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Abstract— This paper presents a parallel Monte Carlo simu-
lation based performance quantification method for nonlinear
model predictive control (NMPC) in closed-loop. The method
provides distributions for the controller performance in stochas-
tic systems enabling performance quantification. We perform
high-performance Monte Carlo simulations in C enabled by a
new thread-safe NMPC implementation in combination with an
existing high-performance Monte Carlo simulation toolbox in C.
We express the NMPC regulator as an optimal control problem
(OCP), which we solve with the new thread-safe sequential
quadratic programming software NLPSQP. Our results show
almost linear scale-up for the NMPC closed-loop on a 32 core
CPU. In particular, we get approximately 27 times speed-up
on 32 cores. We demonstrate the performance quantification
method on a simple continuous stirred tank reactor (CSTR),
where we perform 30,000 closed-loop simulations with both an
NMPC and a reference proportional-integral (PI) controller.
Performance quantification of the stochastic closed-loop system
shows that the NMPC outperforms the PI controller in both
mean and variance.

I. INTRODUCTION

In closed-loop systems, there exist many unknown or
uncertain quantities, such as parameters, measurement noise,
and process noise, even when simple linear controllers
like proportional–integral–derivative (PID) controllers are
applied. As such, achieving useful closed-loop performance
quantification can be difficult. Previous work has focused on
development of a high-performance Monte Carlo simulation
toolbox for parallel computing on shared memory architec-
tures. The Monte Carlo simulation toolbox has previously
enabled tuning of PID controllers in closed-loop systems
[1], tuning of a model predictive controller (MPC) through
controller matching [2], and been applied for PID closed-
loop insulin dosing in a virtual clinical trial with 1, 000, 000
participants for people with type 1 diabetes [3]. Similar
results have not yet been obtained for more advanced con-
trollers such as nonlinear MPC (NMPC).

Monte Carlo approaches have previously been applied in
relation to NMPC. Sequential Monte Carlo (SMC) has been
applied as a method to find global optimizers in NMPC [4].
Additionally, an SMC filter has been applied as an alternative
to Kalman filtering and moving horizon estimation (MHE)
for state estimation [5]. However, application of Monte
Carlo simulation to quantify the closed-loop performance
of NMPC is novel, likely due to the difficulty of running
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sufficiently many closed-loop simulations with NMPC. We
propose to apply the existing Monte Carlo simulation toolbox
as a performance quantification technique for NMPC closed-
loop systems. Computational feasibility is achieved by full
utilization of multi-core CPUs [6]. To this end, the approach
requires a thread-safe NMPC implementation.

In this paper, we apply parallel Monte Carlo simulation as
a method for performance quantification of NMPC in closed-
loop. The method provides performance distributions of the
stochastic closed-loop and enables performance quantifica-
tion. We achieve parallel scaling by implementation of a new
thread-safe NMPC featuring a continuous-discrete extended
Kalman filter (CD-EKF) for state estimation and a regulator
expressed as an optimal control problem (OCP). We solve the
OCP with a new thread-safe sequential quadratic program-
ming (SQP) software, NLPSQP (nonlinear-programming-
sequential-quadratic-programming), required to achieve par-
allel scaling. Due to thread-safety of the NMPC, we achieve
almost linear parallel scaling and approximately 27 times
speed-up on 32 cores. The efficient parallel framework
enables computationally feasible Monte Carlo simulations
of closed-loop systems with NMPC, which enables novel
performance quantification of NMPC. We consider a well-
known continuous stirred tank reactor (CSTR) example as
a case study [7], [8]. We demonstrate the performance
quantification method by comparing NMPC performance to a
reference proportional-integral (PI) controller. The resulting
performance distributions show that the NMPC outperforms
the PI controller in both mean and variance.

The remaining parts of the paper are organized as follows.
Section II introduces the continuous-discrete system. Section
III introduces our NMPC formulation including the esti-
mator and regulator. Section IV presents the SQP software
NLPSQP. Section V presents the PI controller. Section VI
introduces our case study model. Section VII presents our
results. Section VIII presents our conclusions.

