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Abstract—The goal of this paper is to investigate whether
purely neuro-mimetic architectures are more efficient for signal
compression than architectures that combine neuroscience and
state-of-the-art models. We are motivated to produce spikes, using
the LIF model, in order to compress images. Seeking solutions
to improve the efficiency of the LIF in terms of the memory cost,
we compare two different quantization approaches; the Neuro-
inspired Quantization (NQ) and the Conventional Quantization
(CQ). We present that when the LIF model and the NQ appear
in the same architecture, the performance of the compression
system is higher compared to an architecture that consists of the
LIF model and the CQ. The main reason of this occurrence is the
dynamic properties embedded in the neuro-mimetic models. As a
consequence, we first study which are the dynamic properties of
the recently released (NQ) which is an intuitive way of counting
the number of spikes. Moreover, we show that some parameters of
the NQ (i.e. the observation window and the resistance) strongly
influence its behavior that ranges from non-uniform to uniform.
As a result, the NQ is more flexible than the CQ when it is
applied to real data while for the same bit rate it ensures higher
reconstruction quality.

Index Terms—Neuro-inspired quantization, uniform scalar
quantizer, Leaky Integrate-and-Fire (LIF), spikes, entropy.

I. INTRODUCTION

Over the last few years, a lot of efforts have been devoted

to the visual perception. While these efforts were initially

focused on the understanding of the visual system as a quality

assessment metric that perceives the visual stimulus, their

scope has been widened today trying to mimic the processing

mechanisms of the visual system in order to build bio-

inspired coding/decoding algorithms. These new algorithms

are expected to provide qualitative results which are pleasant

to the human eyes. In addition, the characteristic properties of

the visual system such as the dynamic processing of the visual

stimulus, its plasticity and its ability to generate a very sparse

but informative code of spikes [1] seems to be beneficial to the

progress of the state-of-the-art compression algorithms which

are currently based on computationally greedy mechanisms

like motion estimation [2].

The neurons are considered to be one of the most important

processing units of the visual system. If a neuron is stimulated

by a strong input, it will generate a sequence of electrical im-

pulses which are called spikes, otherwise it will remain silent.

The main concern when one aims to encode an image into

spikes is if a spike train is informative enough to enable high

quality reconstruction. If yes, then, what is the memory cost

to store this information? It has been shown that some Spike

Interpretation Mechanisms (SIM), like the Leaky Integrate-

and-Fire (LIF) [1], [3] model or the Rank Order Coding (ROC)

[4], [5] among others, are able to interpret a sequence of

spikes focusing on the time or the rank the first spike of each

neuron within a population arises. Encoding this information

is sufficient to recover high quality images.

It has been proven in [6] that for a given input, I, if we

encode the arrival delay of the first spike, d, the LIF model

enables to perfectly recover every input stimulus which had

previously excited a neuron but at a very high memory cost.

To reduce the memory cost it was proposed in [7] the Neuro-

inspired Quantization (NQ); an intuitive and simple solution of

counting the number of spikes. In that sense, a population of

some neurons that are not all excited at the same time, but have

emitted the same number of spikes, will be grouped together.

The encoding architecture consisting of the LIF and the NQ

was compared to the Uniform Dead-zone Quantizer (UDQ)

when the aforementioned is applied to the pixel intensities of

an image providing very promising results [7].

In this paper, we are challenging whether the “dynamic”

way of counting the spikes is the most efficient way to

reduce the memory cost of the LIF [6] or the “static” signal

processing tools such as the state-of-the-art Uniform Scalar

Quantizer (USQ) [8] is more appropriate to improve the LIF’s

performance. To reach this goal, we first study the properties

of the NQ [7] and how strong is the impact of some of its

parameters on NQ’s performance. We prove later on that,

depending on the parameters, the behavior of the NQ ranges

from non-uniform to uniform. In addition, we show at the

experimental results that the NQ could be much more efficient

that CQ in improving the performance of LIF.

Section II is a brief recall of the neuro-inspired quantizer.

Section III is a discussion concerning the dynamic properties

of the NQ with respect to its parameters. In section IV

we introduce the USQ as an alternative architecture of how

to improve the memory efficiency of the perfect-LIF, called

Conventional Quantization (CQ) of the delays. Section V is

dedicated to the comparison between NQ and CQ while in

section VI we draw some conclusions of this work.
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Fig. 1. This coding/decoding architecture combines the perfect-LIF model (pink) with the neuro-inspired quantizer (blue) introduced in [7] where, d is the
delay of the first spike, T is the observation duration and N the number of emitted spikes

II. RECALL OF THE NEURO-INSPIRED QUANTIZATION

The LIF model approximates a neuron by an electrical

circuit [1]. Under the assumption that the input signal is

constant during some time T , I(t) = I1[0≤t≤T ](t), each I can

be described by the arrival delay d of the first spike according

to:

d =















+∞, RI < θ,

h(RI; θ) = −τm ln

[

1−
θ

RI

]

