π. If this procedure fails to produce a reverse plane partition, then h
may not be inserted into π.

Example 9. Suppose we have reverse plane partition π, and we wish to insert rim hook
h(1,1). Placing h(1,1) on top of π, we see that the shortest stack of boxes below h(1,1) has
height 1. We thus break off the segment of h(1,1) lying above stacks of size 1 (in this case,
just the northeasternmost block of h(1,1)), and insert this block in its place. This changes
the 1 in position (1, 3) of π to a 2. We now shift the remaining blocks of h(1,1) northeast
one box. We notice that the remaining blocks of h(1,1) are no longer contained in π. This
means the insertion has failed, and h(1,1) may not be inserted into π.

π = 0 0 1
0 2 2
3 3
3

h(1,1) = h(1,2) = h(1,2) ∗ π = 1 1 2
1 2 2
3 3
3

Suppose instead we wish to insert rim hook h(1,2) into π. We again place h(1,2) on top
of π, break off the northeasternmost cell, and shift the remaining three blocks of h(1,2)
northeast one box. Each of the three blocks now lies over a stack of size 0. We can thus
insert these blocks in their current position to obtain h(1,2) ∗ π.

Sulzgruber defines an insertion order for rim hooks of λ, which we denote by 6. This
order has the property that given rim hooks h1 6 h2 6 · · · 6 hk in the shape λ, the
insertion of hk into hk−1 ∗ · · ·h2 ∗ h1 ∗ 0 always yields a reverse plane partition, where 0
denotes the reverse plane partition where each entry is 0. (Note that we have changed
conventions slightly from those in [11].) After fixing λ, the insertion order for λ is as
follows: First insert some non-negative number of copies of the rim hook h(1,1). Next
insertion some non-negative number of copies of the rim hook h(2,1). Continue until you
reach the bottom of the first column, and then start again from the top of the second
column. Continue in this manner until you have inserted some non-negative number of
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copies of the rim hook corresponding to the bottom cell of the rightmost column of λ.
This insertion order is illustrated for shape λ = (5, 4, 4, 3, 2) below.

1 6 11 15 18
2 7 12 16
3 8 13 17
4 9 14
5 10

Theorem 10. [11, Theorem 3] Let λ be a partition and π be a reverse plane partition
of shape λ. Then there exists a unique sequence h1, . . . , hs of rim hooks of λ such that
hi 6 hi+1 in Sulzgruber’s insertion order for i ∈ [s− 1] and π = hs ∗ · · · ∗ h2 ∗ h1 ∗ 0

Remark 11. One can easily check that Sulzgruber insertion is not equivalent to the
Hillman–Grassl correspondence by looking at the reverse plane partition of shape (2, 2)
with each box filled with 1. Hillman–Grassl associates this reverse plane partition with
multiset {h(1,1), h(2,2)} while Sulzgruber associates it with {h(2,1), h(1,2)}.

3.1 Sulzgruber reverse insertion

Given a reverse plane partition π = hs ∗ · · · ∗ h2 ∗ h1 ∗ 0 of shape λ, we may identify the
rim hook hs using the reverse insertion procedure we now describe.

First, notice that the southwesternmost box of any rim hook can be one of two types of
cell of λ. It is either an outer corner of λ (i.e., a cell c such that λ− c is still a partition),
or it is a cell of λ lying in the same row as an outer corner and at the bottom of its
column. We will categorize any cell that is an outer corner or in the same diagonal as an
outer corner as O and any cell not in O lying in the same row as an outer corner at the
bottom of its column or any cell in the same diagonal as such a cell as A. For example,
we have the following categories.

A A O
O A A O
O

O O
A O

The reverse insertion proceeds as follows:

1. We scan π diagonal by diagonal starting with the northeasternmost diagonal and
reading through each diagonal southeast to northwest until we find the first box b
such that either

(a) b ∈ O and the entry in b is strictly greater than the entry to the left of b or

(b) b ∈ A and the entry in b is strictly greater than the entry above b and strictly
greater than the entry to the left of b.
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If there is no box above or to the left of b, we consider the entry to be 0. Sulzgruber
calls any box satisfying (a) or (b) a candidate. Box b is the first candidate in the
described diagonal reading order.

2. We inductively form a path P in λ starting at b and ending at a border box of λ
that travels either one box right or one box up at each step using the following rules.
Suppose we have constructed the path up to some box b′ ∈ λ.

