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Abstract—Large language models (LLMs) have demonstrated
remarkable success as foundational models, benefiting various
downstream applications through fine-tuning. Loss scaling studies
have demonstrated the superior performance of larger LLMs
compared to their smaller counterparts. Nevertheless, training
LLMs with billions of parameters poses significant challenges
and requires considerable computational resources. For example,
training a one trillion parameter GPT-style model on 20 trillion
tokens requires a staggering 120 million exaflops. This research
explores efficient distributed training strategies to extract this
computation from Frontier, the world’s first exascale super-
computer. We enable and investigate various model and data
parallel training techniques, such as tensor parallelism, pipeline
parallelism, and sharded data parallelism, to facilitate training a
trillion-parameter model on Frontier. We empirically assess these
techniques and their associated parameters to determine their
impact on memory footprint, communication latency, and GPU’s
computational efficiency. We analyze the complex interplay
among these techniques and find a strategy to combine them
to achieve high throughput through hyperparameter tuning. We
have identified efficient strategies for training large LLMs of
varying sizes through empirical analysis and hyperparameter
tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters,
we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%,
respectively. For the training of the 175 Billion parameter model
and the 1 Trillion parameter model, we achieved 100% weak
scaling efficiency on 1024 and 3072 MI250X GPUs, respectively.
We also achieved strong scaling efficiencies of 89% and 87% for
these two models. We trained these models only tens of iterations
instead of training till completion.

I. INTRODUCTION

Large language models (LLMs) leverage an attention mech-
anism to learn language structure and can generate natural
language responses to many prompts. Once trained on a large
corpus of text, these models can be fine-tuned to perform
many downstream tasks; thus, LLMs are very successful as
foundational models. Recent studies demonstrated that LLM
models with a large number of parameters outperform LLM
models with a smaller number of parameters [1]. Large LLMs
such as GPT3-175B [2], BLOOM-176B [3], OPT-175B [4],

and Turing NLG-530B [5] have shown remarkable success as
foundational models and outperform their smaller counterparts
in many NLP tasks. Some studies also reported the loss scaling
law, which states that an LLM model can keep learning from
data up to 20x-200x of its parameter count [1], [6], [7].
Training large models using large data requires a tremendous
amount of computing resources. Cost and energy-efficient
utilization of these resources is always challenging.

These models’ success stories demonstrate that open-
sourced large models can serve as state-of-the-art foundation
models. With the advent of RedPajama datasets with one
Trillion and 30 Trillion tokens [8], and the Dolma dataset
with three Trillion tokens [9], [10], a model of size 1 Trillion
parameter must be within the horizon. A rough estimate [11]
tells us that training a Trillion parameter model on 1-30
Trillion tokens will require 6×1012×[1−30]×1012 = 6−180
Million exa-flops (floating point operations).

This paper details our experience training such large LLM
models with billions to trillion parameters on Oak Ridge
National Laboratory’s (ORNL) Frontier supercomputer, one
of the world’s most advanced HPC systems. Central to our
narrative is the acknowledgment of HPC systems as more
than mere facilitators of computing resources. The Frontier
supercomputer, powered by advanced AMD GPUs, represents
a paradigm shift in computational capabilities. However, train-
ing AI models at the trillion-parameter scale introduces unique
challenges. These include balancing the extreme computa-
tional demands with memory constraints and optimizing inter-
node communication to mitigate performance bottlenecks. Our
research provides a detailed analysis of these challenges and
the strategies employed to overcome them, offering insights
into the intricacies of large-scale model training in an HPC
environment.

Large language models often hit GPU memory walls, and
training a trillion parameter model requires approximately 20
Terabytes of memory. So, to fit this model, we need to break it



down into parts and distribute them across hundreds of GPUs.
LLMs are transformer models whose shapes are determined
linearly by the depth (number of layers) and quadratically by
the width (hidden dimension). Various model parallelization
approaches distribute the model along these two dimensions.
We can also use data parallelism to speed up training by
utilizing more GPUs for training on large datasets.

Tensor parallelism proposed by Megatron-LM [12] parti-
tions the layer weights (Tensors), performs computation on
the smaller matrices, and combines the activation results.
This approach splits the model across the width dimension.
Pipeline parallelism breaks the model across layer dimensions
and places groups of layers on individual GPUs. The micro-
batches are consumed in a pipelined fashion, and backward
and forward propagation of these micro-bathes are overlapped
so that the communication latency can be hidden [13]–[15].
The most traditional way for data parallelism is to replicate
the entire model across GPU groups and train these replicas
in parallel while averaging the loss after every forward pass.
A novel direction of data parallelism, namely sharded data
parallelism, achieves data parallelism by sharding the model
parameters across available memory, reducing the amount of
resources required for the model.

