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ABSTRACT

This paper presents a new algorithm for the restoration of
multilayered three-dimensional laser detection and ranging
(3D Lidar) images. For multilayered targets such as semi-
transparent surfaces or when the transmitted light of the laser
beam is incident on multiple surfaces at different depths, the
returned signal may contain multiple peaks. Considering the
Poisson statistics of these observations leads to a convex data
fidelity term that is regularized using appropriate functions
accounting for the spatial correlation between pixels and the
sparse depth repartition of targets. More precisely, the spatial
correlation is introduced using a convex total variation (TV)
regularizer, and a collaborative sparse prior is used to intro-
duce the depth prior knowledge. The resulting minimization
problem is solved using the alternating direction method of
multipliers (ADMM) that offers good convergence properties.
The algorithm was validated using field data representing a
man standing 1 meter behind camouflage, at an approximate
stand-off distance of 230m from the system. The results show
the benefit of the proposed strategy in that it improves the
quality of the imaged objects at different depths and under
reduced acquisition times.

Index Terms— Lidar waveform, Poisson statistics, image
restoration, ADMM, total variation, collaborative sparsity.

1. INTRODUCTION

The time-of-flight (ToF) laser detection and ranging (Lidar)
system can be used to reconstruct three-dimensional scenes
by emitting laser pulses and recording the reflected signal
from the target [1]. By using the time-correlated single-
photon counting (TCSPC) module (HydraHarp 400, Pico-
Quant), a photon number histogram can be compiled for each
pixel with respect to (w.r.t.) each photon time-of-flight [2].
When the observed scene contains semi-transparent surfaces
or the laser beam covers many depth surfaces, the obtained
histogram may contain multiple peaks, due to the multi-
layered target. In this case, the time delay and the amplitude
of the histogram peaks are related to the distances and reflec-
tivities of the observed objects, respectively, which allows for
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the reconstruction of the 3D scene.
This paper considers the reconstruction and restoration of

3D multi-layered scenes constructed using the single-photon
approach, which has a limited shot-noise sensitivity, and a
fine surface-to-surface resolution that can be of millimeter
scale even at long distances. A similar problem has already
been considered in [3] which used a Bayesian formulation
solved using a Markov chain Monte-Carlo (MCMC) algo-
rithm. The resulting algorithm shows promising results, how-
ever, MCMC algorithms are known to be time-consuming
which prevent their use in practical situations. Another algo-
rithm has recently been proposed in [4] by considering a con-
vex formulation coupled with an `1 sparsity promoting regu-
larizer. This approach takes into account the Poisson statistics
of the data and assumes the sparsity of the received photons.
However, it does not account for the target continuity of sur-
faces and may lead to the detection of background noise as a
target.

This work proposes a solution to these issues by consid-
ering a relatively fast algorithm (w.r.t. MCMC) that recon-
structs 3D scenes while taking into account prior knowledge
about the observed targets. Target reconstruction is obtained
by minimizing a convex function composed of a data fidelity
and regularization terms. The former is built based on the
Poisson distribution of the observed photon counts and using
a linear formulation similar to that proposed in [4]. Regarding
the regularization terms, we first assume the presence of spa-
tial correlation for each observed object, which is introduced
using a convex total variation (TV) regularizer [5]. Thanks
to the fine depth resolution and the large observed range win-
dow, we also assume that the number of layers is lower than
the number of available time bins, which is introduced using
a collaborative sparse prior (group-sparsity) [6–8]. The re-
sulting optimization problem is then solved by developing a
new variant of the alternating direction method of multipliers
(ADMM) algorithm [9–12]. The results obtained using field
data representing a man standing 1 meter behind camouflage,
at an approximate distance of 230m, shows the benefit of the
proposed strategy in that it improves the quality of the image
even when reducing the acquisition time.

The paper is structured as follows. Section 2 describes
the observation model associated with the photon counts. The
proposed formulation for regularized problem and the estima-
tion algorithm are presented in Section 3. Section 4 presents
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simulation results obtained using actual time-of-flight scan-
ning sensor data. Conclusions and future work are finally re-
ported in Section 5.