(a) If there is a box of λ above b′ and its entry is equal to the entry in b′, the path
travels next to the box above b′.

(b) If there is a box of λ to the right of b′ and the box above b′ either does not
exist or has entry strictly smaller than the entry in b′, the path travels to the
box to the right of b′.

If there is neither a box above b′ nor to the right of b′, the path ends at b′.

There is then a unique rim hook of λ with the same number of boxes as P and
the same northeasternmost cell as P ; this is hs, the last rim hook inserted to obtain
π = hs ∗ · · · ∗ h1 ∗ 0. We obtain hs−1 ∗ · · · ∗ h1 ∗ 0 by subtracting one from the entry in
each box in π ∩ P .

Remark 12. This description of reverse insertion differs slightly from that of [11] but is
easily seen to be equivalent. The key observation is that if the entry above b′ is equal to
the entry in b′, the path must move upward in order for the result of the subtraction to
be a reverse plane partition.

Example 13. Performing this reverse insertion on π below gives the path P highlighted
in orange. This path tells us that the last rim hook inserted to obtain π was h(1,2).
Continuing this process, we see that π = h(1,2) ∗ h(3,1) ∗ h(2,1) ∗ h(2,1) ∗ h(1,1) ∗ 0.

π = 0 1 2
1 1 3
4 4 4

−→ 0 0 1
0 0 3
4 4 4

−→ 0 0 1
0 0 3
3 3 3

−→ 0 0 1
0 0 2
2 2 2

−→ 0 0 1
0 0 1
1 1 1

−→

0 0 0
0 0 0
0 0 0

4 Diagonal RSK

We next introduce an additional bijection between multisets of rim hooks of λ and re-
verse plane partitions of shape λ that uses the RSK algorithm, which we will show is
equivalent to Sulzgruber’s bijection. We call this bijection diagonal RSK. The analogue
of this approach for the Hillman–Grassl bijection is described by Gansner in [1] and also
by Morales–Pak–Panova in [7]; this explicit description of Hillman–Grassl using RSK is
reviewed in Section 5. We phrase our insertion very explicitly to aid in later proofs.
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We will use the same insertion order as Sulzgruber, as described in Section 3. In
addition, we give each rim hook a distinct positive integer label. To obtain the labels,
simply fill the boxes of λ = (λ1, . . . , λk) in increasing order such that row 1 contains exactly
1, 2, . . . , λ1, row 2 contains exactly λ1+1, . . . , λ1+λ2, etc. (This filling is sometimes known
as the superstandard filling of λ.) Now define the label for rim hook h(i,j) to be the label
of cell (i, j) of λ. For example, the rim hook shown in Figure 1 has label 2.

To obtain a reverse plane partition from a multiset M of rim hooks of λ, first order
the multiset of rim hooks to be inserted in increasing insertion order. Reading off their
labels gives a word, which we call w(M).

We assign a subword of this word to each diagonal as follows. Fix a diagonal i.
The jth letter in the w(M) is included in the subword for diagonal i exactly when the
corresponding rim hook has a cell in diagonal i. (See Example 14.) We denote the
resulting word by w(M)i.

Next, use RSK insertion to obtain a semistandard Young tableau corresponding to
each diagonal: P (w(M)i). To build the reverse plane partition of shape λ corresponding
toM, record the shape of P (w(M)i) in diagonal i by entering the size of the largest part
in the southeasternmost cell and proceeding up the diagonal. Given multisetM = {h1 6
h2 6 · · · 6 hk}, we denote the result of this insertion by hk ? · · · ? h2 ? h1 ? 0.

Example 14. Suppose λ = (3, 2, 2) and the multiset of rim hooks is as shown below,
where they are written in increasing insertion order. The corresponding multiword is
w(M) = 1162777.

1 2 3
4 5
6 7

M =




Then w(M)−2 = 116, w(M)−1 = 1162777, and w(M)0 = w(M)1 = w(M)2 = 112.
This gives the five semistandard Young tableaux below, which lead to the reverse plane
partition shown on the right.

1 1 6 1 1 2 7 7 7
6

1 1 2 1 1 2 1 1 2 0 3 3
1 3
3 6

Proposition 15. Suppose h1 6 h2 6 · · · 6 hk are rim hooks in partition λ. Then
hk ? · · · ? h2 ? h1 ? 0 is a reverse plane partition of shape λ.

