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Abstract—We introduce a method for detecting, localizing and
identifying radio transmissions within wide-band time-frequency
power spectrograms using feature learning using convolutional
neural networks on their 2D image representation. By doing so
we build a foundation for higher level contextual radio spectrum
event understanding, labeling, and reasoning in complex shared
spectrum and many-user environments by developing tools which
can rapidly understand and label sequences of events based on
experience and labeled data rather than signal-specific detection
algorithms such as matched filters.

I. INTRODUCTION

Understanding what is going on in the radio spectrum is
a key enabler of making efficient use of it. The ability to
detect, identify and predict the access strategies of others in
the band such as the presence of unexpected interference or
spurious emissions are key to being able to react intelligently
to such phenomenon and to adapt waveform parameters, chan-
nel access parameters, or other strategies driven by end-user
performance requirements.

Meanwhile a strong analogue for this technical task exists
in computer vision, which has matured rapidly over the past
several years. Object identification and localization within
imagery has been a key enabler for numerous autonomous
systems and autonomous control systems. Methods for object
detection, classification, and localization have in recent years
shifted from more traditional image-feature extraction and
higher level classification and localization logic [1], into end-
to-end learned features and activation maps [2], [3]. This
approach is quite exciting for other domains such as radio,
as it does not rely on any imagery-specific feature or logic
engineering, but instead learns features, class mapping, and
localization generally for a 2D image-like input without sig-
nificant over-specialization. This allows for a critical building
block in contextual understanding of objects in a scene which
can be in our case a spectrogram in time-frequency rather than
a traditional 2D image.

II. BACKGROUND

As we are leveraging a computer vision approach here
for the radio spectrum sensing domain in which it has not
been widely applied before, we introduce some background
for each task separately before describing our approach. We
have previously explored the areas of isolated single-carrier
radio signal classification using convolutional networks on
raw RF sample data [4], as well as of learning new radio

Figure 1. Objective method comparison to prior approaches from [6].

communications systems using a similar approach [5], but this
represents our first efforts into the area of complex multi-
emitter scene understanding from an ML-centric approach.

A. Radio Spectrum Sensing

Spectrum sensing has long been a core piece of cognitive
radio [6] and a core enabler of how to decide and act within the
spectrum to optimize for some end task. Much prior work and
deployment of solutions has focused on so called Waveform-
based Sensing methods, because they generally provide the
best sensitivity when compared with simpler Energy Detec-
tor methods. In our approach, we focus on a variation of
the Energy Detector, which performs pattern recognition on
emissions within the wide-band spectrum in order to identify
RF emissions not only based on the presence of energy, but
also on its shape matching some expected pattern. By doing
so we hope to provide significant accuracy improvement over
simplistic energy thresholding methods, while also maintaining
low model complexity due to the end-to-end learning nature
of the approach and lack of need for any waveform-based
algorithm specialization or tuning.

B. Visual Object Detection & Localization

Within the past 5-10 years, virtually all state of the art
computer vision benchmark entries have transitioned to deep
convolutional neural network (CNN) [7] based models [8],
[9]. This replaces many years of domain-specific low-level
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feature engineering which was previously pervasive in the
leading approaches. This can be thought of as an analogue
to Waveform-based Sensing in which heavily signal-specific
features are engineered with expert knowledge of the waveform
contents i.e., reference tones, preambles, symbol rates, etc.

Detection and localization of objects in a scene generally
takes on two classes of approach. First there are those which
associate a simple label with the entirety of the picture/scene,
i.e. ’this picture contains a cat’, and secondly there are those
which associate specific object classes with bounding box
labels within the scene to provide more rich and accurate label
information, i.e ’there is a cat contained within the bounding
box given by (72,38,92,56)’.

For now we focus on the first of these two cases, as datasets
are a critical limiting factor for building models for either
approach. We build a dataset conforming to the first labeled
data model (without bounding boxes) within this work, but we
seek to address both learning models in future work.

