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Abstract—We consider maximizing the long-term average re-
ward in a single server queue, where the reward obtained for a
job is a non-increasing function of its sojourn time. The motiva-
tion behind this work comes from multiple applications, including
quantum information processing and multimedia streaming. We
introduce a new service discipline, shortest predicted sojourn time
(SPST), which, in simulations, performs better than well-known
disciplines. We also present some limited analytical guarantees
for this highly intricate problem.

Index Terms—delay sensitive reward, service discipline, so-
journ time.

I. INTRODUCTION

JOB scheduling in single server systems is one of the most

widely researched areas due to its diverse applications

[1]. Historically, the design of service disciplines focused

on optimizing the average linear functions of sojourn times

(a.k.a response times). Under this performance measure, the

discipline that processes the job with the shortest remaining

processing time (SRPT) proves to be optimal [2]. However,

almost no work considers optimizing nonlinear functions of

sojourn times, which have become crucial in many emerging

applications, a few of which we briefly discuss.

1) Quantum information processing: The quantum bits

(qubits) that are generated for sequential processing by

a circuit or for transmission over a channel undergo

decoherence while waiting to be processed or transmitted

[3]. The effective information extracted out of a stream

of bits is the stationary expectation of a non-increasing

function of the sojourn time [4].

2) Multimedia streaming: In streaming applications, delayed

packets cause stream to break or pause. Hence, the value

of a multimedia packet decreases with its delay [5].

3) Delay sensitive online services: In online service plat-

forms like ride-sharing and food delivery, customers’

satisfaction and hence, in turn, ratings often depend on

the delay in the service. In fact, in many settings, user

dissatisfaction due to delays cannot be compensated by

better service or other promotional offers [6], [7].

Although optimizing nonlinear functions of sojourn times is

crucial for these applications, there is hardly any study aimed

at optimizing the average nonlinear functions of sojourn times,

even in a single server case. This paper takes a few steps
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towards this goal, and is motivated by the aforementioned

applications.

A. Related work and Motivation

In work conserving single server queuing systems, jobs can

arrive arbitrarily. When the service requirements (job sizes) are

known, SRPT minimizes the average sojourn time regardless

of the arrival and service distributions [2]. Under SRPT, the

job in service has the least remaining processing time, and

an incoming job preempts the server only if its processing

time is shorter than the remaining processing time of the job

in service. Specifically, SRPT minimizes the sojourn time for

every arrival sequence [2]. In other words, SRPT is said to

be sample-path optimal. Schrage in [8] first discussed the

proof of optimality of SRPT, followed by Smith in [9]. SRPT

gained popularity thereon that prompted the analysis of its

performance guarantees [10, Chapter 33], the evaluation of its

fairness among jobs [11], its implementation in web servers

[12] and its extension to multiple server systems [13], [14].

Unlike classical queuing systems that assume no constraints

on the waiting times, jobs do come with fixed deadlines in

certain applications [15]. If the server does not process a job

within its deadline, it drops off the queue and never returns for

service (balking or reneging). The dynamics of these systems

have been extensively investigated under multiple settings

[16]–[21]. The most common performance measure here is the

overall loss fraction that captures the fraction of jobs lost out

of the total arrivals to the system. The earliest deadline first

(EDF) discipline is shown to be optimal in minimizing the

overall loss fraction irrespective of the service requirements

[22], [23]. However, minimizing the overall loss fraction does

not always guarantee the minimum average sojourn time.

Therefore, it is reasonable to associate a reward for each job

that captures the trade-off between the fraction of loss and the

average sojourn time in the system. In [24], the deadline and

reward of jobs are known upon arrival, and the optimal policy

that maximizes the rewards per service requirement of served

jobs has been studied. [25] and [26] present a similar line of

work. Nevertheless, in real-time systems, neither the deadlines

nor the rewards of jobs are known to the server.

Our work is inspired by the applications such as quantum

information processing and multimedia streaming. In these

applications, the information in the jobs (qubits in quantum

systems [4] and data packets in multimedia systems [27])

become useless or erased after a certain deadline. Unlike

http://arxiv.org/abs/2211.00367v1


impatient customers, the jobs do not drop off the queue;

however, processing them after their deadline may not be

useful to the system.