In order to prove the previous proposition as well as the equivalence of Sulzgruber in-
sertion and diagonal RSK, it will be helpful to examine how w(M)d is related to w(M)d+1.
We accomplish this with the following easy lemmas. Recall that rd denotes the border
box on diagonal d.
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Lemma 16. Suppose rd is directly left of rd+1. Then w(M)d+1 = w(M)du, where either
u is the empty word or u is weakly increasing. The word u is constructed from the alphabet
of labels of rim hooks corresponding to boxes in the same column as rd+1.

Proof. Every rim hook containing rd also contains rd+1, and the rim hooks containing
rd+1 but not rd are inserted after all of the rim hooks containing rd and with labels in
increasing order.

Lemma 17. Suppose rd is directly below rd+1. Then w(M)d+1 is a subword of w(M)d: the
restriction of w(M)d to the interval of labels of rim hooks containing rd+1 gives w(M)d+1.
In addition, the letters in w(M)d that are not in w(M)d+1 appear in w(M)d in weakly
increasing order.

Proof. In this situation, any rim hook containing rd+1 contains rd. In addition, any rim
hook that contains rd but not rd+1 has label strictly greater than all of the rim hooks
containing rd+1, and the labels of these rim hooks increase with insertion order. The
result follows.

Example 18. Consider λ = (3, 2, 2) as in Example 14 and supposeM contains one copy
of each rim hook of λ. Then we have w(M)−2 = 146 and w(M)−1 = 146257, so we see
w(M)−2 as a prefix of w(M)−1. We also have w(M)0 = 1425, so we see that w(M)−1
restricted to [1, 5] gives w(M)0.

Proof of Proposition 15. We first show entries are weakly increasing along rows and down
columns. We do this by considering the entries of adjacent diagonals d and d + 1 of
hk ? · · · ? h2 ? h1 ? 0. First suppose rd is directly left of rd+1. It follows from Lemma 16
and Theorem 2 that the shape of P (w(M)d) is contained in the shape of P (w(M)d+1),
and so the entries in diagonal d are weakly less than the entries to their right in diagonal
d+ 1.

We next argue that the entries in diagonal d are weakly greater than the entries above
them. By Lemma 16, w(M)d+1 = w(M)du for weakly increasing word u. The desired
result then follows from Lemma 7.

If rd is directly below rd+1, it follows from Lemma 17 that the restriction of P (w(M)d)
to the letters inserted on diagonal d + 1 gives P (w(M)d+1). This means the entries in
diagonal d will be weakly greater than the entries directly above them.

By Lemma 7 and Lemma 17, the letters in w(M)d not inserted on diagonal d + 1
form a horizontal strip in the insertion tableau P (w(M)d). It follows that the ith row of
P (w(M)d) must be weakly shorter than the (i− 1)th row of P (w(M)d+1), and so entries
in diagonal d will be weakly less than the entries to their right in diagonal d+ 1.

It remains to show that the number of nonzero parts in the shape of P (w(M)d) is
no larger than the number of boxes of λ in diagonal d. It follows from Theorem 2 that
the number of parts of P (w) is equal to the minimal number of disjoint non-decreasing
sequences in w necessary to partition the word w. Consider some diagonal j − i with
border box in position (i, j) and consider the word w̃ obtained by reading the rim hook
labels in boxes

(1, 1), (2, 1), . . . , (i, 1), (1, 2), (2, 2), . . . , (i, 2), . . . , (1, j), . . . , (i, j).
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For example, the corresponding word for diagonal -1 in Example 14 is w̃ = 146257. This
word can clearly be written as the disjoint union of j non-decreasing sequences:

{(1, 1), . . . , (i, 1)}, {(1, 2), . . . , (i, 2)}, . . . , {(1, j), . . . , (i, j)}.

It can also be written as the disjoint union of i non-decreasing sequences:

{(1, 1), (1, 2), . . . , (1, j)}, {(2, 1), (2, 2), . . . , (2, j)}, {(i, 1), (i, 2), . . . , (i, j)}.

Hence the minimal number of disjoint non-decreasing sequences it takes to partition the
word is at most min(i, j). Now w(M)j−i can be obtained from w̃ by deleting entries
and repeating existing entries, and can thus still be covered by min(i, j) non-decreasing
sequences.

We develop the inverse procedure in the next section.