Megatron-DeepSpeed [16] supports tensor, pipeline, data,
and sharded data parallelism. Megatron-LM supports the first
three. DeepSpeed ZeRO [17] and Fully Sharded Data Paral-
lelism (FSDP) [18] support sharded data parallelism. Since
models with trillion parameters require many modes of paral-
lelism, Megatron-DeepSpeed is the most complete framework
in terms of the different modes it supports. We explore this
framework to find an optimal strategy through an investigative
understanding of the complex interplay between these modes.
However, these frameworks are primarily developed to run
on NVIDIA GPUs and have yet to be tested extensively on
a large scale or run on AMD platforms. So, we performed
a feasibility study of running these frameworks on Frontier,
ported the framework to Frontier to identify the limiting issues
and opportunities, and prepared a training workflow with an
optimized AI software stack.

After porting the Megatron-DeepSpeed framework to Fron-
tier, we focus on finding the best strategies to train large mod-
els on Frontier using a combination of these parallelizations.
The next challenge for a particular model is what combinations
of these modes we should select and to what extent. For ex-
ample, using tensor parallelism for wide models is beneficial.
Still, because this incurs frequent communication after every
layer, expanding tensor parallelism beyond the GPUs within
a single node is not advised. For pipeline parallelism, the
pipeline bubble (a measure of GPU idle time (Section II-C)
can become an issue, making the communication latency a
bottleneck. Finding the right pipeline parallelism parameters
is crucial for hiding communication latency. So, we explore
these modes and their right configuration in isolation and in
combination.

In our work, we delve into the specifics of how these tools
are optimized for Frontier’s AMD GPU architecture. This

involves an in-depth exploration of their adaptability in man-
aging extensive computational loads and memory optimization
techniques necessary for training trillion-parameter models.
The trade-offs between memory, compute, and communication
are critical in the HPC context. Our research examines the
interplay of these elements in the Frontier environment. We
investigate how adjustments in distributed model training
frameworks can be finely tuned to leverage the full potential
of AMD GPUs, focusing on achieving an optimal balance
between these components to maximize training efficiency and
model accuracy.

A pivotal aspect of our study is the exploration of pipeline
parallelism, tensor parallelism, micro-batch size, and gradient
accumulation steps. These elements are fundamental in dis-
tributed training, particularly at the scale of trillion-parameter
models. Our research provides a detailed examination of how
each component is optimized for Frontier’s infrastructure,
focusing on how these parallelism strategies can be effectively
implemented in an HPC setting to enhance computational
efficiency and reduce training times.

In this paper, our primary focus lies in improving the
training performance of these large-scale LLMs, particularly
emphasizing the computational aspects and efficiency of vari-
ous training strategies. It is important to note that our objective
was not to train these models to completion for the purpose of
achieving the highest possible accuracy. Instead, our approach
was centered around understanding and enhancing the perfor-
mance characteristics of training processes on HPC systems.
This involved exploring the scalability, efficiency, and resource
utilization of different training methodologies, especially in the
context of the Frontier supercomputer’s capabilities. We seek
to gain insights into how different parallelization techniques,
model configurations, and system architectures impact the
training dynamics of LLMs with billions to trillion parameters.
Through this exploration, we sought to contribute practical
strategies, which could aid in the efficient training of large-
scale models in future research and practical applications.

A. Paper Outline

Section II discusses various distribution strategies and cost
evaluation of training large LLMs on Frontier. Section III
provides an empirical analysis of multiple distribution strate-
gies and associated parameters. We identify some valuable
observations for training a 22B model from our experiments.
In Section IV, we report hyperparameter tuning for training a
175B model to understand the combinations of these distribu-
tion strategies. Section V combines the lessons from Sections
3 and 4 and performs further experiments to devise a training
recipe for 175B and 1T models. In that section, we also report
GPU throughput, three different-sized models, and strong and
weak scaling performance.

B. Contributions

The contributions of the paper are:
1) Distributed training techniques on AMD Hardware with

ROCM software platform: This work contributes to



enabling state-of-the-art distributed training algorithms
and frameworks for large LLMs on AMD hardware
using the ROCM software platform. This advancement
serves as a blueprint for efficient training of LLMs on
non-NVIDIA and non-CUDA platforms, such as the
AMD-powered Frontier supercomputer.

2) Development of an optimized distributed training strat-
egy through hyperparameter search: The research
presents strategies to effectively manage the GPU mem-
ory wall and communication latency in the training of
LLMs with billions to trillions of parameters. By per-
forming empirical analysis and hyperparameter search
we identified a strategy that combines model parallelism
techniques, such as tensor parallelism and pipeline par-
allelism, along with data parallelism to efficiently train
large models of size 175 billion and 1 trillion parameters
on Frontier. This study demonstrates how to optimize
memory usage across multiple GPUs and minimize the
communication latency.