II. CONTINUOUS-DISCRETE SYSTEM

In our closed-loop simulations, we consider stochastic
continuous-discrete systems in the form [1],

dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dω(t),
(1a)

y(ti) = g(ti, x(ti), p) + v(ti, p), (1b)
z(t) = h(t, x(t), p), (1c)

where x(t) are states, u(t) are inputs, d(t) are disturbances, p
are parameters, y(ti) are measurements at discrete time, z(t)
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are outputs, ω(t) is a standard Wiener process, and v(ti, p)
is normally distributed measurement noise at discrete time,
i.e.,

dω(t) ∼ Niid(0, Idt), (2a)
v(ti, p) ∼ Niid(0, R(ti, p)), (2b)

where R is the measurement covariance. Measurements,
y(ti), are assumed available with sampling time, Ts. We
apply models in the stochastic continuous-discrete form, (1),
for both simulation of the system and in the NMPC.

III. NONLINEAR MODEL PREDICTIVE CONTROLLER

We design an NMPC scheme to regulate continuous-
discrete systems in the form (1). Our NMPC includes a CD-
EKF for state estimation [1], [9] and a regulator expressed
as an OCP.

A. State estimator
The CD-EKF receives a measurement, yi, at time ti. It

computes the state-covariance one-step prediction, x̂i|i−1 and
Pi|i−i, from the previous state-covariance estimate, x̂i−1|i−1

and Pi−i|i−1, and applies the measurement and the one-
step prediction to compute the new filtered state-covariance
estimate, x̂i|i and Pi|i.

1) Prediction: The state and covariance one-step predic-
tion is,

x̂i|i−1 = x̂i−1(ti), Pi|i−1 = Pi−1(ti), (3)

obtained as the solution to,
d

dt
x̂i−1(t) = f(t, x̂i−1(t), ui−1, di−1, p), (4a)

d

dt
Pi−1(t) = Ai−1(t)Pi−1(t) + Pi−1(t)Ai−1(t)

⊤

+ σi−1(t)σi−1(t)
⊤,

(4b)

for ti−1 ≤ t ≤ ti, where

Ai−1(t) =
∂

∂x
f(t, x̂i−1(t), ui−1, di−1, p), (5a)

σi−1(t) = σ(t, x̂i−1(t), ui−1, di−1, p). (5b)

The initial condition of (4) is the previous filtered state-
covariance pair,

x̂i−1(ti−1) = x̂i−1|i−1, Pi−1(ti−1) = Pi−1|i−1. (6a)

2) Filtering: Given the measurement, yi, and the state-
covariance one-step prediction, x̂i|i−1 and Pi|i−1, the CD-
EKF computes the filtered state estimate, x̂i|i, as

ŷi|i−1 = g(x̂i|i−1, p), Ci =
∂

∂x
g(x̂i|i−1, p), (7a)

ei = yi − ŷi|i−1, Re,i = Ri + CiPi|i−1C
⊤
i , (7b)

x̂i|i = x̂i|i−1 +Kiei, Ki = Pi|i−1C
⊤
i R−1

e,i , (7c)

where Ri = R(ti, p) is the measurement covariance. The
filtered covariance estimate, Pi|i, is

Pi|i = Pi|i−1 −KiRe,iK
⊤
i

= (I −KiCi)Pi|i−1(I −KiCi)
⊤ +KiRiK

⊤
i ,

(8)

where (8) is the Joseph stabilizing form [10].

B. Regulator

We express the NMPC regulator in terms of an OCP, which
the NMPC solves at time ti once the filtered state estimate,
x̂i|i, is provided by the estimator. The solution to the OCP is
the input and state trajectories in the finite horizon. However,
the regulator only implements the first input, ui, and resolves
the OCP once the next state estimate is available from the
estimator. Let T be the prediction and control horizon, which
is split into N control intervals of size Ts. As such, T =
NTs. We assume zero-order hold parameterization of inputs,
u, and disturbances, d, in each control interval,

u(t) = ui+k, ti+k ≤ t < ti+k+1, (9a)
d(t) = di+k, ti+k ≤ t < ti+k+1, (9b)

where ti+k = ti + kTs. Let N = {0, 1, ..., N − 1}, then the
regulator OCP is,

min
x,u

φi, (10a)