4.1 Diagonal RSK is equivalent to Sulzgruber insertion

In this section, we will show that diagonal RSK is equivalent to the Sulzgruber insertion by
showing that the reverse insertion procedure is the same in both cases. The fact that the
two insertion procedures are equivalent may be initially surprising because the entries on
diagonal d of a reverse plane partition seemingly cannot be computed using Sulzgruber’s
insertion without knowing what happens in diagonal d + 1, while any one diagonal of a
reverse plane partition can clearly be computed on its own in diagonal RSK. Recall that
we use ∗ for Sulzgruber insertion and ? for diagonal RSK.

Theorem 19. Suppose h1 6 h2 6 · · · 6 hk are rim hooks in partition λ. Then

hk ? · · · ? h2 ? h1 ? 0 = hk ∗ · · · ∗ h2 ∗ h1 ∗ 0.

In other words, diagonal RSK coincides with Sulzgruber’s insertion.

Proof. To prove the result, we show that the reverse insertion procedure for ? is the same
as that of ∗. We first assume for notational simplicity that λ is an s × s square. In this
case, it is easy to label the rim hooks of λ, as shown in Figure 2. However, the following
argument may be used for any partition λ.

We briefly review the ideas of Lemmas 16 and 17 in the case of the s × s square.
Consider a diagonal d < 0 (whose southeasternmost box is in column d + s). Then
w(M)d+1 = w(M)du, where u is a possibly empty, nondecreasing word in the alpha-
bet αs + (d + s + 1), where 0 6 α 6 s − 1. Next consider a diagonal d > 0 (whose
southeasternmost box is in row s− d). Then w(M)d−1|[1,(s−d)s] = w(M)d. In particular,
P (w(M)d−1)[1,(s−d)s] = P (w(M)d) by Lemma 3.

Suppose we are given a reverse plane partition of λ, π = hk ? · · · ? h2 ? h1 ? 0, where
h1 6 h2 6 · · · 6 hk are rim hooks in λ. Let M be the multiset {h1, . . . , hk}. We wish to
recover hk and π′ = hk−1 ? · · · ? h2 ? h1 ? 0.
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1 2 . . . . . . s

s+ 1 s+ 2 . . . . . . 2s

...
. . . . . . . . .

...

...
. . . . . . . . .

...

s2 − s+ 1 s2 − s+ 2 . . . . . . s2

Figure 2: Labelling of the rim hooks of λ.

Let ` denote the label of hk, and suppose rim hook hk has southwesternmost box in
diagonal db. Note that it is possible that w(M) includes more than one copy of `; in this
argument, ` always refers to the copy corresponding to hk.

Note that db is the southwesternmost diagonal of λ where ` is inserted. Let b denote
the box in diagonal db of π corresponding to the row of P (w(M)db) where the insertion
of ` terminated, and suppose b is in position (p, q) in λ. In other words, if

P (w({h1, . . . , hk−1, hk})db)/P (w({h1, . . . , hk−1})db)

is a single box in row r, then b is the rth box from the bottom of diagonal db in π. In our
setup, r = s + 1 − p; we will use this later in the proof. Let π(i, j) denote the entry in
position (i, j) of π and similarly for π′.

Notice that π(p, q) > π(p, q− 1). Indeed, since π′ is a reverse plane partition, we have
that

π(p, q − 1) = π′(p, q − 1) 6 π′(p, q) = π(p, q)− 1.

(Recall here that if q = 1, we consider π(p, q−1) = 0 and if p = 1, we consider π(p−1, q) =
0.)

In addition, as explained in Section 3.1, box b must be one of two types. Either db = 0
and contains the unique outer corner of λ or db < 0. In the first case, we again say b is of
type O, while in the latter case, we say b is of type A.

If b is of type A, then π(p, q) > π(p−1, q). To see why this is true, first recall that the
border box rdb is in position (s, db + s) in λ. Since hk was the largest rim hook inserted
(with respect to insertion order), none of the rim hooks corresponding to boxes of λ in
column db + s + 1 have been inserted. Thus by Lemma 16, w(M)db = w(M)db+1. This
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implies the insertion of ` into P (w({h1, . . . , hk−1})db+1) terminated in row s+ 1−p. Thus
π(p, q) = π′(p, q) + 1, π(p, q + 1) = π′(p, q + 1) + 1, and π(p− 1, q) = π′(p− 1, q), and so

π(p− 1, q) = π′(p− 1, q) 6 π′(p, q) < π(p, q).