II. DISTRIBUTED TRAINING TECHNIQUES AND
FRAMEWORKS

Distributed training of large language models has seen many
innovations and advances in recent times. Much of the focus
on large language models has been on their ability to create
more accurate models using an ever-increasing number of
parameters. Due to this focus, models have become too large
to fit in a single GPU’s memory, accelerating the research
into model parallelism techniques. Tensor parallelism, pipeline
parallelism, and sharded data parallelism are the most popular
techniques for model parallelism.

A. GPT-style Model Architecture and Model Sizes

Transformer models can consist of two distinct parts, a
stack of encoder blocks and a stack of decoder blocks (Fig-
ure 1) [19]. Encoder blocks help capture non-causal self-
attention where each token in a sentence can attend to tokens
from left and right. On the other hand, decoder blocks are
useful for capturing causal self-attention, where a token can
attend to only past tokens in the sequence. In a recent body
of works, the encoder part has been co-opted for building
BERT-like [20] models, which are useful for classification and
regression types of work. On the other hand, the decoder block
has been used for GPT-like [21] models for generative tasks.

The simplest GPT-like models consist of a stack of similar
layers. Each layer has one attention block, followed by a
Feed Forward Network (FFN) (Figure 2). The attention block
has three sets of parameters WK ,WQ,WV ∈ Rd×d, where
d is the hidden dimension of the models. K, Q, and V
matrices required for attention computation are calculated
by multiplying the input X ∈ Rs×d with these weights
(K = XWK , Q = XWQ, V = XWV ), here s is the input
sequence length. The FFN block has two layers, with weights
W1 ∈ Rd×4d and W2 ∈ R4d×d. So, a layer contributes to
11d2 parameters. For multi-head head attention, we use h as
the number of attention heads.

Fig. 1: Transformer architecture.

Fig. 2: Model parameters of a GPT layer.

With the embedding layer at the beginning of the model,
the number of parameters becomes roughly 12Ld2, where L
is the number of layers, and d is the hidden dimension. With
this formula, we can define three models with sizes 22B, 175B,
and 1T in Table I.

Model #Layers Hidden size #Attention heads
1.4B 24 2114 24
22B 48 6144 48
175B 96 12288 96

1T 128 25600 128

TABLE I: Architecture specification of GPT-style LLMs.

Most memory requirements come from model weights,
optimizer states, and gradients. However, the memory required
for forward activation can also become significant depending
on the batch size. In mixed precision training, we need 6
bytes for each model parameter, 4 to save the model in fp32,
and 2 to use in computation in fp16. We need 4 bytes per
parameter for Optimizer states to save the momentum in fp32
(Adam Optimizer). We need to save one fp32 gradient value
for each parameter. So, in a mixed precision training with
Adam optimizer, the minimum memory requirement is listed
in Table II.

Each Frontier node has 8 MI250X GPUs1, each with 64 GB
of HBM memory. So from Table I’s memory requirement, we
can conclude that model parallelism is necessary to fit even

1Each node has 4 MI250X cards, and each card has two Graphics Compute
Dies (GCDs) or effective GPUs. Hence, going forward, we will use the term
GPU to refer to the GCDs. Each GPU has a theoretical fp16 peak of 191.5
TFLOPS.



Memory Requirement
Values 22B Model 175B Model 1T Model

Parameters (6x) 132 GB 1050 GB 6 TB
Gradients (4x) 88 GB 700 GB 4 TB

Optimizer States (8x) 176 GB 1.4 TB 8 TB
Total Memory (20x*) 440 GB 3.5 TB 20 TB

TABLE II: Memory Requirement for Training a 22B, 175B,
and 1T Models in mixed precision. We have not included
the activation memory or the overhead memory for various
distribution frameworks.

one replica of the model. Model parallelism can happen in the
hidden dimension via Tensor and Sharded data parallelism or
in the layer dimension via Pipeline parallelism.

B. Tensor Parallelism

Tensor parallelism splits the weight tensor of a layer along
the row or column dimension [22]. The attention block has
three tensors K,Q, V ∈ Rs×d for a given layer. These tensors
are split column-wise (Figure 3) and K = [K1,K2, . . . ,Kh],
Q = [Q1, Q2, . . . , Qh], and V = [V1, V2, . . . , Vh] where
Ki, Qi, Vi ∈ Rs×d/h. For the FFN block, W1 is split along
column, and W2 is split along row.

Fig. 3: Tensor parallelism on Attention block. V, K, Q ten-
sors are split along the attention heads (column dimension).
V = [V1, V2, . . . Vh], Q = [Q1, Q2, . . . Qh], and K =
[K1,K2, . . .Kh]. B is split along its row-dimension.

For attention computation, the original formula is
softmax(KQT

√
d
)V . For each split, the partial attention is com-

puted as softmax(
KiQ

T
i√

d/h
)Vi. These partial attentions are then

appended along column dimension to find the final attention
A = [A1, A2, . . . , Ah] where A ∈ Rs×d, Ai ∈ Rs×d/h

(Figure 3(b)).
For the FFN block, the computed attention goes through

two FFN layers, where A is first multiplied by W1 ∈ Rd×4d,
then the result is multiplied by W2 ∈ R4d×d. W1 is partitioned
along column dimension, whereas W2 is partitioned along row
dimension (Figure 3(b)).

