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Abstract—Training convolutional recurrent neural networks on
first-order Ambisonics signals is a well-known approach when
estimating the direction of arrival for speech/sound signals. In
this work, we investigate whether increasing the order of Am-
bisonics up to the fourth order further improves the estimation
performance of convolutional recurrent neural networks. While
our results on data based on simulated spatial room impulse
responses show that the use of higher Ambisonics orders does
have the potential to provide better localization results, no further
improvement was shown on data based on real spatial room
impulse responses from order two onwards. Rather, it seems to
be crucial to extract meaningful features from the raw data. First
order features derived from the acoustic intensity vector were
superior to pure higher-order magnitude and phase features in
almost all scenarios.

Index Terms—Direction of arrival estimation, higher-order
Ambisonics, convolutional recurrent neural network, spherical
harmonics.

I. INTRODUCTION

Estimating the direction of arrival (DOA) of sound/speech is

a key problem in acoustic signal processing. Neural networks

have been shown to be superior to classical parametric ap-

proaches in this task, especially in reverberant, noisy, and low-

SNR environments [1]–[4]. Recently, DOA estimation based

on first-order Ambisonics (FOA) signals has been the subject

of much attention [4]–[7]. Due to the flexibility and general-

izability of the Ambisonics approach, it more or less enables

microphone-array-independent DOA estimation models.

Perotin et al. [4], [8], [9] investigated the effect of differ-

ent parameters when training convolutional recurrent neural

networks (CRNNs) on FOA data for the DOA estimation of

noisy speech. They proposed the usage of features derived

from the sound intensity vector as input for the training,

achieving greater accuracy in DOA estimation than with using

pure magnitude and phase information [8]. Furthermore, they

showed that a regression approach is at least as suitable as

a classification interpretation for a single-source DOA esti-

mation with diffuse interference and that a CRNN trained on

spherical coordinates performs worse than a network trained

on Cartesian coordinates when using the mean squared error

(MSE) or angular distance as loss function [9].

However, despite the increasing availability of higher-order

ambisonics (HOA) microphones, very little research is con-

ducted on the performance of DOA estimators based on HOA

signals.

There are some results from other applications where the

usage of HOA signals is advantageous over the use of FOA

signals. Pointer experiments with subjects showed a positive

influence of the order of the Ambisonics signal on perceptual

localization accuracy in a loudspeaker reproduction of a sound

field [10]. Similarly, the higher-order model of directional

audio coding (HO-DirAC) achieved a higher reproduction

accuracy than the first-order DirAC in a perceptual evaluation

[11], [12]. Investigations on spherical harmonic (SH) beam-

forming with unsupervised peak clustering [13] also showed

an improvement in localization accuracy with increasing Am-

bisonics order. However, to our knowledge, this topic has not

yet been investigated or even quantified for state of the art

deep learning approaches for DOA estimation.

This work therefore is the first to apply the idea of CRNN-

based DOA estimation to HOA signals and to investigate

whether or how much the additional spatial information con-

tained in HOA can improve the estimation accuracy. We

thereby compare our HOA models with FOA models based on

both magnitude/phase spectrograms and spectrogram features

derived from the acoustic intensity vector.

To the best of our knowledge, there is no sufficiently large

dataset of HOA speech signals or impulse responses available.

Therefore, we had to create a suitable dataset of noisy speech

data with different orders of Ambisonics, taking inspiration

from the procedure used in [9] for creating a FOA dataset. Due

to the way we parameterize the impulse response simulation,

this dataset can not only be used for training deep learning

models for DOA estimation. The dataset also contains labels

regarding room size/geometry as well as acoustic properties

such as reverberation time and absorption/scattering coeffi-

cients and will serve as the basis for a number of studies

in the context of acoustic analysis based on HOA signals.

We present the details on the generation of our training,

validation, and testing data in Sec. III after a brief introduc-

tion to the fundamentals of Ambisonics and SH in Sec. II.

The configuration of the trained model and the metrics are

described in Sec. IV. Finally, the results based on simulated

and measured data are compared and discussed in Sec. V and

summarized in Sec. VI.
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II. AMBISONICS

Ambisonics is a 3D audio surround representation and

rendering approach based on the spatial decomposition of the

sound field in the orthonormal basis of SH [4], [14]. This

section gives an overview of the mathematical principles of

Ambisonics. This condensed description of the SH decompo-

sition is based on the more detailed presentation in [15], [16].