The typical neural network model here is described by Ŷ =
f(X; θ) where θ comprises the set of weights of a sequence
of neural network layers. The typical variable shapes of these
inputs and outputs are given in I.

Table I. TABLE INPUT/OUTPUT SHAPES

Variable Shape
X [nchannels, nrows, ncols]

Y & Ŷ [nclasses]

A solver such as Adam [10] is used to perform gradient
descent and iteratively solve for an optimal θ value to fit the
dataset by minimizing a loss function. In this scenario a typical
loss function would be categorical cross entropy given in 1
where labels and output values approximate the probability
each class is present.

Lce(u, v) = −Σi=0...nclasses1−1 (uilog(vi)) (1)

Once such a network is learned it can easily be used
for classification by prediction the most probable class via
ŷML = argmaxi(Ŷ ). However in this case, the learned
features contributing to the probability of each class probability
are the items of most interest here.

There are a variety of techniques for object localization
with this loosely labeled data i.e. label for the entire image
is available but not the individual bounding boxes. In general
they focus on building a neural network to form a classifier
of objects in the scene, and then further using properties of
network to perform localization.

One of the simplest methods to observe how the class
probability surface relates to regions of input is by masking the
input image (occluding all but a small patch) and observing
how the probability of the prevailing class changes spatially.
This has been shown to work [2] and provides an extremely
simple method for using such a classifier for localization.

Class saliency maps [11] uses a technique similar to the
deconvolution [12] method used for visualizing a CNN. In
another technique, the fully connected layers are replaced with
global average pooling layers [13] to obtain the class activation

Figure 2. Block Diagram of Grad-CAM [14]

maps (CAM). Both of these methods assume that the fully
connected layers are preceded by convolutional layers.

Gradient-weighted class activation maps (Grad-CAM) [14]
are a more general approach which can be extended to different
CNN based network architectures. A variant of the method
called guided Grad-CAM produces high resolution class acti-
vation maps. In this work we will be using Grad-CAM to do
the spectral event localization.

III. APPROACH

For computer vision tasks such as image recognition,
publicly available datasets like Imagenet [15] are available
which contains millions of labelled images. These datasets
have been leveraged to train very deep networks [16], [17].
Moreover, availability of pre-trained network has facilitated
transfer learning [18] between related vision tasks. Since
neither is available for our problem, we start from designing
a network which is commensurate with the available dataset.

A VGG [16] type of architecture is adopted i.e. convolution
layers followed by dense layers leading upto the activation
layer. Number of convolution layers, number of dense layers
and number of kernels or feature maps in individual layers
are all hyper-paramters. For this work, these parameters were
chosen in an ad-hoc manner. Table II shows the network con-
figuration. Note that dropout units were used in the convolution
layer unlike [16]. This is done to improve the generalizability
of the network. Removal of the dropout units from the con-
volution layers affected performance (verified by simulation).
Each of the convolution layer is followed by a max-pooling
layer of size 2x2 with an input stride of 2x2. The drop-out
rate if present was set to 0.5. Apart from the last layer which
has a softmax activation, the activation units for all the other
layers were chosen as Rectified Linear Units (ReLu). The input
spectrograms should be of the dimension 128x128.

Table II. TABLE INPUT/OUTPUT SHAPES

Layer Number Layer Type Kernel Size Number of Feature Maps
1,2 Convolution (3,3) 64
3,4 Convolution (3,3) 128
5 Dense n/a 128
6 Dense n/a nclasses

The network described in II is at first trained. Figure 2
shows the block-diagram of the Grad-CAM [14] which is used
for spectral event localization. Given the input label C gradient
of activation score yC (not the class probability) are calculated
with respect to all the feature maps of a given convolution
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Figure 3. Example spectrograms of randomly sampled RF band samples:
Signal time-frequency structures readily recognizable by a domain expert
including 802.11B/G/N, Bluetooth, FD-LTE, QAM, etc

layer. The global average pooling [13] of the gradients give
the corresponding weight associated with the feature map.
Finally the weighted sum of the feature maps is passed through
an elemnt-wise ReLu unit to get the Grad-CAM. Detailed
description of the method and its application to different CNN
based architectures can be found in [14].