C. Pipeline Parallelism

Pipeline parallelism splits the model into p stages, each
having roughly L/p layers. Then, the batch is split into micro-
batches, and at every execution step, one micro-batch is passed
through a stage. Each stage is placed on a GPU. Initially, only
the first GPU can process the first micro-batch. At the second
execution step, the first micro-batch progresses to the second
stage, and the first micro-batch can now go to the first stage.
This is repeated until the last micro-batch reaches the last
stage. Then, the backward propagation starts, and the whole
process continues in the reverse direction. GPipe [13] proposes
this simple method. Synchronization points are introduced
after every batch to maintain the correct order of computation,
requiring flushing pipeline stages. So, at the beginning and the
end of a batch’s processing, GPUs hosting earlier and later
stages stay idle, resulting in wasted compute time or a pipeline
bubble. The pipeline bubble fraction is p−1

m , where m is the
number of micro-batches in a batch.

The simple GPipe scheduling creates a large pipeline bub-
ble. Some additional methods are in place to reduce the
pipeline bubbles. One such way is 1F1B scheduling proposed
by PipeDream [14], wherein during the forward pass, initially,
the micro-batches are allowed to flow forward until the last
group receives the first micro-batch. But then the backward
propagation of the first batch starts, and from then, a forward
pass is always accompanied by a backward pass, hence the
name 1F1B. An interleaving schedule has been proposed to
reduce the bubble size even further where instead of placing
one pipeline group on one GPU, multiple smaller pipeline
groups are placed on a single GPU.

The pipeline bubble size for the 1F1B schedule is roughly
p/m, where p is the number of pipeline groups, and m is
the number of micro-batches. For the 1f1B schedule with
interleaving, the bubble size is p−1

m×v , where v is the number
of interleaved groups placed on a single GPU.

D. Sharded Data Parallelism

Sharded data parallelism shards model parameters, opti-
mizer states, and gradients and places one partition on each
GPU [17], [18]. Since training advances one layer at a time,
the computing devices need to have only one full layer and
associated values (optimizer states, gradients, and parameters)
in the memory. Sharded data parallelism takes advantage of
this; before execution of a layer, that layer is materialized in
all the GPUs by performing all gather across all the GPUs
for that layer (Figure 4(a)). Now, all the GPUs have replicas
of the same layer. Then, the layer is executed on different
data batches on different GPUs. After that, each GPU deletes
all the gathered parts of that layer and prepares for the next
layer’s materialization through all-gather. This way, it emulates
data parallelism, but instead of every GPU hosting a complete
replica of the entire model, it just hosts a replica of the
currently active layer.

Sharded data parallelism can facilitate data parallel training
of a large model across GPUs, even if the model is too
large to fit in a single GPU’s memory. DeepSpeed’s ZeRO



optimizers [17] support sharded data parallelism in varying
degrees. ZeRO-1 only shard optimizer states, ZeRO-2 shards
gradients along with optimizer states, and ZeRO-3 shards
optimizer states, gradients, and model parameters. On the other
hand, PyTorch FSDP (Fully Sharded Data Parallelism) [18]
shards all three and also supports a hybrid data parallelism
by combining sharded data parallelism with traditional data
parallelism.

E. 3D Parallelism and Megatron-DeepSpeed

Using only a single parallelism strategy to implement model
parallelism can be an inefficient approach. For example, if we
use only tensor parallelism to slice the model horizontally,
the tensors can be too thin, requiring frequent all-reduce
communication that can slow down the training. On the
other hand, if we partition the model into too many pipeline
stages, each stage will have tiny amounts of computation,
which will require frequent communication. A known issue is
that performing tensor parallel training across multiple nodes
requires slow tree-like allreduce.

The use of multiple of these modes of parallelism in a hybrid
fashion can minimize the areas of poor performance. 3D
parallelism combines tensor, pipeline, and data (traditional and
sharded) parallelism techniques to utilize resources. Through
a proper setup, 3D parallelism can reduce communication
latency by overlapping communication with computation. The
standard code base for 3D parallelism used across the AI
landscape is based on the Megatron-LM [22]. Megatron-
DeepSpeed [16] extends on the features from Megatron-LM by
adding DeepSpeed features such as the ZeRO-1 sharded data
parallelism and a pipeline parallelism with overlapped 1F1B
schedule. However, these standard codebases are all developed
for NVIDIA GPUs and the CUDA platform.

F. Porting Megatron-DeepSpeed to Frontier

Megatron-DeepSpeed codebase is forked from NVIDIA’s
Megatron-LM codebase, and Microsoft then added DeepSpeed
ZeRO optimizers, pipeline parallelism, and Mixture of Experts
into this. NVIDIA develops Megatron-LM; hence, its codebase
is developed with NVIDIA GPUs and CUDA environment as
the target platform. Porting this codebase to run on the AMD
platform presents some challenges.