We have shown that box b must fit into one of the following two categories:

(i) box b is of type O and π(p, q) > π(p, q − 1), or

(ii) box b is of type A and π(p, q) > π(p, q − 1) and π(p, q) > π(p− 1, q).

Following Sulzgruber’s terminology, we call such a box b of π a candidate.
To begin the reverse insertion of hk, scan the reverse plane partition π southeast to

northwest along each diagonal starting with the northeasternmost diagonal and locate
the first candidate b in some position (p, q). We next argue that this first candidate b is
in the southwesternmost diagonal where hk has support and that the insertion of ` into
P (w({h1, . . . , hk−1})db) terminated in row s + 1− p. The latter statement tells us that b
is correctly positioned in its diagonal db.

The fact that π(p, q) > π(p, q − 1) means that w(M)db 6= w(M)db−1 and the fact
that b is the first box in our scan with this property means that w(M)db = w(M)db+i
for all i > 0. By Lemma 16, this implies we have inserted a nonempty submultiset of
the rim hooks db + s, db + 2s, . . . , db + s2 and have not inserted any rim hooks with labels
db+i+s, db+i+2s, . . . , db+i+s

2 for 0 < i 6 −db. The fact that b is the southeasternmost
candidate in its diagonal implies that it is the place where the insertion of the largest (in
insertion order) of this submultiset terminated by part (b) of Lemma 4. Each of the rim
hooks db + s, db + 2s, . . . , db + s2 has the property that its southwesternmost box is on
diagonal db, i.e., that db is the southwesternmost diagonal of λ where the corresponding
label is inserted. This proves the desired property.

We next define a lattice path in λ starting at b, ending at a box in column s of λ, and
taking upward and rightward steps in λ as follows. Suppose we have constructed the path
up to some box b′ in position (p′, q′) in λ.

• If π(p′, q′) = π(p′ − 1, q′), the next box in the path is in position (p′ − 1, q′).

• If π(p′, q′) 6= π(p′− 1, q′) and (p′, q′ + 1) ∈ λ, the next box in the path is in position
(p′, q′ + 1).

• If π(p′, q′) 6= π(p′ − 1, q′) and (p′, q′ + 1) /∈ λ, the path terminates at b′.

We claim that this path exactly identifies the boxes where the insertion of ` terminated
in each diagonal where it was inserted. In other words, subtracting one from each of the
entries of the boxes of π in the path yields π′ and the boxes in the path uniquely identify
hk.

If π(p′, q′) = π(p′ − 1, q′), we must include the box above b′ in the path in order for
π′ to be a reverse plane partition, which we know is true. Therefore the next box in the
path is the box above b′.
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If π(p′, q′) 6= π(p′ − 1, q′) and (p′, q′ + 1) ∈ λ, we show why

P (w(M)db′+1)/P (w({h1, . . . , hk−1})db′+1)

is a box in the row corresponding to box (p′, q′+1) of λ, i.e., π(p′, q′+1) = π′(p′, q′+1)+1.
Note that since (p′, q′ + 1) ∈ λ, s + 1− p′ 6= 1, ` is not the largest element of w((M))db′ .
It follows that ` ∈ [1, (s− db′)s] and was thus inserted in diagonal db′ + 1.

Suppose first that rdb′ is in the rightmost column s. Let c denote the entry in the box
P (w(M)db′ )/P (w({h1, . . . , hk−1})db′ ). In other words, c is the entry of the box where the
insertion of ` into P (w({h1, . . . , hk−1})db′ ) terminated, which is in row s + 1 − p′. Note
that π(p′−1, q′) < π(p′, q′) means that c ∈ [(s−db′)s+1, s2], since P (w(M)db′ )[1,(s−db′ )s] =
P (w(M)db′+1).

We show that the entry that bumped c was also inserted into diagonal db′ + 1, i.e., the
entry that bumped c is in [1, s(s − db′)]. Indeed, P (w(M)db′ )[(s−db′ )s+1,s2] is a horizontal
strip with weakly increasing reading word by Lemma 7, Lemma 17, and Theorem 6. Thus
c could not have been bumped by anything in [(s− db′)s+ 1, s2] by part (a) of Lemma 4.
Now

P (w(M)db′ )[1,(s−db′ )s] = P (w(M)db′+1)

and similarly

P (w({h1, . . . , hk−1})db′ )[1,(s−db′ )s] = P (w({h1, . . . , hk−1})db′+1)

imply that the insertion of ` into P (w({h1, . . . , hk−1})db′+1) terminated in row s− p′.
Now suppose border box rdb′ is not in the rightmost column. Since w(M)db′ =

w(M)db′+1, it is clear that the insertion of ` terminated in row s+1−p′ of P (w(M)db′+1),
and thus we go right in the path.