For instance, in the quantum setting, qubits arrive sequen-

tially at a quantum system and wait in the queue until they

are processed. While a qubit waits in the queue, it undergoes

decoherence due to its interaction with the environment [3].

The decoherence of a qubit leads to the erasure of its infor-

mation, and the probability of qubit erasure is modeled as an

explicit function of its sojourn time. For example, if a qubit

waits for W units of time in the system, then the probability

of its erasure is modeled as p(W ) = 1−exp (−κW ) for some

κ > 0, where κ is the characteristic parameter of the quantum

system [4]. In other words, a qubit with sojourn time W is

associated with a reward of the form exp (−κW ) for some

κ > 0. A similar model is relevant in the areas of multimedia

streaming [27] and crowdsourcing [28].

The information capacity of quantum erasure channels has

been derived irrespective of the service discipline in [4].

Specifically, this capacity is proportional to E[exp (−κW )],
where the expectation is over the limiting distribution of the

sojourn times. The goal of maximizing the capacity of quan-

tum erasure channels poses an interesting problem and reduces

to maximizing the average nonlinear function of sojourn times

(rewards). Our work is inspired by such a setting. In particular,

this work aims to maximize the average nonlinear functions

of the form exp (−κW ) for some κ > 0 from a scheduling

perspective.

B. Contributions

In this work, we consider a work conserving single server

queuing system in which the service requirements of the jobs

are known upon arrival. Each job is associated with a reward

based on its sojourn time. Specifically, the reward of a job is

a specified non-increasing function, possibly nonlinear in its

sojourn time. This work aims to identify the service discipline

that maximizes the long-term average of rewards. Since the

rewards are a function of sojourn times, this essentially ensures

the maximization of the long-term average of rewards while

processing the maximal number of jobs.

We view this problem for two arrival models. Firstly, we

consider batch arrival models in which an arbitrary number

of jobs arrive at the server at the same instant. In this model,

we show that processing the jobs with the shortest service

requirements maximizes the long-term average rewards of the

system. In addition, we show that this result holds for all

monotonic functions of sojourn times.

Next, we analyze a more realistic arrival model in which

jobs arrive according to a stochastic process. It is well-

known that SRPT maximizes linear rewards [2] for all arrival

sequences and service distributions; however, it is unclear if

SRPT maximizes nonlinear rewards. For a single server system

with a unit service rate, simulations show that SRPT does

not perform better for some arrival and job size distributions.

Indeed, we find that identifying a discipline that maximizes

any monotonic function of sojourn times poses a difficult

problem. This is mainly because the performance of the

service disciplines has a complex dependence on the i) arrival

and service distributions, ii) job sizes, and iii) function of

sojourn times. Certainly, the simulation of the performance of

existing disciplines shows that there is no clear winner for all

arrival sequences and functions of sojourn times. To reduce

the complex dependency on the function of sojourn times,

we focus only on rewards of the form exp (−κW ) for some

κ > 0, where W represents the sojourn time. These functions

have practical implications in applications such as quantum

information systems and multimedia streaming, as mentioned

before.

In this work, we introduce a service discipline, shortest

predicted sojourn time (SPST) and analyze its performance

in this setting. According to SPST, a job in service has the

least predicted sojourn time. Through simulations, we infer

that the performance of SPST is promising for all arrival and

job size distributions. However, analytically proving this for

all arrival distributions and job sizes is still a hard problem.

Therefore, we assume a simple model where jobs of the same

size arrive at the server with stochastic interarrival times. Due

to the combinatorial intricacies, we compare the performance

of SPST with only the first come first serve (FCFS) discipline

for this model. In particular, we show that the long-term

average reward under SPST is higher than that under FCFS for

κ ≥ loge 2. Moreover, it is evident from this result that there

is no optimal service discipline that maximizes the long-term

average of rewards of the form exp (−κW ) for all κ.