1) CUDA Code: CUDA code doesn’t run on AMD hard-
ware; however, HIP, a CUDA-like C/C++ extension language,
does. We converted the CUDA source code to HIP code
using the hipify tool, built the shareable objects (so files)
using hipcc, and then used pybind to make these shareable
objects accessible from Python code.

2) DeepSpeed Ops: Most of the DeepSpeed ops are built
during the execution of the training pipeline through JIT
(Just in time) compilation. However, the JIT compilation of
DeepSpeed ops didn’t work on the ROCM platform, so we
prebuilt all the ops when we installed DeepSpeed. We disabled
all JIT functionalities from the Megatron-DeepSpeed codebase
to avoid any runtime error.

3) Initialization of PyTorch Distributed Environment:
Megatron-DeepSpeed utilized PyTorch Distributed initializa-
tion for creating various data and model parallel groups.
This initialization process requires dedicating one compute
node as the ”master” node, and all the distributed processes
require its IP address. We modify the codebase to accept
MASTER ADDR as an argument. We prepared a launch
script to read the first node’s IP address from the SLURM
node list and pass this as an argument to all the processes
launched using srun. The initialization code then uses this
MASTER ADDR for PyTorch Distributed initialization.

4) Libraries/Packages provided through ROCM Platform
Software: We worked with AMD developers to get the
ROCM version of some of the essential CUDA packages,
such as APEX [23]. APEX is NVIDIA’s mixed precision li-
brary, which is heavily leveraged by the Megatron-DeepSpeed
code base for mixed precision training. We also adapted
ROCM-enabled versions of FlashAttention [24] and FlashAt-
tention2 [25] libraries for use with available compilers on
Frontier. The Flash-Attention operations are ported to AMD
GPUs using kernels from the Composable Kernel library [26].

III. EMPIRICAL ANALYSIS OF VARIOUS DISTRIBUTION
STRATEGY

In this section, we report our experiments exploring vari-
ous distribution strategies and their optimal parameter values
(Table III).

Distribution Strategy Tunable Parameters
Tensor Parallelism Tensor Parallel Size (TP )
Pipeline Parallelism Pipeline Parallel Size (PP ), #Mi-

crobatches (m)
Sharded Data Parallelism ZeRO-1
Common Micro Batch Size
Mixed Precision Training FP16, BF16

TABLE III: Distribution Strategies and relevant tunable pa-
rameters

A. Tensor Parallelism

Tensor parallelism partitions model layers [22], and after
every layer, the partial activation values need to be aggregated
via allreduce. AllReduce after every layer execution is costly,
and this depends on communication bandwidth between GPUs
in a tensor-parallel group, communication volume which de-
pends on hidden size and micro-batch size.

Figure 5 shows the communication bandwidth between
Frontier GPUs. There are 8 GPUs in a node, and the GPUs in a
single die are connected via four (50+50 GB/s) infinity fabrics.
The bandwidth between GPUs across the die is half of it. But,
the bandwidth between GPUs across nodes is 25+25 GB/s. So,
from the network topology and configuration, TP = 2 would
provide the fastest communication, and TP = 4 or 8 would be
the second fastest. But, for TP > 8, the communication will
happen over slower slingshot, and the communication will be
much slower. So, keeping TP in {2, 4, 8} should be the optimal
strategy.



(a) Model is sharded vertically, and each shard is placed on a
GPU.

(b) Sharded Data Parallelism, illustrated for the first layer.

Fig. 4: Sharded data parallelism.

Fig. 5: Communication Bandwidth between GPUs in Frontier.

Fig. 6: GPU throughput vs TP for a 22B model.

We train a 1.4B model using 8 GPUs by varying TP from
1 to 8 and see that the smaller the value of TP, the higher the
throughput (Figure 6).

Observation III.1 Larger values of TP requiring inter-node
communication deteriorate training performance.

B. Pipeline Parallelism

Pipeline parallelism partitions the model along the layer
dimension and groups consecutive layers into pipeline stages.
The execution of a micro-batch flows from one stage to the
next one.

A pipeline bubble would be a limiting factor for efficient
training with this parallelism. The bubble size is roughly TP

v×M ,
where TP is the number of pipeline stages, M is the number
of micro-batches, and v is the number of overlapped pipeline
stages on a single GPU. A large M can ensure the bubble
size is minimal; however, it might need to utilize gradient
accumulation. A large M results in a sizeable global batch
size (GBS).

We saw the effect of large M or large GBS to see the impact
on GPU throughput for two models of size 22B parameters
and 1T parameters (Figure 7).

Observation III.2 Saturating pipeline stages with large
global batch sizes or many micro-batches minimizes pipeline
bubble size.