Note that the dimension of the CAM is equal to the output
size of the convolution layer. For example, in our case if we
choose the last convolution layer in our network (before the
max-pooling layer), the size of CAM will be 12x12. This
12x12 map is extrapolated to the input image size which
128x128. Naturally because of this extrapolation, the obtained
map is coarse. One of our future research directions will be
to implement methods such as Guided Grad-CAM [14] which
has a better resolution.

IV. DATASET

We construct a dataset using real radio spectrum data which
has been manually labeled rather than attempt simulation. We
focus on using a typical low-cost integrated RF transceiver,
the AD9361 [19] on a Universal Software Radio Peripheral
(USRP) B205-mini board [20] to capture RF data, and attempt
to cover a wide range of the VHF, UHF, and SHF signals it can
observe including all of the spurious noise, interference and
distortion present within the environment and receiver system
when doing so.

To add to the variation within the dataset, we manually
build a labeled list of active bands in an environment (for
several dense urban environments), and then we sample it
randomly using a random distribution in center frequency and
gain around the ideal values in order to create variations in the
dataset. (signals are not always at the same relative frequency
offsets, gain-related interference, distortion and sensitivity ef-
fects are sampled randomly rather than trained for one specific
[contrived] set of values.)

The dataset contains 8512 spectrograms from 13 different
bandssuch as GSM, LTE, ISM, FM etc. These are obtained
from 8 different locations across 5 distinct cities to provide
for emitter, layout, and loading variation. Each spectrogram

Figure 4. Confusion Matrix for RF Band Classification

is assigned one unique label. Note that no other information
regarding the spectrograms are included in the dataset (center
frequency, gain, sample rate, etc are discarded and not used in
the model). Spectrograms are computed from 131,072 unique
complex samples taken from the radio at a sampling rate
between 10MSps to 30MSps. Spectrograms are computed with
an fft size of 1024 and an overlap of 900 samples and a hanning
window is used. The resulting spectrograms are then stored
along with their class labels in smaller re-scaled images of
64x64, 128x128 or 256x256 pixels. Each ’look’ at a band
constitutes around 4-10ms of observation time, a relatively
short time-window which, in the case of bursty protocols
such as Wifi, LTE Uplink, or GSM Uplink is in some cases
completely unoccupied during some observations.

A. Python Numpy-UHD

We introduce a new software tool called numpy-UHD
(npuhd) 1, which provides a rapid means for sampling RF
spectrum data using the USRP platform and interfacing with
python, numpy and a variety of python-based machine learning
tools extremely readily. A similar approach can easily be
accomplished with GNU Radio [21], but is slightly more
verbose and intended for streaming application than for rapid
asynchronous sampling of the spectrum.

V. RESULTS

A. Band Classification

The dataset is split into training and validation portions
containing 6384 and 2128 samples respectively. The split is
done randomly. Since the network is designed to accept inputs
of dimensions 128x128, the training samples are rescaled to
that dimension.

Availability of a large training set is one of the pre-
requisites of training the CNNs. To artificially increase the
training set, each sample is flipped about the vertical axis. This

1available at https://github.com/radioML/npuhd upon publication
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Figure 5. GradCAM based activation maps and corresponding input spectrograms for 12 test examples from the dataset.

is a common data augmentation technique used for different
vision problems such as image recognition, object localization
and classification. Thus, we have a total of 12,768 training
samples. The network is trained using Keras [22] package
on a single desktop machine with Intel i7-7700 processor
and NVIDIA GTX 1080 GPU. To prevent over-fitting early
stopping was used with maximum number of epochs set
to 200. On an average, training takes around 10 minutes.
The process of randomly splitting the dataset was repeated
10 times. Each time the network was trained from scratch.
Average classification accuracy of 0.944 with a peak accuracy
of 0.953 was obtained. Figure 4 shows the confusion matrix
for this task.