C. Organization

The rest of the paper is organized as follows: Section

II gives an overview of the system with batch arrivals and

stochastic arrivals. Section III and IV discuss the main results

for these two scenarios respectively. Under stochastic arrivals,

the simulations of the performance of SPST and other disci-

plines are discussed in section IV-B. Followed by the analytical

findings of the performance comparison of SPST with FCFS

that are covered in section IV-C. Proofs are detailed in the

Appendix.

II. SYSTEM MODEL

We consider a discrete-time work conserving single server

queue with unit service rate. The jobs with integer sizes

{Si, i ∈ N} arrive randomly at the server. These jobs are

indexed by positive integers according to their arrivals, with

the ties broken arbitrarily. At the beginning of every time slot,

the server can change its service from one job to another

based on the service discipline. Each job waits in the queue

before being served, and the total time it spends in the system

is known as its sojourn time. For a job indexed by i, Wi

represents its sojourn time, and f(Wi) is the associated reward,

where f(·) is a non-increasing function. This work aims to find

a service discipline that maximizes the long-term average of

rewards.

In this work, we consider two scenarios: (i) batch arrivals

and arbitrary job sizes and (ii) stochastic arrivals and stochastic

job sizes. In the first scenario, as the name suggests, n jobs

arrive at time 0 and their sizes are {Si : 1 ≤ i ≤ n}. In this



context, our goal is to find a service discipline that maximizes

the accumulated reward,
∑n

i=1 f(Wi), for any positive integer

n and {Si : 1 ≤ i ≤ n}.

In the second setting, jobs arrive according to some point

process with i.i.d. positive inter-arrival times Y1, Y2, . . .. Job

sizes {Si} are also i.i.d. positive random variables. In this sce-

nario, the goal is to find a stationary service discipline π under

which the long-term average reward, lim
n→∞

1
n

∑n

i=1 f(Wi)π,

is maximum. Note that whenever E[Y1] > E[S1], this limit

exists almost surely for any work conserving stationary service

discipline.

III. BATCH ARRIVALS AND ARBITRARY JOB SIZES

In any queue setup, jobs are assumed to arrive singly at a

server. However, this is not the case in all real-world scenarios.

Jobs do come in batches of fixed or random sizes [29] as in the

case of cloud-based data processing. This section characterizes

the service discipline that maximizes the accumulated reward

in a queuing system with a single batch of job arrivals.

Definition 1 (Shortest job first (SJF) [10, Chapter 31]). Under

this non-preemptive service discipline, whenever the server

frees up, it serves the job with the shortest service requirement

to completion. That is, at any time t, the index of the job in

service is k = argmin
i

Si. Ties are broken arbitrarily.

In the case of a single batch of arrivals, the jobs are served

in increasing order of their sizes under SJF.

Theorem 1. For any batch size n and any service require-

ments {Si : 1 ≤ i ≤ n}, SJF maximizes
∑n

i=1 f(Wi).

The proof of theorem 1 is a direct consequence of the

following lemma. Consider that a bunch of n jobs ar-

rive at an arbitrary time t. Let {Sk, k ∈ [1, n]} denote

their sizes and {Ji, i ∈ [1, n]} be the job labels in in-

creasing order of their sizes i.e., if, for Ji, Jj such that

i < j, then Si ≤ Sj ∀i, j ∈ [1, n]. Let A1 be

the service discipline that serves the jobs in the order

{J1, J2, . . . , Jk, Jk+1, . . . , Jn}. Consider another discipline

A2 with order of service {J1, J2, . . . , Jk+1, Jk, . . . , Jn}. Let

Rπ denote the accumulated reward under service discipline π.

Here, Rπ =
n
∑

i=1

f(Wi)π .

Lemma 1. For a non-increasing function f , RA1
≥ RA2

.