s.t. x(ti) = x̂i|i, (10b)
ẋ(t) = f(t, x, u, d, p), ti ≤ t ≤ ti + T, (10c)
u(t) = ui+k, k ∈ N , ti+k ≤ t ≤ ti+k+1, (10d)
d(t) = di+k, k ∈ N , ti+k ≤ t ≤ ti+k+1, (10e)
umin ≤ ui+k ≤ umax, k ∈ N , (10f)

where f(t, x, u, d, p) = f(t, x(t), u(t), d(t), p) and φi =
φi(x(t), u(t)). We apply a direct multiple-shooting dis-
cretization to solve the OCP, (10), which yields a nonlinear
programming (NLP) in the form,

min
ξ

φ, (11a)

s.t. xk+1 − F (tk, xk, uk, dk, p) = 0, (11b)
umin ≤ uk ≤ umax, (11c)

where k ∈ N is relative in time to ti, x0 = x̂0|0 is a
parameter, F (·) is a numerical state integration scheme, and
the decision variables are,

ξi =
[
u0 x1 · · · uN−1 xN

]⊤
. (12)

Note that x0 is not required as a decision variable, but can
be included without loss of generality. We assume that the
NLP objective, φ = φ(ξ), is partially separable locally in
time with respect to the decision variables. Additionally, we
denote the number of equality constraints, me, the number
of lower bounds, ml, and the number of upper bounds, mu.

IV. SEQUENTIAL QUADRATIC PROGRAMMING

We solve the NLP, (11), with our SQP software, NLPSQP.
The NLPSQP implementation is dedicated to solve multiple
similar NLPs in parallel applications. The iterative SQP
algorithm performs three steps in each iteration, 1) Obtain
a search direction by solution of a Quadratic Programming
(QP) subproblem, 2) Obtain a step-size by a backtracking
line-search algorithm, and 3) Lagrangian Hessian approx-
imation with a block Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update.



In the following, we let g(ξ) denote the vectorized con-
straint evaluation of (11b) together with λ, πl, and πu

denoting Lagrange multipliers for equality constraint, lower
input bound constraints, and upper input bound constraints
respectively. Additionally, we let f(ξ) = φ(ξ) for simplicity
and apply [l] as superscript to denote the l’th iteration of the
algorithm.

A. Quadratic Programming subproblem

In iteration l, the QP-subproblem solved in NLPSQP is

min
∆ξ

l̄0(∆u0) +

N−1∑
k=1

l̄k(∆xk,∆uk) + l̄N (∆xN ), (13a)

s.t. ∆xk+1 = A⊤
k ∆xk +B⊤

k ∆uk + bk, (13b)
umin − uk ≤ ∆uk ≤ umax − uk, (13c)

where k ∈ N , ∆x0 = 0 is a parameter, and

l̄0(∆u0) =
1

2
∆u⊤

0 R0∆u0 + r⊤0 ∆u0 + ρ0, (14a)

l̄k(∆xk,∆uk) =
1

2

[
∆xk

∆uk

]⊤ [
Qk Mk

M⊤
k Rk

] [
∆xk

∆uk

]
+

[
qk
rk

]⊤ [
∆xk

∆uk

]
+ ρk,

(14b)

l̄N (∆xN ) =
1

2
∆x⊤

NPN∆xN + p⊤N∆xN + ρN . (14c)

Due to partial separability of the Lagrangian function,

L(ξ, λ, πl, πu) = L0(u0, λ, πl, πu)

+

N−1∑
k=1

Lk(xk, uk, λ, πl, πu) + LN (xN , λ),
(15)

the Lagrangian Hessian is block diagonal with blocks, Wk,
defined as,

W0 = R0, Wk =

[
Qk Mk

M⊤
k Rk

]
, WN = PN , (16)

for k = 1, ..., N − 1. The matrices, Qk, Rk, Mk, and
PN , are second order derivatives of the Lagrangian function.
However, NLPSQP applies a BFGS type approximation for
the blocks, Wk [11]. The remaining matrices and vectors in
the QP-subproblem, (13), are given as,

rk = ∇uk
Lk, k = 0, ..., N − 1, (17a)

qk = ∇xk
Lk, k = 1, ..., N − 1, (17b)

pN = ∇xN
LN , (17c)