2. OBSERVATION MODEL

The Lidar observation yn,t , where n ∈ {1, · · · , N}, rep-
resents the number of photon counts within the tth bin of the
nth pixel. When the observed scene contains semi-transparent
surfaces or the laser beam covers many depth surfaces, the re-
turned signal may contain multiple peaks, located at distances
related to the observed depths. The observed photon counts
yn,t are distributed according to a Poisson distribution P (.)
as follows [13, 14]

yn,t ∼ P (sn,t) (1)
where

sn,t =

Mn∑
m=1

[rn,mg0 (t− kn,mT )] + bn (2)

and Mn is the number of layers in the nth pixel, T is the time
resolution of the system, kn,m ≥ 0 is the range’s position of
the mth object from the sensor (related to its depth), rn,m ≥
0 is the mth reflectivity of the target, bn ≥ 0 denotes the
background and dark counts of the detector, and g0 represents
the system impulse response (SIR) assumed to be known from
the calibration step. The discrete time version of (2), when
considering K time bins, can be expressed as a linear system
(convolution by the SIR) as follows [4]

sn = Gxn (3)

where G = [g1, · · · , gK ,1K×1] is aK×(K+1) matrix gath-
ering shifted impulse responses, 1i×j denotes the (i× j) ma-
trix of 1, gi = [g0(T−iT ), g0(2T−iT ), · · · , g0(KT−iT )]>
is a (K×1) vector representing the discrete impulse response
centered at iT and xn is a (K + 1) × 1 vector whose value
are zero except for xn(kn,m) = rn,m,∀m, and xn(K+1) =
bn. Using (3), straightforward computations show that the
negative-log-likelihood associated with the discrete observa-
tions yn,k ∼ P [(Gxn)k] is given by

Ln (xn) = Hn (Gxn) (4)

whereHn : RK>0 → R {−∞,+∞} is given by

Hn (z) =
K∑
k=1

zk − yn,k log (zk) . (5)

Finally, assuming independence between the observed pixels
leads to the following negative-log of the joint likelihood

L (X) = − log [P (Y |X)] =
∑
n

Ln (xn) (6)

where Y (resp. X) is a K × N (resp. (K + 1) × N ) ma-
trix gathering the vectors yn (resp. xn). The goal is then to
estimate the sparse matrix X , where the positions and values
of the non-zero elements correspond to the target depths and
intensities, respectively.

3. THE ESTIMATION ALGORITHM

3.1. Regularized problem

This section introduces the proposed regularized problem to
estimate the matrix X . To this end, we adopt an optimization
approach that minimizes a regularized data fidelity cost func-
tion. More precisely, considering the data Poisson statistics
lead to the data fidelity term L (X) presented in (6). Esti-
mating the matrix X is an ill-posed inverse problem that re-
quires the introduction of prior knowledge (or regularization
terms) related to the target depths and reflectivities. In this
paper we consider two assumptions: (i) the observed objects
present spatial correlations; (ii) a small number of depths are
active with respect to the observation range window. With
these considerations in mind, we propose to solve the follow-
ing optimization problem

C (X) = L (X)+ iR+
(X)+ τ1||WX||1 + τ2||X||2,1 (7)

where W = DHG represent a linear operator whose com-
ponents are explained later in the text, τ1 > 0, τ2 > 0 are two
regularization parameters, and iR+ (X) =

∑
n,k iR+ (xn,k)

is the indicator function that imposes positivity (iR+
(m) = 0

if m belongs to the non-negative orthant and +∞ otherwise).
The first two terms of (7) are the data fidelity term associ-
ated with the Poisson statistics and a convex term imposing
positivity on X . The other terms of (7) account for the prior
knowledge of X . The convex term ||WX||1 is an `1 norm
that promotes element-wise sparsity on the projected matrix
WX . This projection matrix should be carefully chosen to
promote the desired spatial correlation. Because of the fine
depth resolution, a large number of time bins is used in the
histograms leading to sparse photon counts in each time bin
at each pixel of the observed data Y , especially when reduc-
ing the acquisition time. This effect may deteriorate the per-
formance of the considered spatial regularization. To solve
this issue, a TV spatial regularization is applied to the con-
volved signal X (by the SIR) after summing the counts inside
a window of ranges with predefined width #h. This prevents
the sparse spatial repartition of the photons and improves the
performance of the TV operator. For a formal mathematical
description, the procedure is achieved using W = DHG,
with D the linear TV operator [12], and H = I ⊗ 11×h, is
a matrix summing the photon counts of each #h successive
time bins of the convolved signal GX , where ⊗ denotes the
Kronecker product and I the identity matrix of adequate size.

The convex term ||X||2,1 =
∑K
k=1 ||xk||2 =

∑K
k=1

√
xTk xk

is the `21 mixed norm of X which promotes sparsity among
the columns of X , that is, the solutions of (7) are encouraged
to have a small number of active depths. This term is called
collaborative regularization since it promotes group-sparsity
over the columns of X by using the information in all the pix-
els. It has recently received increasing interest by the image
processing community as illustrated in [6–8]. The proposed
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formulation in (7) combines the `21 mixed norm with the `1
norm which leads to a slightly different effect, i.e., it allows
for sparsity under a dictionary inside the active columns of X .
The resulting sum of convex functions (7) can be solved us-
ing different algorithms such as the ADMM algorithm [9] or
primal-dual algorithms [15]. In this paper, we use the ADMM
algorithm that is described in the next section [9, 10, 16].