Proof of lemma 1. In a work-conserving system with order of

service {li, i ∈ [1, n]}, the sojourn time of job at index lk,

Wlk = Wlk−1
+ Slk . Equivalently, Wlk =

k
∑

i=1

Sli . Clearly,

f(Wli)A1
= f(Wli)A2

∀i 6= k, k + 1. (1)

So, it is sufficient to compare f(Wlk) + f(Wlk+1
) under A1

and A2.

f(Wlk+1
)A1

= f
(

k−1
∑

i=1

Si + Sk + Sk+1

)

= f
(

k−1
∑

i=1

Si + Sk+1 + Sk

)

= f(Wlk+1
)A2

. (2)

Now, f(Wlk)A1
= f

( k−1
∑

i=1

Si+Sk

)

. Since f is non-increasing

in its argument, we have

f(Wlk)A1
> f

(

k−1
∑

i=1

Si + Sk+1

)

= f(Wlk)A2
. (3)

From (1), (2) and (3), we have RA1
> RA2

.

We observe that an arbitrary order of service is a permu-

tation of the servicing order A2 and that lemma 1 can be

extended to all such orders of service in place of A2. More

generally, lemma 1 states that any work-conserving discipline

that serves the jobs in increasing order of their sizes yields

higher rewards. Examples of such service discipline include

SRPT and preemptive shortest job first (PSJF) also.

IV. STOCHASTIC ARRIVALS

We now focus on the scenario with stochastic job arrivals.

The goal here is quite different from that for batch arrivals.

We cannot extend the results in section III to this scenario

as lemma 1 does not hold here. Furthermore, the well-known

service disciplines perform differently depending on the job

sizes and the arrival rates. For instance, consider that the jobs

of same size, j, arrive with interarrival times {Yi, i ∈ N},

where

Yi =

{

j1 = j + 1− δ w.p 1
2

j2 = j + 1 + δ otherwise

for any δ > 0. Note that the system is stable with {Yi, i ∈ N}.

Let f(Wi) = exp (−κWi) ∀i for some κ > 0.
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Fig. 1: Job size vs. long-term average reward for κ = 1

For this arrival sequence with δ = ⌊ j
2⌋ and κ = 1,

figure 1 shows the performance of well-known disciplines:

SRPT, PSJF, FCFS, last come first serve (LCFS), and pro-

cessor sharing (PS). Since the jobs are of same size j, some

disciplines perform the same. However, this is not the case

for all arrival sequences. For j = 4, FCFS, SRPT, and

PSJF yield higher long-term average rewards, whereas LCFS



dominates for j ≥ 6. It is therefore evident from figure 1 that

even for a fixed κ, the performance of the aforementioned

disciplines varies according to the job sizes. Next, we propose

a new service discipline named shortest predicted sojourn

time (SPST), which performs better than FCFS, LCFS, PSJF,

SRPT, and PS in simulation. We also provide an analytical

comparison with FCFS.

A. Shortest predicted sojourn time (SPST)

The server of a work conserving queue cycles between idle

and busy periods, i.e., the periods when the queue is empty

and when it is not, respectively. On a given sample path of the

arrival process and a given realization of the job size sequence,

the positions and duration of the busy and idle periods are

the same for all work conserving policies. Moreover, for an

arrival process with i.i.d inter-arrival times, the beginning of a

busy period is a renewal (or regenerative) epoch. Thus, by the

renewal reward theorem [30], for maximizing the long-term

average reward, it is enough to maximize the average total

reward in a renewal cycle.

For a fast decaying f(·), the total reward in a renewal cycle

is dominated by the jobs with the shortest sojourn time. Thus,

the two main factors that ensure high total reward in a cycle

are the minimum sojourn time across all jobs in that cycle and

the number of jobs whose sojourn time is equal to or close to

that.

As the future arrivals and job sizes are not known while

making the service decision, intuitively, the best one can

do is to serve the job whose completion would result into

the shortest sojourn time among the existing jobs. This may

increase the sojourn times of other jobs. However, as they are

not the dominating terms in the total reward, the overall reward

would be high.

Based on the above insights, we design the following policy,

which we call shortest predicted sojourn time (SPST).

Definition 2 (Predicted sojourn time). Predicted sojourn time

of a job at index i at time t ≥ 0 under a service discipline

π, denoted by P
(t,i)
π , is its sojourn time if it is chosen by the

server at time t and is run to completion without preemption.