1) Impact of Number of Pipeline Stages: Next, we in-
vestigate the impact of the number of pipeline stages on
training performance. Intuitively, more pipeline stages mean
less computation before the communication happens. With a
fixed global batch size (number of micro-batches), the pipeline
bubble size increases with the number of pipeline stages. We
also experiment with increasing the number of pipeline stages
while keeping the PP

M fixed by increasing the global batch
size proportionally.

Observation III.3 Increasing the number of pipeline stages
while keeping the global batch size fixed increases the pipeline
bubble size and deteriorates training performance.

Observation III.4 The training performance can be main-
tained with an increasing number of pipeline stages if the
ratio of the number of pipeline stages to the number of micro-
batches is kept constant.

From the first experiment (Figure 8a), the training per-
formance deteriorates with the increasing pipeline stages.
However, scaling global batch size to fix the bubble ratio
maintains the throughput (Figure 8b).



Fig. 7: GPU throughput as a function of global batch size. Throughput increases with global batch size since it increases the
number of micro-batches (M) and reduces the bubble size. However, using a large global batch size for a single replica has
implications for how much data parallelism we can use and what part of the entire machine we will be able to use.

Fig. 8: Impact of pipeline parallelism on training performance.

IV. HYPERPARAMETER TUNING USING DEEPHYPER

DeepHyper is a Python package developed to automate the
development of machine learning workflows with algorithms
such as hyperparameter optimization (HPO) [27], neural ar-
chitecture search [28], and uncertainty quantification [29].
Hyperparameters are the parameters of the optimized learning
workflow that define it but cannot be inferred during the so-
called “training” phase.

To find the best distributed training strategy determined by
tensor, data pipelining, data sharding, and data parallelism
settings, we use the asynchronous HPO from DeepHyper,
which is based on a Bayesian optimization solver.

For the execution aspect, DeepHyper offers multiple par-
allelization schemes [30] (e.g., centralized or decentralized
for the search execution; threads, processes, or MPI for the
execution of our black box). We focused on a centralized
architecture with processes for black-box evaluations, as our
setting did not reach any parallelism bottleneck. Then, as
each evaluation also requires a set of parallel resources (in
particular, different nodes), we pass a queue of all nodes
available to DeepHyper and ask each job to use 16 nodes.
When DeepHyper suggests a hyperparameter configuration
to be evaluated, a local process is created to schedule its

evaluation; within this process, we set up the distributed
training application given the passed hyperparameters and
launch it through SLURM via srun.

We define the space of allowed hyperparameters through
DeepHyper, which can be of categorical, discrete, or continu-
ous types (a.k.a. mixed types). Table IV describes the hyper-
parameter space we used to tune the distributed training of a
175 Billion parameter model through FLOPs maximization. In
this space, hyperparameter configurations can exist, triggering
failures of the distributed training, such as memory exhaus-
tion (out-of-memory). We handle such failures by catching
the exception and returning the special F-objective value to
DeepHyper, which internally penalizes such evaluations to
discourage future evaluations.

Hyperparameters Range
Pipeline-parallel-size (PP) PP ∈ {1, 2, 4, 8, 12, 16}
Tensor-parallel-size (TP) TP ∈ {1, 2, 4, 8}
Micro-batch-size (MBS) MBS ∈ [4, 20]

Gradient accumulation steps (GAS) GAS ∈ {5, 10}
ZeRO-1 Optimizer ZeRO − 1 ∈ {True, False}

Number of Nodes (NNODES) NNODES ∈ {12, 16}

TABLE IV: Hyperparameter Tuning for 175B Model



Fig. 9: Search Trajectory of DeepHyper search

We ran these hyperparameter tunings on 128 nodes, and
each search job utilized 16 nodes. Each job picks 16 nodes
from the queue. However, some of the jobs will use 12 nodes
or 16 nodes. We dynamically create a srun launch command
with these hyperparameters and submit the job for a maximum
of 20 minutes.

In Figure 9, we present the results of our experiment. We
observe many failures (red arrows), mostly out-of-memory
errors. However, we observe that the frequency of such failures
decreases with time. For successful evaluations, the best value
of FLOPS improves with time to reach a final value of 22
TFLOPS.

Fig. 10: Impact of various hyperparameters on training perfor-
mance in terms of GPU throughput.

Using tuning run results of the DeepHyper search, we con-
duct SHAP (SHapley Additive exPlanations) [31] sensitivity
analysis to assess the impact of the hyperparameters on the
performance. SHAP is a game theory-based approach for ex-
plaining the output of machine learning models. It assigns each
feature an importance value for a particular prediction. These
values are derived from the Shapley values in cooperative
game theory and provide a measure of the contribution of
each feature to the prediction. SHAP values are instrumental
because they are consistent and locally accurate, meaning they
sum up the difference between the model and baseline outputs.