, RI > θ,
(1)

where R is the resistance, τm = RC is the leaky integrator

term, C is the capacitor of the electrical circuit and θ is the

membrane threshold of the neuron. It was introduced in [6]

that if the delay d is known at the decoder, using the h−1(d; θ)
function it is possible to perfectly reconstruct every input

intensity which is higher than the threshold while d ∈ (0, T ]:

Ĩ =







0, d > T,

I = h−1(d; θ), d ≤ T.
(2)

Due to the high memory cost of the perfect-LIF [6], the NQ

was introduced in [7] where it is proven that for recovering

the input signal, it is efficient enough to encode the number of

spikes N emitted during some time T , instead of the delays,

(see Fig. 1):

N =















0, d > T,

⌊

T

d

⌋

, d ≤ T.
(3)

In this case, it is possible to approximate the spike arrival

delays d̃ = T/N and reconstruct the best possible values:

Ĩ =







0, N = 0,

h−1(d̃; θ) = h−1

(

T

N
; θ

)

, N 6= 0.
(4)

III. DYNAMIC PROPERTIES OF THE NEURO-INSPIRED

QUANTIZATION

A. Observation Window

The “dynamic” behavior of the NQ is one of its most

important properties associated with the fact that the number

of spikes depends on the length of the observation window

T . According to (3), the longer the input image is flashed, the

more the spikes that correspond to each input intensity. On the

other hand, if the observation window is too small, the number

of spikes will fail to precisely describe the input signal. Figure

2 (a) shows for different R values that while increasing the

observation window T , the quality of the reconstructed signal

substantially improves.
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Fig. 2. This figure illustrates the impact of the size of the observation window
T on the performance of the NQ. The reconstruction quality improves when
the size of the observation window increases (set of parameters: C = 50 F,
θ = 50).

B. Resistance

Another parameter that substantially influences the behavior

of the NQ is the resistance R. It has been shown in [7] that

the NQ can be approximated by a USQ for very large values

of R. In this work, we extend that proof and we show that R
determines the behavior of NQ either for small or large values.

Proposition 1. Let us assume that the input value I has

generated exactly k spikes for any k ≥ 1 and the R is

arbitrarily large. Then, the NQ is a uniform quantizer where

the length ℓk of each quantization interval is constant for all

k

ℓk =
θC

T
+ o

(

1

R

)

, ∀k, (5)

where the notation o(·) is the little-o notation which is used

to express the asymptotic behavior of a function.



Proof. The proof, which is based on Taylor series, has been

omitted due to the lack of space.

Proposition 2. Let us now assume that R is small, then the

NQ is a non-uniform quantizer. The length of each quantization

interval depends on the number of spikes k. When k increases,

the length ℓk converges to an asymptotic value

ℓk =



































h−1 (T ) , k = 0,

h−1

(

T

k + 1

)

− h−1

(

T

k

)

, k > 0,

θC

T
, k → ∞.

(6)

Proof. The proof, which is based on Taylor series, has been

omitted due to the lack of space.

Figure 3 illustrates how the value of R affects the length

ℓ of the quantization intervals in function of the number of

spikes. It is obvious that when R is small, the length of

the quantization interval varies with respect to the number of

spikes k until it converges to the asymptotic case. However,

when R is large, the NQ becomes completely uniform. As we

show later on, when the NQ is applied to a normal distribution

signal it is expected to better encode the low intensities than

the high intensities when R is small. On the contrary, whatever

the intensity is if R is high it will be treated in a uniform

manner. The interpretation of the above behavior will be more

evident in the section V.
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Fig. 3. This figure illustrates the performance of the NQ as a non-uniform
quanizer when the value of R is small and as a uniform quantizer when the
value of R is arbitrarily large (set of parameters: θ = 5, C = 10 F and
T = 100 ms.

IV. CONVENTIONAL QUANTIZATION

In this section, we propose an alternative architecture based

on conventional signal processing techniques in order to

improve the performance of the perfect-LIF with respect to

the memory cost. We propose to assign the delay values into

a smaller finite group using as a conventional quantization

(CQ) the Uniform Scalar Quantizer (USQ):

Qq(d) =















+∞ d = +∞

(

⌊d

q

⌋

+
1

2

)

× q, otherwise,
(7)

where q is the quantization step which defines the size of

the quantization layers. If q is large, the distortion of the

reconstructed image will be high. On the contrary, if q is

small the size of the quantization layers will be small, thus

the quality of the reconstructed image will be high.