Definition 3 (Shortest predicted sojourn time (SPST)). Under

SPST, at every time instant, the job in service is the one with

the shortest predicted sojourn time. That is, at any time t, the

index of the job in service is

k = argmin
i

P
(t,i)
SPST .

In case of a tie, the job with the least arrival time is prioritized.

B. Performance of SPST and other disciplines

In this subsection, the performance of SPST is compared

with that of other well-known service disciplines. The long-

term average rewards are plotted on a log scale for better

visualization. We consider that the reward associated with each

job is of the form f(W ) = exp (−κW ) for some κ > 0.

Figures 2 and 3 depict the performance of disciplines when

jobs of same size arrive with interarrival times {Yi : i ≥ 0}.

We consider δ = ⌊ j
2⌋ for the simulations. It is noted that SPST

performs better than the existing disciplines for all job sizes

for κ = 1.
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Fig. 2: Job size vs. long-term average reward for κ = 1. An

illustration of the performance of SPST discipline.

By convention, the job with the least arrival time is

prioritized for service in case of a tie under any service

discipline. However, in our reward-based queue setup with

f(W ) = exp (−κW ), the tie-breaking criterion has to be

suitably chosen to exploit the contribution of smaller jobs to

the accumulated reward of the system. So, we also simulate the

disciplines with a tie-breaker that prioritizes the most recent

job for service. The suffix -R represents the discipline with

this tie-breaker. e.g., SPST-R.

Figure 3a depicts the performance of the disciplines along

with their tie-breaking variant. With j = 2, any busy period is

2 irrespective of the service discipline, and hence, their long-

term average rewards are the same. In addition, for any i, Yi

is either 2 or 4 with equal probability, which is why the long-

term average reward is 0.135. The same applies for j = 3, in

which case the long-term average reward is 0.0497. It is noted

that SPST still yields rewards higher than that of any of its

contenders for κ = 1. In particular, for κ ≥ 1, SPST is a clear

winner for all sample paths regardless of j as shown in 3b.

Figures 4a and 4b illustrate a more general case of Bernoulli

arrivals with jobs of fixed size j. To ensure stability of the

queue, we take arrival rate to be 1
j+1 . It can be seen that,

even in this case, the performance of SPST is clearly better

than the other policies for κ ≥ 1.

Since the jobs are of the same size in either case of

arrival sequences, some disciplines perform equally. As seen

in figures 3 and 4, SPST-R, PSJF-R, and LCFS show similar

performance. Likewise, the performances of SRPT, PSJF, and

FCFS are similar. In addition, it is evident that the performance

of PS is worse than that of SPST for κ ≥ 1. This could mainly

be due to the time-sharing of jobs under PS. It is also observed

that SRPT-R and PSJF-R show better performance when

compared to their respective conventional variants. However,

under SPST, when same-sized jobs arrive in a sequence, there

can never be a tie between two jobs waiting in the queue based
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(a) Job size vs. long-term average reward for κ = 1
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(b) κ vs. long-term average reward for j = 4.

Fig. 3: An illustration for the case of job arrivals with {Yi, i ∈ N} for δ = ⌊ j
2⌋.
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(a) Job size vs. long-term average reward for κ = 1
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(b) κ vs. long-term average reward for j = 4.

Fig. 4: An illustration for the case of Bernoulli arrivals with probability of arrival 1
j+1 .

on their predicted sojourn times. Only the job in service and a

job in the queue are tied on this basis, in which case priority

to the job in service yields better rewards. On the other hand,

for more realistic arrival models with different job sizes, the

server can choose a tie-breaker under SPST depending on the

secondary performance measure such as expected slowdown

[10, Chapter 28].

Although simulations suggest that SPST is better and may

even be an optimal policy for all arrival sequences, proving

such guarantees are extremely hard. In the next section, we

analytically prove that SPST performs better than FCFS. It

will be evident that even this comparison is quite challenging

due to intricate combinatorial structures.