Ak = ∇xk
Fk, k = 1, ..., N − 1, (17d)

Bk = ∇uk
Fk, k = 0, ..., N − 1, (17e)

bk = Fk − xk+1, k = 0, ..., N − 1, (17f)

where Fk = F (tk, xk, uk, dk, p). The solution to the QP-
subproblem, (14), is the data (∆ξ, µ, νl, νu)

[l], where

µ[l] = λ[l] +∆λ[l], (18a)

ν
[l]
l = π

[l]
l +∆π

[l]
l , (18b)

ν[l]u = π[l]
u +∆π[l]

u . (18c)

Notice that the search direction, (∆ξ,∆λ,∆πl,∆πu)
[l], en-

sures satisfaction of the linear bound constraints, (11c), if the
initial guess is feasible. NLPSQP solves the structured QP-
subproblem, (13), with a Riccati recursion based primal-dual
interior point algorithm [12]–[14].

B. Line-search

Given the search direction, (∆ξ,∆λ,∆πl,∆πu)
[l], NLP-

SQP performs the step,

(ξ, λ, πl, πu)
[l+1] = (ξ, λ, πl, πu)

[l]

+ α(∆ξ,∆λ,∆πl,∆πu)
[l],

(19)

where α is a step-size. NLPSQP applies a backtracking line-
search algorithm to select a step-size, α, ensuring sufficient
decrease in Powell’s l1-merit function [13], [15],

P (ξ, σ) = f(ξ) + σ⊤|g(ξ)|, (20)

where

σi = max

(
|µi|,

1

2
(σi + |µi|)

)
, i = 1, ...,m, (21)

with σi = |µi| in the first iteration. We define

T (α) = P (ξ[l+1], σ) = P (ξ[l] + α∆ξ[l], σ), (22)

and let sufficient decrease be defined from the Armijo
condition,

T (α) ≤ T (0) + c1αD∆ξT (0), (23)

where

T (α) = f(ξ[l] + α∆ξ[l]) + σ⊤|g(ξ[l] + α∆ξ[l])|, (24)

T (0) = f(ξ[l]) + σ⊤|g(ξ[l])|, (25)

D∆ξT (0) = ∇f(ξ[l])⊤∆ξ[l] − σ⊤|g(ξ[l])|. (26)

The backtracking line-search algorithm is,
1) Set α = 1
2) Evaluate (23). If satisfied, break with α as output
3) Compute α = βα
4) Go to 2)

where 0 < β < 1. We use c1 = 10−4 and β = 0.5 (similarly
to IPOPT [16]).

C. Block BFGS update

NLPSQP estimates the block matrices, Wk, with a block
damped BFGS update [11]. Define

s = ξ[l+1] − ξ[l], (27a)

y = ∇ξL[l+1] −∇ξL[l], (27b)

where ∇ξL[l] = ∇ξL(ξ[l], λ[l+1], π
[l+1]
l , π

[l+1]
u ), ∇ξL[l+1] =

∇ξL(ξ[l+1], λ[l+1], π
[l+1]
l , π

[l+1]
u ), and let sk and yk be the

elements of s and y corresponding to Wk, respectively. Let

rk = θkyk + (1− θk)Wksk, (28)

where

θk =

{
1 s⊤k yk ≥ 0.2s⊤k Wksk

0.8s⊤k Wksk
s⊤k Wksk−s⊤k yk

else
(29)



Then the block BFGS update is given by

Wk+1 =

{
Wk − (Wksk)(Wksk)

⊤

s⊤k (Wksk)
+

rkr
⊤
k

s⊤k rk
κ > ϵm

Wk else
(30)

where ϵm is the machine precision, κ = min(κ1, κ2) with
κ1 = s⊤k Wksk and κ2 = s⊤k rk. The update safeguard is
required as some blocks might converge faster than others
resulting in zero-division. NLPSQP initializes the Hessian
update as identity, W [0] = I . Numerical rounding errors
might cause indefinite BFGS block updates. In this case,
NLPSQP applies the simple strategy to reset the entire
Hessian to identity.