If π(p′, q′) 6= π(p′− 1, q′) and (p′, q′+ 1) 6∈ λ, then clearly b′ is in the rightmost column
of λ. This means ` ends up in the first row of P (w(M)db′ ). Since π(p′, q′) 6= π(p′ − 1, q′)
and P (w(M)db′ )[1,(s−db′ )s] = P (w(M)db′+1), this implies ` 6∈ [1, (s − db′)s] and so is not
inserted into diagonal db′ + 1 by Lemma 17. This justifies why our path must stop.

Once the path is determined, we can identify hk as the rim hook whose northeast-
ernmost box is the box at the end of the path and that contains the same number of
boxes as the path. It is clear that this reverse insertion procedure is the same as that for
Sulzgruber’s ∗ insertion, and thus the two insertions agree for the square.

If our partition λ is not a square, we may apply the same arguments to show the
result with the following small modifications: the rim hook indexing will be much less
convenient, and so notation will become more complicated; and we must define O and A
as we did in Section 3.1 instead of using the simplified definition for the square.

In the next section, we review the analogous result for Hillman–Grassl, which can be
found for example in [7]. In this case, the Greene–Kleitman invariant for Hillman–Grassl
was known, and the explicit RSK interpretation is obtained as a corollary.
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5 Hillman–Grassl as RSK

One can describe the Hillman–Grassl correspondence similarly using a variant of the
diagonal RSK defined above. We next remind the reader of such a description, and we
give it in the same spirit as diagonal RSK. We will refer to it as HG diagonal RSK. We
present this description of Hillman–Grassl to emphasize the fact that both Hillman–Grassl
and Sulzgruber insertion are determined by a linear ordering of the cells of the Young
diagram (the insertion order) along with a compatible labeling of rim hooks.

To obtain the Hillman–Grassl insertion order for shape λ, label the cells of λ top to
bottom along columns starting with the rightmost column. The labeling for the rim hooks
is obtained by labeling the cells of λ right to left along rows starting with the top row. See
Figure 3, where we see, for example, that inside λ = (3, 3, 2), rim hook h(2,1) is seventh in
the insertion order and has label 6.

6 3 1
7 4 2
8 5

3 2 1
6 5 4
8 7

Figure 3: HG diagonal RSK insertion order (left) and rim hook labeling (right).

Given a multiset of rim hooks M of λ, we can again form a word corresponding to
each diagonal of λ in an analogous way:

1. First, order the multiset M by insertion order.

2. Create a word wHG(M) by recording the corresponding label for each rim hook in
the ordered multiset M.

3. Obtain word wHG(M)i corresponding to diagonal i by restricting wHG(M) to the
labels of rim hooks with support on diagonal i.

As before, we then perform RSK insertion with each word wHG(M)i, and we form the
reverse plane partition corresponding to M by recording the row sizes of the insertion
tableau P (wHG(M)i) on diagonal i.

We now state the Greene–Kleitman invariants for HG diagonal RSK, which will lead
to the proof that HG diagonal RSK is equivalent to Hillman–Grassl. Let B = (bij)
be a nonnegative integer matrix. An AHG-chain in the matrix B is a sequence V =
((i1, j1), . . . , (ik, jk)) of positions in B where i1 6 i2 6 · · · 6 ik and j1 > j2 > · · · > jk,
where (i, j) can be used at most bij times. Let |V | denote the cardinality of a AHG-chain.
Define aHGk (B) to be the maximum of |V1| + · · · + |Vk|, where the maximum is over all
collections of k AHG-chains such that (i, j) is used at most bij times in the collection and
|Vi| denotes the cardinality of Vi. Let aHG0 (B) = 0

Similarly, define a CHG-chain in the matrix B to be a sequence

U = ((i1, j1), . . . , (ik, jk))
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of distinct positions in B where i1 < i2 < · · · < ik and j1 < j2 < · · · < jk, where (i, j) can
be used only if bij 6= 0. Define cHGk (B) to be the maximum of |U1|+ · · ·+ |Uk|, where the
maximum is over all collections of k CHG-chains such that (i, j) is used at most once in
the collection and |Ui| denotes the cardinality of Ui. Let cHG0 (B) = 0.