C. Analytical guarantee

For theoretical analysis, we consider a queuing system in

which jobs of same size, j, arrive with interarrival times {Yi :

i ≥ 0}. Recall

Yi =

{

j1 = j + 1− δ w.p 1
2

j2 = j + 1 + δ otherwise

We consider that the reward associated with each job is of

the form f(W ) = exp (−κW ) for κ > 0. Under a stationary

service discipline π, let r̄π := limn→∞
1
n

∑n
i=1 f(Wi)π, i.e.,

the long-term average reward. The following proposition is the

main result of this section.

Proposition 1. For the defined queuing system with δ ≤ j
2 and

f(W ) = exp (−κW ), r̄SPST ≥ r̄FCFS for all κ ≥ loge 2.

Proposition 1 is a direct consequence of theorem 2. A

better understanding of this relationship requires the following

definitions.



Definition 4 (Busy period). The time from when the server is

busy until it becomes idle.

Definition 5 (Busy period length). The number of jobs in a

busy period is called its length, L.

Definition 6 (Idle period). The time from when the server is

idle until it becomes busy.

Let Rπ denote the accumulated reward in an arbitrary busy

period under service discipline π. That is, for a busy period of

length n, Rπ =
n
∑

i=1

f(Wi)π . We denote the number of arrivals

till t by A(t). Then, r̄π = lim
t−→∞

1
A(t)

A(t)
∑

j=1

f(Wj)π .

Theorem 2. For the defined queuing system with δ ≤ j
2 and

f(W ) = exp (−κW ), RSPST ≥ RFCFS for κ ≥ loge 2.

By renewal reward theorem, we have

r̄π =
E[Rπ]

λE[busy period + idle period]

where λ = 1
j+1 denotes the arrival rate of the jobs. We note

that E[busy period + idle period] is the same for all work

conserving disciplines. Therefore, by theorem 2, we have

r̄SPST ≥ r̄FCFS for all κ ≥ loge 2.

V. PROOF OF THEOREM 2

Recall definitions 4 and 5. The following are the observa-

tions with respect to a busy period for the case of job arrivals

with {Yi, i ∈ N} defined earlier.

(i) If the first inter-arrival time, Y1, is j2, then the busy period

is j. In this case, any work conserving discipline yields

the same reward, exp (−κj), κ > 0.

(ii) If Y1 = j1, then L > 1 for δ > 1.

(iii) A busy period has ended if (k1 + k2)j ≤ k1j1 + k2j2
for k1, k2 ≥ 0. This is because, in any work conserving

discipline, the total work in a busy period cannot be

greater than the busy period itself.

Remark 1. Following observation (iii), before a busy period

ends, k2 cannot be larger than k1. However k1 ≤ k2 is only

a sufficient condition for a busy period to end.

We use the following lemmas to prove theorem 2.

Definition 7 (Priority job). A job of size j is called a priority

job under any discipline if its sojourn time is j. In other words,

a priority job neither waits nor is preempted until it is run to

completion.

Lemma 2. Under SPST, there are at least ⌈n
2 ⌉ priority jobs

for δ ≤ j
2 .

The following definitions are instrumental to understanding

lemma 2 and the subsequent lemmas. Proof of the lemmas are

given in the Appendix.

Definition 8 (Block A). The consecutive jobs that follow the

interarrival time j1 form a block A.

Definition 9 (Block B). The consecutive jobs that follow the

interarrival time j2 form a block B.

Let nA and nB denote the number of blocks A and B in the

busy period respectively. We consider that Ak denotes the kth

block A, n(Ak) denotes the number of jobs in the kth block

A and Ai
k denotes the ith job in the kth block A, with the

similar interpretation for block B. Let nj1 and nj2 represent

the total number of jobs in blocks A and B respectively. i.e.,
nA
∑

i=1

n(Ai) = nj1 and
nB
∑

i=1

n(Bi) = nj2 . Let nP
π represent the

number of priority jobs in the busy period under a service

discipline π.

Lemma 3. For any Ai with odd n(Ai), there exists a job

whose sojourn time under SPST is j + δ − 1.

Lemma 4. If, in a busy period, n is even and n(Ai) is even

for every i, then nP
SPST ≥ n

2 + 1.