In the context of hyperparameter sensitivity analysis, SHAP
can be used to evaluate the impact of different hyperparameters
on performance by fitting a regression model that predicts
the performance (outputs) with hyperparameters (inputs). In
this analysis, various hyperparameters, such as micro-batch
size (p:mbs), tensor-parallel-size (p:tp), pipeline-parallel-size

(p:pp), number of nodes (p:num nodes), and another pa-
rameter (p:zero1), are assessed to determine their influence
on the FLOPS. When varying these hyperparameters, the
SHAP values indicate the average impact on the model output
magnitude. The bar chart in Figure 10 presents these hyper-
parameters’ mean absolute SHAP values, providing insight
into which parameters have the most substantial effect on the
model’s computational efficiency.

From the sensitivity analysis of all the hyperparame-
ters (Figure 10), we find that the micro-batch size is the
most impactful hyperparameter. Then, tensor-parallel-size, and
pipeline-parallel-size. We see that utilizing ZeRO-1 has the
least impact.

V. TRAINING A TRILLION PARAMETER MODEL

From the experiments, hyperparameter tuning, and analysis,
we have identified an efficient strategy for training a Trillion-
parameter model on Frontier by combining various distribu-
tion strategies and software optimizations. In this subsection,
we list them with their contribution and best configurations
(Table V).

A. An Efficient Strategy for Training a Trillion Parameter
Model

Saturate Pipeline Stages by Increasing the Num-
ber of Micro-batches: We use pipeline parallelism pro-
vided by DeepSpeed (from DeepSpeed-Megatron, but not the
Megatron’s version). This pipeline parallelism algorithm is
PipeDream’s algorithm, where multiple stages are overlapped,
and the 1F1B algorithm is followed to reduce the bubble size.
However, the bubble size will increase if the pipeline stages
are not saturated. To ensure saturation, the number of micro-
batches must equal or exceed the number of pipeline stages.

Limit Tensor-Parallelism to A Single Node / Eight GPUs:
Since the AllReduce operation is too frequent and needs to be
performed for every layer, a layer spread across nodes causes
tree-based AllReduction between GPUs across nodes, and the
communication latency becomes a significant bottleneck.

Use Flash-Attention v2: We observed up to 30% through-
put improvement using Flash-attention compared to the regular
attention implementation.

Use ZeRO-1 Optimizer For Data Parallelism: We use
ZeRO-1 for data parallelism to reduce memory overhead.

Use RCCL Plugin by AWS to Improve Communication
Stability: AWS OFI RCCL plugin enables EC2 developers
to use libfabric as a network provider while running AMD’s
RCCL-based applications. On Frontier, usage of this plugin
shows communication stability.

B. Training Performance of a Trillion Parameter Model

From the lessons learned from hyperparameter tuning, we
identified a set of combinations for models of size 22 Billion
parameters and 175 Billion parameters. Encouraged by the
GPU throughput of these two models, we finally trained a
trillion parameter model using the combination of distribution
strategies listed in Table V for ten iterations to see the



Fig. 11: MI250X Throughput for various model sizes. We
report the hardware FLOPS, which are in close agreement
with the model FLOPS.

training performance. For the 22B parameter model, we could
extract 38.38% (73.5 TFLOPS) of its peak throughput (191.5
TFLOPS). For the 175B model training, we achieved 36.14%
(69.2 TFLOPs) of peak throughput. Finally, for the 1T model,
we achieved 31.96% (61.2 TFLOPs) of peak throughput 11.

Hyperparameters Value
175B Model 1T Model

TP 4 8
PP 16 64

MBS 1 1
GBS 640 1600

ZeRO Stage 1 1
Flash Attention v2 v2

Precision fp16 fp16
checkpoint-activations True True

TABLE V: Best parameters for training a 175B model and a
1T model.

a) Composite Roofline Analysis: We collected the total
hardware flops and bytes read and written throughout the
training. From there, we computed the arithmetic intensities
for training 22B and 175B parameter models to understand the
limiting factors of the kernels. For these models, our achieved
FLOPS were 38.38% and 36.14%, and arithmetic intensities
of 180+. The memory bandwidth roof and the peak flops-rate
roof meet close to the arithmetic intensity of 1. Hence, our
training is not memory-bound.

C. Scaling Performance

Sustaining the performance of model-parallel training
through data parallelism to engage a large number of GPUs in
a system is a challenging task. Frontier GPUs are connected
via communication links of various speeds, and stressing the
larger part of the network can result in lost performance. So,
we scale the training up to 1024 GPUs for a 175B model
and 3072 GPUs for a 1T model through data parallelism to
measure the scaling efficiency of our training strategy.

1) Weak Scaling: We perform a weak scaling experiment
for the 1T model by performing data-parallel training on 1024,
2048, and 3072 GPUs using global batch sizes 3200, 6400, and
9600. The data-parallel training achieves 100% weak scaling
efficiency (Figure 12(a)).