In the following, the Cartesian (x, y, z) ∈ R
3 and the

spherical (r, θ, φ) = (r,Ω) ∈ [0,∞) × (−π
2
, π
2
] × [−π, π]

coordinate systems are used. The x-, y- and z-axes point

to the front, left and top, respectively. The angle φ is the

azimuth, which is zero at the frontal direction and increasing

counterclockwise; θ is the elevation, which is zero at the

horizontal plane and positive above, and r is the radius.

Consider a function f(θ, φ) = f(Ω) ∈ L2
(

S2
)

on

the unit 2-sphere S2 :=
{

x ∈ R
3 : ‖x‖2 = 1

}

, then the SH

decomposition of f is given by

f(Ω) =

∞
∑

n=0

n
∑

m=−n

fnmY m
n (Ω), (1)

where Y m
n is the spherical harmonic of order n and degree m.

The coefficients fnm are calculated by

fnm =

∫

Ω∈S2

f(Ω)Y m
n

∗(Ω) dΩ, (2)

where
∫

Ω∈S2 dΩ =
∫ π

−π

∫ π/2

−π/2
sin θ dθ dφ. Equations (1) and

(2) show that any square-integrable function on the unit 2-

sphere can be approximated by a linear combination of the

SH. This approximation even becomes exact for an infinite

number of SH. In this paper, the ambiX format [14] is used

for the (real) SH Y m
n :

Y m
n (θ, φ) = N |m|

n P |m|
n (sin(θ))

{

sin(|m|φ), for m < 0

cos(|m|φ), for m ≥ 0

with the Legendre-functions Pm
n . To build the set of Ambison-

ics signals according to ambiX, the channels corresponding

to the SH are ordered by the Ambisonics channel number

ACN = n2+n+m and normalised by the SN3D normalisation

N |m|
n =

√

2− δm

4π

(n− |m|)!

(n+ |m|)!
.

In the special case of FOA, the channels 1-4 according to ACN

are often referred to as W,Y, Z,X .

III. DATA

A. Simulated SRIRs

The training, validation and testing data was generated from

a set of spatial room impulse responses (SRIRs) simulated

with the MCRoomSim toolbox [17] as Ambisonics signals

up to fourth order corresponding to the ambiX format. The

approach was inspired by the procedure described in [4].

Alltogether we generated 8000, 500, and 500 rooms with

random dimensions in [3, 20]×[3, 20]×[3, 5]m for the training,

validation, and testing set, respectively. The acoustic properties

of the walls (frequency dependant scattering and absorption

coefficients) were set to plausible, randomly chosen surfaces

of the GRAP database [18]. For every room, one receiver was

randomly positioned with a minimum distance of 1.5 m to the

walls. Furthermore, one source was randomly positioned at

8 different locations such that the DOAs in the dataset are

uniformly distributed. The distance from the source to the

receiver was chosen randomly, ensuring that the source and

the receiver are at least 1 m apart from each other and that

the source is at least 49 cm from a wall. With this setup,

we simulated 64 000, 4000 and 4000 fourth-order Ambisonics

SRIRs. Although the experiments in this paper were conducted

using speech signals with a sampling rate of 16 kHz, the SRIRs

were simulated with a sampling frequency of 48 kHz to be able

to expand the methods of this paper to general audio/music

signals using the same database. After resampling, the SRIRs

were convolved with a randomly chosen sentence from the

TIMIT database [19]. This database contains a total of 6300

sentences, 10 sentences spoken by each of the 630 speakers

(192 female, 438 male) from eight major dialect regions of

the United States. The TIMIT database was split into training,

testing and validation sets resulting in 462 (136 female, 326

male), 88 (30 female, 58 male), and 80 (26 female, 54 male)

speakers, respectively. The training set corresponds to the

recommended one by the authors of the TIMIT database.

The test set includes the recommended core test set and it

is ensured that there is at least one female/male speaker per

dialect in the validation and test set, respectively.

Furthermore, we added ambient noise to the speech signals

similar to the procedure in [4]. Therefore, we generated

single-channel babble noise by overlaying 50 sentences of

the respective sets. This babble noise was then convolved

with a diffuse SRIR, which was generated by averaging three

simulated diffuse parts of SRIRs with a receiver placed in

the middle of a random room and a randomly positioned

source. This ambient noise was added to the speech signal

at a signal-to-noise ratio (SNR) between 0 and 20 dB. Finally,

these sentences were cut to one-second-sequences which led

to 164 303, 10 285 and 10 394 sequences for the training,

validation and testing set, respectively.