Throughout this work, the CQ is said to be “static”, meaning

that its performance will be the same even if the size of the

observation window T varies. This is absolutely coherent to

the definition of the LIF model (1) where the first spikes

appears always with the same delay determined by the input

intensity I and the threshold θ. However, according to (4)

this is not the case for the NQ that strongly depends on

the size of the observation window. Figure 4 shows the

complete architecture of this “hybrid” coding/decoding system

that consists of the LIF model and the USQ. For a given input

I we apply the perfect-LIF encoder in order to compute the

arrival delay d of the first spike. To reduce the redundancy

of the delay values, we apply the CQ to obtain the quantized

delays d̂. The perfect-LIF decoder receives d̂ and reconstructs

an approximation of the input Ĩ.

V. EXPERIMENTAL RESULTS

This section aims to compare whether the performance of

the perfect-LIF encoder/decoder is improved by the use of the

NQ or the CQ. Let I1, . . . , In be the pixel intensities of an

image with a size n = 256 × 256. Each neuron receives an

input intensity which is characterized by the arrival delay of

the first spike according to (1). Each arrival delay is quantized

by the NQ (3) and the CQ (7).

Figure 5 compares the rate-distortion curves of the NQ and

the CQ when the observation window T is fixed. For this

experiment we tested 100 natural images of the size n = 256×
256 taken from the USC-SIPI database [9]. This plot presents

the average response of these images. On the one hand, we

test the performance of the NQ for different threshold values

θ. On the other hand, for a given threshold value we tested the

performance of the CQ for different quantization steps q. We

used two qualitative metrics, the Peak Signal to Noise Ratio

(PSNR) (see Fig. 5 (a)) and the Structure SIMilarity (SSIM)

[10] (see Fig. 5 (b)). The rate was computed by the Shannon

Entropy as following:

H = −
∑

i=

pi log2 pi, (8)

where pi is the probability mass function of each different

possible number of spikes Ni for the NQ or each different

possible quantized delay d̂i for the CQ. Throughout this paper

the entropy is given in bits per pixel (bpp).

Figure 6 illustrates the reconstruction results of an image

encoded by the perfect-LIF and (i) the NQ or (ii) the CQ

for similar bit rates. As a consequence of the theoretical study

given in section III, we have chosen a very small (T = 10 ms)

and a sufficiently large (T = 100 ms) observation window to

convince the reader about the impact of this parameter on the

performance of the NQ when the rest of the parameters are

fixed. It is obvious that the degradation of the reconstructed
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RR

u(t)
h(RI, θ)
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Fig. 4. This coding/decoding architecture combines the perfect-LIF model (pink) with the conventional quantizer (green).
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Fig. 5. This figure illustrates the average responses of 100 natural images which have been tested to compare the performance of the NQ (black solid-square
line) and the CQ (colorful curves). We obtained the NQ for different θ values when T is fixed. The CQ curves present the behavior of the quantizer for
different q values when θ and T are fixed. According to this plot, the NQ outperforms CQ. (a) rate vs MSE (b) rate vs SSIM. (Set of parameters: θ ∈ [1, 700]
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image is high (e)-(h) when T is small, because the spikes are

not enough to enhance the visual quality of the reconstructed

image. However, when T is large, the distortion of the signal

is small (a)-(d). Comparing NQ with CQ it is crystal clear

that for similar bit rates the “dynamic” NQ outperforms the

“static” CQ.

VI. CONCLUSION

In this work, we have studied the dynamic properties of the

recently released Neuro-inspired Quantization (NQ) and we

have shown that this pure neuro-mimetic and “dynamic” model

is much more efficient than the “static” conventional signal

processing tools. To achieve this goal, we first proposed an

analysis of the dynamic behavior of the NQ that ranges from

a non-uniform to a uniform one depending on the parameters’

setting. In addition, we have shown that the NQ is much

more efficient that the uniform scalar quantizer, which is a

conventional quantization method when they are chosen to

reduce the memory cost of the LIF model. These results

come to enhance the investigation of the neuro-inspired cod-

ing/decoding architecture which seems to be very promising

and flexible to obtain a better reconstruction comparing to the

state-of-the-art.

Last but not least, there are several open issues and ex-

tensions concerning this work. First of all, we are inter-

ested in building a complete neuro-mimetic coding/decoding

system and compare its performance to the state-of-the-art

compression standards like JPEG and JPEG2000. In addition,

we believe that the dynamic properties of NQ would have

a significant impact on time-varying inputs such as video

streams. However, this extension is very challenging as it

requires a cautious design of the spike generation in order

to preserve the semantic information along time.
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Fig. 6. This figure compares visually the performance of NQ and CQ when they are applied to the delays. When the observation window is large enough
T = 100 ms (a)-(d), the NQ outperforms the CQ (i)-(l). However, if the observation window is small (e)-(h), the performance of NQ is limited whereas CQ’s
behavior remains constant (set of parameters: R = 1000 Ω, C = 10 F).