3.2. The ADMM algorithm

Consider the optimization problem
argmin
X,V

g (V ) , subject to AX +BV = 0 (8)

where X ∈ R(K+1)×N , g(.) is a closed, proper, convex func-
tion, and A, B are arbitrary matrices. The ADMM algo-
rithm consists first in computing the augmented Lagrangian
for problem (8), as follows

AL (X,V ,F ) = g (V ) +
µ

2
||AX +BV − F ||2F (9)

where µ is a positive constant, and F /µ denotes the Lagrange
multipliers associated with the constraint AX+BV = 0. As
a second step, the algorithm optimizes AL sequentially with
respect to X and V , and then updates the Lagrange multipli-
ers as shown in Algo. 1.

Algorithm 1 ADMM for (8)
1: Initialization
2: Initialize X

(0)
j ,V

(0)
j ,F

(0)
j ,∀j, µ > 0.

3: Set i← 0, conv← 0
4: while conv= 0 do
5: X(i+1) ← argmin

X
AL

(
X,V (i),F (i)

)
6: V (i+1) ← argmin

V
AL

(
X(i+1),V ,F (i)

)
7: F (i+1) ← F (i) −AX(i+1) −BV (i+1)

8: conv← 1, if the stopping criterion is satisfied.
9: end while

Algo. 1 converges when the function g is closed, proper,
and convex and A is full column rank [17, Theorem 1]. The
latter theorem also states that the sequence X(i) converges to
a solution of (8), for any µ > 0, if it has a non-empty set of
solutions. If (8) does not have a solution, then at least one
of the sequences X(i) or F (i) diverges. Note that the details
of the steps of Algo. 1 are not provided for brevity, however,
they reduce to the solution of a linear system of equations
(line 5), the computation of Moreau proximity operators [18]
(line 6), and the updating of the Lagrange multipliers (line
7). The convergence speed of the algorithm is affected by the
parameter µ, that has been updated using the adaptive proce-
dure described in [8, 9]. This procedure keeps the ratio be-
tween the ADMM primal and dual residual norms within a
given positive interval, as they both converge to zero. The al-
gorithm is stopped when these residual norms are lower than

a given threshold [9]. Note finally that more details regard-
ing the ADMM algorithm are available in [8–10, 16] for the
interested reader.

3.3. Proposed algorithm

This section presents the optimization problem considered for
estimating the matrix of interest X . Using the same notation
as in (8), problem (7) can be expressed as follows

g (V ) = H (V 1)+iR+ (V 2)+τ1||V 4||1+τ2||V 5||2,1 (10)

with V 1 = GX , V 2 = X , V 3 = HGX , V 4 = DV 3,
V 5 = [IK ,0]X leading to A = [G, IK+1,HG,0, (IK ,0)]

>

and

B =


−IK+1 0 0 0 0

0 −IK+1 0 0 0
0 0 −IK 0 0
0 0 D −IK 0
0 0 0 0 −IK

 .
(11)

where In denotes the n×n identity matrix, and 0 denotes
a vector of zeros of adequate size. Note that the constraint
V 4 = DV 3 decouples the optimization in the spatial domain
from the optimization in the time (or range) domain which
leads to large computational gains, as already suggested in
[12]. For this problem, the matrix A is full column rank. This
matrix and the properties of g(.) ensure the algorithm con-
vergence. Finally, the optimization problems shown in line
5 and 6 of algo. 1 admit analytical solutions given by (we
also invite the reader to consult [11, 12, 19] for more details
regarding similar optimization problems)

X(i+1) ←
{
G>G+G>H>HG+

[
2IK 0
0 1

]}−1

×
{
G>ξ

(i)
1 + ξ

(i)
2 +G>H>ξ

(i)
3 +

[
ξ
(i)
5

0

]}

V
(i+1)
1,k,n ← 1

2

zk,n − 1

µ
+

√[
zk,n −

1

µ

]2
+ 4

yk,n
µ


V

(i+1)
2 ← max

{
X(i) − F

(i)
2 , 0

}
V

(i+1)
3 ←

(
D>D + IK

)−1 [
HGX(i) − F

(i)
3 +D>ξ4

]
V

(i+1)
4 ← soft

(
F

(i)
4 −DV

(i)
3 ,

τ1
µ

)
v
(i+1)
5,n ← vect-soft

(
F

(i)
5,n − (IK ,0)x

(i)
n ,

τ2
µ

)
, ∀n (12)

where ξj = V
(i)
j + F

(i)
j for j ∈ {1, 2, 3, 5}, zk,n =(

Gx
(i)
n

)
k
−F (i)

1,k,n, soft
(
X, τµ

)
= sign(X)�max

{
|X| − τ

µ , 0
}

denotes the soft threshold operator, vect-soft
(
x, τµ

)
=

x

(
max{||x||2− τµ ,0}

max{||x||2− τµ ,0}+ τ
µ

)
is the vect-soft-threshold operator,
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and |.|, sign(.), max(.) are the element-wise operators cor-
responding to the absolute value, the sign function and the
maximum operator, respectively.