Apart from the two uplink bands GSMUL (accuracy =
0.778) and LTEUL (accuracy = 0.828) and P25 (accuracy =
0.87) the individual classification accuracy for all the other
bands is greater than 0.91. The two uplink bands are often
misclassified as ISM bands, misclassification rate being 0.078
and 0.11 for GSMUL and LTEUL respectively. This is possibly
due to the fact that the ISM band contains bursty signals similar
to the uplink bands.

The network takes approximately 0.3 ms to classify each
sample when processed in a batch. If samples are processed
one at a time detection time increases to around 1.5 ms. At
this rate real-time operation of such an approach could likely
be achieved quite readily. We have not yet even begun to
explore optimizations which may improve this such as reduced
precision data-types (all work was conducted in float 32) or
network distillation which would provide additional reductions
to computational requirements and detection time.

B. Spectral Event Localization

We show the results from our GradCAM implementation
in figure 5. Each pairwise example shows the input RF spec-
trogram of the example, followed by the class activation map
for the appropriate target class. Here we can see in general we
achieve the expected behavior, in the first example for instance,
on top of the WiMAX burst in the spectrogram we have a

hot region of activation in the WiMAX-class activation map.
Likewise with each of the relevant classes shown. However,
since the trained feature objective was to classify the band,
not to necessarily activate all instances of a certain emission
type (it would need labels to know what that meant!) we
can see that we have not completely accomplished this goal
here. For instance the DVBT activation map highlights only
strong parts of the signal, certain parts of the LTE downlink
signal seem to be favored for identification (possibly reference
tones synchronization signals), and so forth with each different
example type.

VI. ANALYSIS & CONCLUSIONS

This method for detection, classifying and localizing com-
munications signal emissions within a spectrogram appears to
work relatively well in our experiments, providing quite high
initial classification rates for most signal types and providing
relatively correct activation maps in most cases. The most
difficult classes appear to be those employing time-sharing
channel access strategies (CSMA in the ISM Band, TDM in
the GSM uplink band, and SC-FDMA in the LTE uplink band),
we suspect this is partly due to low burst density and examples
in which no traffic is present. In this case longer dwells would
likely improve performance. Our dataset labeling technique
also involved ’loose’ labeling, where we simply specified the
center frequency and the associated class. We did not label
individual bursts or emissions within the data, and so in some
cases we have spectrograms which in-actuality belong to 2 or
more classes. For instance GSM and LTE signals are often
adjacent bands and so while an effort was made to keep
the sampler distinctly on one or the other, some examples
do contain a mixture of the two signal types on the edges.
Likewise, in the ISM band we see a mixture of Wifi, Blue-
tooth, and other unlicensed emissions which are all lumped
into a single ’ISM’ class. Therefore the performance of this
classifier is quite limited based on the quality of the dataset.

We focused in this work on the generation of class acti-
vation maps for each emission type, but we did not yet look
at the task of estimating time-frequency bounding boxes on
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these activation maps in order to associate a time and frequency
with each detection. This process of converting activation maps
to quantitative estimates about the bursts present and their
spectral location is a critical next step, and one that will
allow us to perform most rigorous quantitative comparison to
baseline methods such as traditional band estimation accuracy
using energy detection.

In future work we hope to improve our dataset size and
quality to include more examples, more variation among
examples, and more emitters. We also hope to explore more
richly labeled datasets, such as manually labeled bounding
boxes on different emission types rather than only general
band-labels. We believe this method will drastically improve
performance, but also will require a significant amount of labor
in generating and curating datasets.
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