Lemma 5. Under FCFS,

a) There is only one priority job.

b) All other jobs have W ≥ j + 1.

c) For n ≥ 3, at least one job has W ≥ j + δ.

Proof of theorem 2. Let T denote the busy period of length

n. For n < 3, RSPST = RFCFS . For n ≥ 3, from lemma 5,

RFCFS ≤ exp (−κj) + exp (−κ(j + δ))

+ (n− 2) exp (−κ(j + 1)) (4)

≤ exp (−κj) + (n− 1) exp (−κ(j + 1)). (5)

If n is odd, from lemma 2,

RSPST ≥
⌈n

2

⌉

exp (−κj) + (n−
⌈n

2

⌉

) exp (−κT ). (6)

Using (5) and (6),

RSPST −RFCFS

≥ (
⌈n

2

⌉

− 1) exp (−κj) + (n−
⌈n

2

⌉

) exp (−κT )

− (n− 1) exp (−κ(j + 1))

≥ (
⌈n

2

⌉

− 1) exp (−κj)− (n− 1) exp (−κ(j + 1))

≥
⌊n

2

⌋

exp (−κj)(1− 2 exp (−κ)). (7)

If n is even, following lemmas 3 and 4,

RSPST ≥
n

2
exp (−κj) + exp (−κ(j + δ − 1))

+ (n−
n

2
− 1) exp (−κT ). (8)

Using (4) and (8),

RSPST −RFCFS

≥
[n

2
− 1

]

exp (−κj) + exp (−κ(j + δ))(exp (κ)− 1)

+ (n−
n

2
− 1) exp (−κT )− (n− 2) exp (−κ(j + 1))

≥
[n

2
− 1

]

exp (−κj)− (n− 2) exp (−κ(j + 1))

≥
[n

2
− 1

]

exp (−κj)(1 − 2 exp (−κ)). (9)

From equations (7) and (9), RSPST ≥ RFCFS for κ ≥ loge 2.



Proposition 1 states that the long-term average reward under

SPST is more than that under FCFS for κ ≥ loge 2. However

it is also clear from (4), (6), and (8) that loge 2 is not a sharp

threshold and obtaining a tight lower bound on κ is far from

simple.

VI. CONCLUSION

In this paper, we studied the problem of maximizing

the average nonlinear functions of sojourn times in work

conserving single server queuing systems and characterized

the performance of some well-known service disciplines. We

argued that identifying a single service discipline that out-

performs other disciplines for all arrival distributions and job

sizes appears to be a highly nontrivial problem. Indeed, an

optimal policy could depend on the specific functional form

of the nonlinear reward function. We also introduced a service

discipline, shortest predicted sojourn time (SPST), and pro-

vided analytical guarantees under specific settings. Numerical

experiments suggest that SPST performs well across multiple

settings, although it may not be optimal for all job sizes,

arrival distributions, and reward functions. As such, the general

problem setting remains largely open for further analytical

investigations.
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APPENDIX

Recall the definitions and notations discussed in section IV.

The following claim is required for the construction of the

proof of lemmas 2 to 4.

Claim 1. Under SPST discipline,

a) For a busy period of length n, nj1 + nj2 = n− 1.

b) A busy period with L > 1 always starts with block A.

Also, every block B is preceded by a block A. That is,

nA − nB ∈ {0, 1}.

c) For δ ≤ j
2 , the jobs in the even index of block A are

priority jobs under SPST.

d) Every job of block B is a priority job under SPST.

Proof of claim 1.

a) The first job in a busy period does not constitute either

of the blocks.

b) Follows observation (ii) and the construction of the

blocks.

c) Follows the construction of the blocks and for δ ≤ j
2 ,

Yk−1 + Yk > j for any k > 1.

d) Follows the construction of blocks B.

A. Proof of lemma 2

Following claim 1, nP
SPST =

nA
∑

i=1

⌊n(Ai)
2 ⌋+ nj2 + 1.