D. Convergence

NLPSQP converges when the KKT conditions are satisfied
to the user-specified tolerance ϵ. In practice, we apply a
scaled convergence condition,

||∇L[l]/sd||∞ ≤ ϵ, ||g[l]||∞ ≤ ϵ, (31)

where ∇L[l] = ∇L(ξ, λ, πl, πu)
[l], g[l] = g(ξ)[l], and

sd = max

(
smax,

||λ||1 + ||πl||1 + ||πu||1
me +ml +mu

)
/smax, (32)

with smax = 100 (similar to IPOPT [16]).

E. Implementation

NLPSQP is implemented thread-safe in C for parallel
applications, specifically intended for closed-loop Monte
Carlo simulation. NLPSQP is BLAS dependent. In particular,
we apply OpenBLAS [17], [18]. To ensure thread-safety
of OpenBLAS, we compile a single threaded version by
setting USE THREAD=0 and USE LOCKING=1. However,
we have not been able to achieve parallel scaling for the
functions dpotrf, dpotrs, and dgemm. Therefore, we
have implemented our own versions of these functions only
intended for small matrices. In future work, we will consider
other thread-safe BLAS libraries.

V. PROPORTIONAL–INTEGRAL CONTROLLER

We consider a PI controller with input bounds, umin

and umax, and anti-windup mechanism to ensure proper
integrator behavior when the PI response is saturated,

ek = ȳk − yk, (33a)
Pk = kP ek, (33b)

Ik = Îk−1 + TskIek, (33c)
ûk = ū+ Pk + Ik, (33d)
uk = max(umin,min(umax, ûk)), (33e)

Iaw,k = Tskaw(ûk − uk), (33f)

Îk = Ik + Iaw,k. (33g)

We apply the PI controller (33) as a reference for the NMPC.

VI. MODEL

As a simulation case study, we consider an exothermic
chemical reaction conducted in an adiabatic CSTR [7],
[8]. The example is simple yet effective due to the non-
trivial dynamics causing a branch of unstable steady-states
in the operating window [7]. In addition, the model is well-
approximated by a one-state model, well-suited for NMPC.
The stochastic model for the constant volume CSTR is
compactly written as the SDE [2],

dn(t) = (CinF − cF +RV ) dt+ Fσ̄dω(t), (34)

where

c =
n

V
, R = S⊤r(c), (35)

and

r(c) = k(cT )cAcB , k(cT ) = k0 exp

(
−Ea

R

1

cT

)
, (36)

with Ea/R denoting the activation energy. In the three-state
model, the stoichiometric matrix and inlet stream concentra-
tion matrix is,

Cin =

cA,in

cB,in

cT,in

 , S =
[
−1.0 −2.0 β

]
, (37)

and in the one-state model they are,

Cin =
[
cT,in

]
, S =

[
β
]
. (38)

The stochastic diffusion term of (34) models inlet concen-
tration variations and we apply

σ̄ =

σA

σB

σT

 , σ̄ =
[
σT

]
, (39)

in the three-state and one-state models, respectively. We refer
to [7] for more details and the parameters of the model. The
output of the model is the temperature cT , i.e., z(t) = cT (t).
Additionally, we assume the temperature to be measured at
discrete times, i.e., y(ti) = cT (ti).

VII. RESULTS

This section presents our simulation results. The simula-
tions are conducted on a dual-socket Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz system. See TABLE I for CPU
details.

A. Closed-loop simulation

We simulate the CSTR in closed-loop with the NMPC.
We apply the three-state stochastic model for simulation of
the system and apply the one-state model in the NMPC.
We select a variable set-point, z̄, together with, t0 = 0.0
s, tf = 600.0 s, Ts = 1.0 s, and Ns = 20, where Ns is
the number of Euler-Maruyama steps to integrate the state
equations from ti to ti+1. We initialize the system at

x0 = n0 =

cA,in

cB,in

cT,in

V. (40)



TABLE I
CPU INFORMATION.

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU MHz: 2900.000
L1d cache: 32 kB
L1i cache: 32 kB
L2 cache: 1024 kB
L3 cache: 22528 kB
RAM: 384 GB

TABLE II
STATISTICS FOR MONTE CARLO SIMULATION OF NMPC CLOSED-LOOP.