4. RESULTS ON REAL DATA

The performance of the proposed restoration algorithms are
evaluated in this section when considering a real image, com-
posed of 79 × 40 pixels and 590 time bins, of a man holding
a piece of wood standing behind a double layer of camou-
flage at a stand-off distance of 230m from the system (see Fig.
1). The image was acquired in May 2016 in Virginia, USA,
using a time-of-flight scanning sensor, based on the TCSPC
technique. The transceiver system and data acquisition hard-
ware used for this work are broadly similar to that described in
[20,21], which uses a 1550nm wavelength and an electrically
gated InGaAs/InP single photon avalanche diode (SPAD) de-
tector (see also [14] for more details regarding the system pa-
rameters). The image was acquired using a per pixel acquisi-
tion time equal to 3.2ms, corresponding to a total acquisition
time of ≈ 10s for the considered number of pixels. Note that
due to the time-tagged nature of the data, the acquisition time
can be reduced when building the histograms. We analysed
the proposed algorithm using the acquisition times of 3.2ms,
1ms, 0.5ms and 0.1ms, where a long acquisition time leads
to more detected photons and a better image quality. As ex-
plained previously, the proposed algorithm estimates a matrix
X whose nonzero elements, higher than a small threshold,
provide information about the presence of a target. There-
fore, its restoration performance is evaluated through visual
inspection of the estimated depth and reflectivity images asso-
ciated with the actor. These images were estimated by select-
ing the range’s window of X̂ after the camouflage, denoted
by X̂Man. The man’s depth is then estimated as the position
of the maximum of each pixel of X̂Man and the intensity as
the sum of photon counts around this maximum (window of
10 bins). These images are compared to those obtained using
the maximum likelihood depth solution assuming no back-
ground [11, 14], i.e., the classical log-matched filter (denoted
by Class.) applied on gated histograms Y Man. It is also com-
pared to the recently proposed approach [4, 22], which as-
sumes an `1 regularization term, given by

g (X) = L (X) + iR+ (X) + λ1||X||1 (13)

and has been solved by adapting the ADMM algorithm ac-
cordingly. The regularization parameters of (10) and (13)
were evaluated at [10−3, 10−2, 10−1, 1, 10], and we only con-
sider the values providing the best visual results. Figs. 2
and 3 show the estimated depth and intensity images with the
three algorithms for different acquisition times. It is clear that
the performance of all algorithms decreases as the acquisition
time is reduced, since the number of photons is reduced. With
reduced acquisition time, the classical depth estimates show
a higher level of noise while the `1 based approach presents

Fig. 1. Observed scene located at 230 m from the scanning
system. (Left) Net #1 was placed approximately one meter
in front of the actor, (middle) an actor and (right) image of an
actor behind camouflage.

sparser results. In contrast, the proposed approach offers bet-
ter restoration results where the noise surrounding the man is
reduced and the missing pixels of the part of the image com-
prising the man are restored. This performance was achieved
thanks to the spatial correlation between pixels being consid-
ered, and the use of collaborative sparsity to limit the number
of active depths which are mainly due to noise. A similar
behaviour is observed for the intensities where smoother and
less noisy results are obtained by the proposed algorithm, es-
pecially at t = 0.1ms. These results validate the proposed
approach that improves the performance of the sparsity-based
single-photon restoration algorithms.

5. CONCLUSIONS

This paper has presented a new algorithm to restore the three-
dimensional data cube representing histograms of single-
photon data. The proposed method is based on an optimiza-
tion of a convex cost function composed of a data fidelity term
and regularization terms. The former term was introduced
based on the Poisson statistics of the data. The proposed
regularization terms introduced the prior knowledge about
the data, namely, (i) the spatial correlation between pixels
in small depth regions which was introduced using a total
variation regularization term and (ii) the presence of a small
number of depths inside the range window whose sparsity
effect was promoted using a collaborative sparsity regular-
ization term. The resulting problem was solved using an
ADMM algorithm that has good convergence properties. The
proposed formulation and algorithm showed good restora-
tion results when processing real images representing a man
standing behind a camouflage. Future work includes the
generalization of this method to data acquired in corrupting
environments such as underwater images.
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