Case 1 (nA = nB).

nP
SPST ≥

nA
∑

i=1

n(Ai)− 1

2
+ nj2 + 1

≥
nj1 − nA

2
+ nj2 + 1

≥
nj1 − nj2

2
+ nj2 + 1 (∵ nB ≤ nj2)

≥
n− 1

2
+ 1 (from claim 1)

which gives nP
SPST ≥

⌈

n
2

⌉

.

Case 2 (nA = nB + 1).

When n is even,

nP
SPST ≥

nA
∑

i=1

n(Ai)− 1

2
+ nj2 + 1

≥
nj1 − nA

2
+ nj2 + 1

≥
nj1 − (nj2 + 1)

2
+ nj2 + 1 (∵ nB ≤ nj2)

≥
n− 2

2
+ 1 (from claim 1)

≥
n

2
.

When n is odd, there are four possible subcases as follows.

Subcase 1 (nA is odd, nj1 is odd). It is noted that nB is even

and nj2 is odd (from claim 1). This implies that at least one

block B has even number of jobs. Therefore, nB ≤ nj2 − 1.

nP
SPST ≥

nA
∑

i=1

n(Ai)− 1

2
+ nj2 + 1

≥
nj1 − nA

2
+ nj2 + 1

≥
nj1 − nj2

2
+ nj2 + 1 (∵ nB ≤ nj2 − 1)

≥
n− 1

2
+ 1 (from claim 1)

≥
⌈n

2

⌉

.

Subcase 2 (nA is even, nj1 is odd). Here nB is odd and nj2

is odd. This implies that at least one block A has even number

of jobs, Say, one such block is Ak′ .

nP
SPST ≥

n(Ak′)

2
+

nB
∑

i=1

n(Ai)− 1

2
+ nj2 + 1

≥
nj1 − nB

2
+ nj2 + 1

≥
nj1 − nj2

2
+ nj2 + 1 (∵ nB ≤ nj2)

≥
n− 1

2
+ 1 (from claim 1)

≥
⌈n

2

⌉

.



Subcase 3 (nA is even, nj1 is even). In this case, there is at

least one block B that has even number of jobs. The lower

bound for nP
SPST follows subcase 1 giving nP

SPST ≥
⌈

n
2

⌉

.

Subcase 4 (nA is odd, nj1 is even). There is at least one block

A that has even number of jobs and hence, the lower bound for

nP
SPST in this case follows subcase 2 giving nP

SPST ≥
⌈

n
2

⌉

.

From cases 1 and 2, it is proved that there are at least ⌈n
2 ⌉

priority jobs under SPST discipline for δ ≤ j
2 .

B. Proof of lemma 3

For any i, if n(Ai) is odd, following claim 1, A
n(Ai)−1
i is a

priority job. Although block Ai might be followed by block

Bi, since j1+j2 > 2j, the sojourn time of A
n(Ai)
i is governed

only by its preceding priority job, A
n(Ai)−1
i , and hence, its

waiting time in the queue is δ−1. Therefore, the sojourn time

of A
n(Ai)
i is j + δ − 1.

C. Proof of lemma 4

For a busy period, assume that n is even and there is at least

one block Aj with even n(Aj). By the analysis of cases 1 and

2 as in lemma 2, we get nP
SPST ≥ n

2 + 1. Let me denote the

number of blocks Ak with even n(Ak). Extending the above-

mentioned argument to all me ≥ 2 such blocks, there are at

least n
2 + me

2 priority jobs in the busy period. In other words,

except for one even block A, the presence of all other even

blocks A improves the bound by 1
2 .

D. Proof of lemma 5

a) Under FCFS, the first job in a busy period is not pre-

empted by any of the subsequent arrivals.

b) Follows lemma 5a).

c) Let WFCFS
k denote the sojourn time of the kth job arrival

in the busy period under FCFS. From lemma 5a), we

know that WFCFS
1 = j and for k ≥ 2, WFCFS

k =
WFCFS

k−1 −Yk−1+j ≥ j+1. Owing to claim 1, for n ≥ 3,

there exists at least one job that follows the interarrival

time j1. Therefore, for such jobs, k ≥ 3,

WFCFS
k ≥ 2j − Yk−1 + 1 ≥ j + δ
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