B. Real SRIRs

For the analysis of DOA estimation performance in a more

realistic scenario, we measured real SRIRs in the Immersive

Media Lab (IML) [20] at the Institute of Communications

Technology. We measured the SRIRs from each of our 36

KH120 loudspeakers to an em32 Eigenmike® [21] microphone

at nine different positions, each with two different heights and

eight different orientations of our microphone. In total, the

described procedure led to 5184 measured SRIRs in the IML,

which were afterwards encoded to a fourth-order Ambisonics

signal using the EigenUnit-em32-encoder1. These measured

SRIRs were used according to the same procedure as for the

simulated SRIRs to generate HOA multispeaker signals which

1https://mhacoustics.com/eigenunits



resulted in 13 414 sequences for the testing set based on real

SRIRs.

IV. DOA ESTIMATION FRAMEWORK

A. Networks and metrics

Our trained networks follow a similar basic CRNN structure

compared to the ones in [3], [4]. A detailed overview of the

network’s architecture is given in Table I, where the final

normalization layer scales the prediction to lie on the unit

2-sphere. We formulated this task as a regression problem

with the MSE loss function and the Nadam optimizer [22].

For training the network, we used the TensorFlow platform

[23]. Since we use a time-distributed output layer and assume

Layer Details Output Shape

Input Spectrograms (50, 512, dimin)

Conv2D 3× 3 (50, 512, nfilter)
BatchNorm (50, 512, nfilter)
Activation elu (50, 512, nfilter)
MaxPooling 1× 8 (50, 64, nfilter)
Dropout 0.2 (50, 64, nfilter)

Conv2D 3× 3 (50, 64, nfilter)
BatchNorm (50, 64, nfilter)
Activation elu (50, 64, nfilter)
MaxPooling 1× 8 (50, 8, nfilter)
Dropout 0.2 (50, 8, nfilter)

Conv2D 3× 3 (50, 8, nfilter)
BatchNorm (50, 8, nfilter)
Activation elu (50, 8, nfilter)
MaxPooling 1× 4 (50, 2, nfilter)
Dropout 0.2 (50, 2, nfilter)

Reshape (50, 2·nfilter)
BiLSTM (50, 2·nfilter)
BiLSTM (50, 2·nfilter)

Time-Dist. Dense elu (50, 2·nfilter)
Dropout 0.2 (50, 2·nfilter)
Time-Dist. Dense linear (50, 3)
Normalization (50, 3)

TABLE I. Architecture of the CRNNs for DOA estimation.

the sources to be static over the whole duration of the

signal, we first average the network outputs for each axis

over time. We then compare the predicted DOA (θ̂, φ̂) with

the reference (θ, φ) used to synthesize the dataset, using the

angular distance δ
[

(θ̂, φ̂), (θ, φ)
]

defined by

δ
[

(θ̂, φ̂), (θ, φ)
]

= arccos
[

sin (θ̂) sin (θ)

+ cos (θ̂) cos (θ) cos (φ̂ − φ)
]

.

For additional evaluation, we further define the so-called

accuracy as the proportion of samples for which the prediction

has an angular distance below a given error tolerance.

B. Input features

The input features of the networks based on HOA signals

are pure magnitude and phase spectrograms. In the following,

we will call these networks HOA-n-CRNN with n being the

order of the HOA signal. We compare our HOA-n-CRNNs

to two other published approaches for FOA DOA estimation

with CRNNs. On the one hand, Adavanne et al. [3] used pure

FOA magnitude and phase spectrograms (FOA-CRNN). Of

course, HOA-1-CRNN and FOA-CRNN are identical and will

be referred to as HOA-1-CRNN in the following. On the other

hand, Perotin et al. [4] proposed using spectrograms of 6-

channel features derived from the FOA sound intensity vector

according to (3) as input to the CRNN (Intensity-CRNN). By

using these features, they were able to significantly improve

the localization performance compared to using magnitude and

phase spectrograms.

−1

C(t, f)

[

Ia(t, f)
Ir(t, f)

]

(3)

Ia(t, f) and Ir(t, f) describe the active and reactive intensity

vector as a Short-time Fourier transform (STFT) expression of

the FOA channels and C(t, f) is a normalization term. They

can be computed according to (4), (5), (6). For further details

on acoustic intensity see [4], [24], [25].

Ia(t, f) = −





Re {W (t, f)X∗(t, f)}
Re {W (t, f)Y ∗(t, f)}
Re {W (t, f)Z∗(t, f)}



 (4)

Ir(t, f) = −





Im {W (t, f)X∗(t, f)}
Im {W (t, f)Y ∗(t, f)}
Im {W (t, f)Z∗(t, f)}



 (5)

C(t, f) = |W (t, f)|2+
1

3
(|X(t, f)|2+ |Y (t, f)|2+ |Z(t, f)|2)

(6)

The input shape of all the different networks is

(50, 512, dimin), where 50 is the number of frames, 512 the

number of frequency bins, and dimin the number of input

channels with dimin = 2(n + 1)2 for the HOA-n-CRNNs

and dimin = 6 for the Intensity-CRNN. The STFT for the

creation of the spectrograms was performed on 640 samples,

zero-padded to 1024 samples with a hop-size of 320 samples.