2) Strong Scaling: We perform strong scaling experiments
by keeping the global batch size at 8000 and then varying
the number of GPUs. We achieved 89.93% strong scaling
performance for a 175B model on 1024 GPUs. We achieved
87.05% strong scaling performance for a 1 Trillion parameter
model on 3072 GPUs (Figure 13b(b)).

The 100% weak scaling performance tells us that if we
can keep increasing the global batch-size proportionally with
the increasing number of GPUs, we will be able to maintain
the training efficiency of the smallest training workload. For
example, for training a model with 1 Trillion parameter on
1024 GPUs (with two replicas or data parallels size = 2),
we achieve 61.2 TFLOPS GPU throughput. We can expect
to achieve roughly the same throughput even when we train
the model on tens of thousands of GPUs by increasing the
data parallelism proportionally. This is due to infrequent and
efficient allreduce operations at the end of the forward pass.
However, there is a major caveat regarding the large batch
size training. With increasing global batch size, the training
accuracy decreases.

The strong scaling efficiency tells us the most significant
challenge with training an LLM across tens of thousands of
GPUs. Here, we are keeping the global batch size fixed, that
means with increasing number of GPUs, one replica of the
model needs to span more and more GPUs. Consequently,
there are increasing number of frequent and inefficient collec-
tive communications between various components of the same
model replica.

D. Power and Energy Analysis

We used rocm-smi to measure GPU level energy consump-
tion. Figure 13 shows GPU power during training of 22B and
175B model parameters. Idle GPU power is approximately 90
Watts.

Taking iteration time, consumed tokens per iterations, av-
erage active power, and total number of MI250X GPU cards,
we can estimate how much energy each model training will
require to train the model on 20X tokens (compared to
model parameters). For 22B, 175B, and 1T parameter model,
the estimated energy consumption is 284 Gigajoules, 17.65
Terajoules, and 662 Terajoules.

VI. CONCLUSION AND DISCUSSION

Training an LLM with Billions to Trillions of parameters
is a challenging task since we have to orchestrate overcoming
the GPU memory wall, minimizing communication latency,
and building a software stack with state-of-the-art distribution
algorithms. A Trillion parameter model requires a minimum
of 14 Terabytes of memory, while an MI250X GPU has
only 64 Gigabytes. So, to overcome the memory wall prob-
lem, we have explored a combination of model parallelism
strategies. However, model parallel training requires commu-
nication within groups of GPUs either sharing the parts of
the same tensor (Tensor parallelism) or the groups of GPUs
hosting neighboring components (pipeline parallelism). We
also needed to utilize data parallelism to consume a large



Fig. 12: Weak and strong scaling performance of 1T model training on 3072 GPUs.

Fig. 13: Strong scaling performance of 175b model and 1T model training.

number of tokens simultaneously and use a larger number
of computing resources to achieve faster time to solution.
All of these model parallelism and data parallelism incur
communication at various frequencies and of various volumes.
The communication latency can significantly increase the
training time and reduce the training performance regarding
GPU throughput.

We must select the right combinations of these paralleliza-
tion and distributed techniques to overlap computation and
communication to hide or minimize the latency. We prepared
a software stack on Frontier for training LLM models by
porting state-of-the-art distributed training frameworks such as
Megatron-DeepSpeed and FSDP. We then used this framework
to experiment with various distribution strategies and their
impact on training performance. Starting with the results of
these experiments, we also performed hyperparameter tuning
to understand how these distribution strategies can work
together to get high GPU throughput on the Frontier sys-
tem with AMD hardware and the ROCM software platform.
With the lessons learned from these experiments, we further
tuned the distribution strategies to develop recipes for training
large models such as 175 billion and 1 trillion parameters.
We achieved high GPU throughput and 100% weak scaling
efficiency for both models on thousands of GPUs. We also
achieved 89% and 87% strong scaling efficiencies for these
two models on thousands of GPUs.

One major challenge in reducing time-to-solution using a
large part of Frontier will be loss divergence due to large batch

size. To the best of our knowledge, the largest global batch size
used in training an open-source LLM is 16 Million tokens, and
most large LLMs have used much fewer tokens than the global
batch size. With a sequence length of 2048, this translates
to 8000 samples. We observed that at least one sample per
GPU significantly boosts GPU throughput. To this extent, we
must improve large-batch training and model parallel training
performance with smaller per-replica batch sizes.

Most state-of-the-art distributed training frameworks target
NVIDIA GPUs, and large-scale model training is done on
CUDA-supported platforms. There needs to be more work
exploring efficient training performance on AMD GPUs, and
the ROCM platform is sparse. In this work, we have developed
a training system of large LLMs of 175B and 1T on AMD
hardware and the ROCM platform. This work can serve as
the blueprint for efficient training of LLMs on non-NVIDIA
and non-CUDA platforms such as AMD-powered Frontier
supercomputer and Intel-powered Aurora supercomputer.
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