Remark 20. A CHG-chain is classically referred to as a D-chain, where the “D” stands
for “descending”. Since we use “d” to denote a diagonal of a Young diagram, we use the
CHG-chain (and CS-chain in the next section) terminology to avoid confusion.

Given a partition λ and a multiset M of rim hooks of λ, form an N-tableau TM by
entering in each box of λ the number of times the corresponding rim hook appears inM.
For each diagonal d = j − i of λ, define the matrix Bd to be the i× j-matrix obtained by
restricting THGM to the boxes weakly northwest of rd.

Theorem 21. Let λ be a partition, M be a multiset of rim hooks of λ. Let π denote
the reverse plane partition obtained from M using HG diagonal RSK, and let µd be the
partition obtained by reading the entries of π in diagonal d. Then

aHGk (Bd) = µd1 + µd2 + · · ·+ µdk and

cHGk (Bd) = (µd)′1 + (µd)′2 + · · ·+ (µd)′k.

In other words,

µdi = aHGi (Bd)− aHGi−1(Bd) and

(µd)′i = cHGi (Bd)− cHGi−1(Bd)

Proof. The result follows immediately from Theorem 2 and the fact that AHG-chains
(resp., CHG-chains) in Bd correspond exactly to nondecreasing (resp., decreasing) se-
quences in wHG(M)d.

The following corollary is well known and can be found, for example, in [7].

Corollary 22. The Hillman–Grassl correspondence is equivalent to HG diagonal RSK.

Proof. As stated in [1, 2], the Hillman–Grassl correspondence has the same Greene–
Kleitman invariants as given in Theorem 21.

6 Greene–Kleitman invariants for Sulzgruber insertion

We now state the Greene–Kleitman invariants for Sulzgruber insertion in the same spirit
as those stated for for Hillman–Grassl by Gansner in [1, 2] and for HG diagonal RSK in
Theorem 21.

Let B = (bij) be a nonnegative integer matrix. An AS-chain in the matrix B is
a sequence W = ((i1, j1), . . . , (ik, jk)) of positions in B where i1 6 i2 6 · · · 6 ik and
j1 6 j2 6 · · · 6 jk, where (i, j) can be used at most bij times. Let |W | denote the
cardinality of a AS-chain. Define aSk (B) to be the maximum of |W1| + · · · + |Wk|, where
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the maximum is over all collections of k AS-chains such that (i, j) is used at most bij
times in the collection and |Wi| denotes the cardinality of Wi. Let aS0 (B) = 0.

Similarly, define a CS-chain in the matrix B to be a sequence R = ((i1, j1), . . . , (ik, jk))
of distinct positions in B where i1 > i2 > · · · > ik and j1 < j2 < · · · < jk, where (i, j) can
be used only if bij 6= 0. Define cSk (B) to be the maximum of |R1| + · · · + |Rk|, where the
maximum is over all collections of k CS-chains such that (i, j) is used at most once in the
collection and |Ri| denotes the cardinality of Ri. Let cS0 (B) = 0

Given a partition λ and a multiset M of rim hooks of λ, we again form an N-tableau
TM by entering in each box of λ the number of times the corresponding rim hook appears
in M. For each diagonal d = j − i of λ, define the matrix Bd to be the i × j matrix
obtained by restricting TM to the boxes weakly northwest of rd.

Theorem 23. Let λ be a partition, M be a multiset of rim hooks of λ. Let π denote
the reverse plane partition obtained from M using Sulzgruber insertion, and let µd be the
partition obtained by reading the entries of π in diagonal d. Then

aSk (Bd) = µd1 + µd2 + · · ·+ µdk and

cSk (Bd) = (µd)′1 + (µd)′2 + · · ·+ (µd)′k.

In other words,

µdi = aSi (Bd)− aSi−1(Bd) and

(µd)′i = cSi (Bd)− cSi−1(Bd)

Proof. The result follows immediately from Theorem 2, Theorem 19, and the fact that
AS-chains (resp., CS-chains) in Bd correspond exactly to nondecreasing (resp., decreasing)
sequences in w(M)d.
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