For identifying the optimal number of filters (nfilter), different

values ranging from 32 to 1024 were tested for each network

and the value which resulted in the lowest error on the

validation set was chosen. The best values were 256 for the

HOA-1-CRNN and HOA-2-CRNN and 512 for all the other

networks.

V. RESULTS

As expected, the results belonging to the simulated SRIRs

are overall slightly better than those belonging to the real

SRIRs. Nevertheless, all models show a good and reliable

generalization ability. Alltogether, the results presented in

Fig. 1 and 2 show that the Intensity-CRNN provides the best

localization accuracy on both simulated and real SRIRs. This

underlines the statement of Perotin et al. [4] that their intensity

features are very well suited for deep learning based DOA

estimation

Nevertheless, it can be seen in Fig. 1a and 2a, that the

HOA-n-CRNNs perform better with increasing order n on the

simulated data. Both the median and the IQR of the angular

distance become smaller with each additional order. In partic-

ular, the additional orders of the SH seem to allow a better

fine localization. Thus, only about 70 % of the predictions

of the HOA-1-CRNN lie within the error tolerance of 4◦,
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(b) Real SRIRs.
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Fig. 1. Box plot of angular distances (◦) for the five different networks using simulated (a) and real (b) SRIRs. The boxes are

drawn from the first to the third quartile. The horizontal line shows the median. The whiskers go from the lowest data still

within 1.5 interquartile range (IQR) of the lower quartile to the highest data within 1.5 IQR of the upper quartile.
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(b) Real SRIRs.
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Fig. 2. Accuracies of the different networks as a function of the error tolerance for the simulated (a) and real (b) SRIRs.

whereas this is the case for about 90 % of the predictions

of the HOA-4-CRNN. The rough direction, however, seems

already to be well predictable with the HOA-1-CRNN. All

considered networks have an accuracy of about 99 % with an

error tolerance of 15◦.

However, the results belonging to the real SRIRs in Fig. 1b

and 2b show that an improvement of the DOA estimates is

only obtained when the order is increased from 1 to 2. The

HOA-CRNNs of orders 2 to 4 achieve almost identical results.

In Fig. 3 the localization accuracy is evaluated as a function

of the SNR of the respective speech signal. As expected,

the localization becomes more accurate for each model with

increasing SNR. For both simulated and real SRIRs, a slight

trend can be seen that the advantage of the Intensity-CRNN

over the HOA-n-CRNN of orders 3 and especially 4 mainly

exists at relatively high SNR. In the case of poor SNR between

0 and 4 dB, the HOA-4-CRNN performs even sligthly better

than the Intensity-CRNN. Otherwise, the respective order of

localization accuracy among the models remains the same.

VI. CONCLUSION AND OUTLOOK

In this paper we investigated the influence of the order

of HOA signals on the accuracy of single-speaker DOA

estimation of noisy speech with CRNNs. We have shown that

there is potential in using the additional spatial information of

HOA signals for a CRNN-based DOA estimation. However,

when evaluated on real data, it has been shown that the

advantage of this additional information may possibly be

reduced in practice due to effects such as a non-perfect

simulation, a limited generalization capability of the models,

or additional measurement noise. Rather, it became very clear

that it is highly useful and advisable to extract the information

present in the signals in a preprocessing step to make it more

accessible for the network. Only in low-SNR conditions a

slight improvement of the DOA estimation could be achieved

by using fourth order Ambisonics signals comparing to the

Intensity-CRNN.

Since the HOA models seem to perform comparatively well

in acoustically challenging scenarios, we will also investigate

the effect of the Ambisonics order on localization accuracy in

multi-speaker DOA estimation scenarios in the future. Also
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Fig. 3. Box plots with angular distances of the different networks for different SNR regions and simulated (a) and real (b)

SRIRs.

based on the physical motivation and interpretation of the

sound Intenisty features, it can be suspected that the higher-

order models are superior to the Intensity-CRNN there.

Furthermore, we want to strengthen our results by additional

evaluations of our models on more data generated from real

SRIRs and also on real recordings. In addition, we want to use

our presented dataset to estimate additional parameters such

as room volume, reverberation time and frequency-dependent

absorption and scattering coefficients using HOA signals.
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