MC simulation time ≈ 55 [min]
Number of MC simulations 30,000 [-]
Total number of OCPs 18,000,000 [-]
Successful OCPs 17,999,576 [-]
Failed OCPs 424 [-]
Percentage success 99.9976 [%]
Percentage fails 0.0024 [%]

The NMPC has the discrete prediction and control horizon,
N = 60, applies Nc = 5 classical Runge-Kutta steps to
integrate the state dynamics in each control interval in the
OCP, and applies a point-wise weighted least-squares output
objective in the OCP,

φi =

N∑
k=1

||z(ti+k)− z̄(ti+k)||2Qz
Ts, (41)

where Qz = 1.0. We initialize the CD-EKF states as,

x̂−1|−1 = cT,inV, P−1|−1 = 10−6, (42)

and apply the input bounds umin = 0.0 mL/min and
umax = 1000.0 mL/min. The PI controller with anti-windup
mechanism, (33), has the hand-tuned gains,

kP = −10−3, kI = −10−4, kaw = −10−1. (43a)

We perform a single closed-loop simulation with the PI
controller and the NPMC. Fig. 1 presents the result. We
observe that both the PI controller and the NMPC are able
to track set-points at both stable and unstable steady-states.
However, the NMPC has better tracking performance at set-
point changes due to its anticipatory action.

B. Parallel scalability

We apply the Monte Carlo simulation toolbox to perform
100 simulations with different process noise in the system.
We compute the 100 simulations with the NMPC on different
numbers of cores to get scale-up data. Fig. 2 presents a scale-
up plot for the simulations. We observe almost linear scale-
up and approximately 27 times speed-up on 32 cores. In
previous work, we showed similar scale-up results for a PID
controller [1].

Fig. 1. Stochastic closed-loop simulation with PI controller and NMPC.
Both controllers are able to track the set-points at both stable and unstable
steady-states. The NMPC has better tracking performance at set-point
changes due to its anticipatory action.

C. Monte Carlo Simulations

We perform Monte Carlo simulations to quantify the
closed-loop performance of the NMPC in presences of
process noise. In particular, we perform 30, 000 simulations
with varying process noise for both the PI controller and the
NMPC. We apply a scaled point-wise squared-2-norm metric
to evaluate the closed-loop performance,

Φ =
1

N̄ + 1

N̄∑
i=0

||z(ti)− z̄(ti)||22, (44)

where N̄ is the number of samplings over the full simulation,
i.e., N̄ =

tf−t0
Ts

= 600 in our simulations. Fig. 3 shows
historgams of the distribution of Φ, (44), over the 30,000
Monte Carlo simulations. The results show that the NMPC
outperforms the PI controller in both mean and variance with
respect to the Φ-metric. However, due to Fig. 1, we expect
the better NMPC performance to be mainly due to set-point
changes and anticipatory action from the NMPC.

TABLE II shows simulation statistics for the NMPC
closed-loop Monte Carlo simulations. We observe that NLP-
SQP successfully solves 99.9976% of the 18, 000, 000 OCPs
in the 30, 000 closed-loop simulations. In the remaining
0.0024%, NLPSQP reaches the maximum number of itera-
tions set to 100. We suspect that NLPSQP locates an almost
optimal point, but has trouble detecting it. Therefore, we
implement the detected solution in the NMPC. In future
work, we will further investigate the convergence detection
of NLPSQP.



Fig. 2. Scaling plot for Monte Carlo simulations of NMPC closed loop in
parallel. Scaling on 32 cores is approximately 27 times.

Fig. 3. Histograms of the distribution of the Φ-metric, (44), for the PI
controller and the NMPC in closed-loop. The red dashed line indicates the
performance of the NMPC in the deterministic case. Computation time for
30,000 closed-loop simulations with NMPC is approximately 55 min.

VIII. CONCLUSION

The paper presented a parallel Monte Carlo simulation
based performance quantification method for NMPC in
closed-loop. The method is made computationally feasible by
combining a new thread-safe NMPC implementation with an
existing implementation of a high-performance Monte Carlo
simulation toolbox in C. The toolbox showed almost linear
scale-up for the closed-loop simulations with an NMPC.
We considered a simple CSTR model to demonstrate the
performance quantification method. We performed 30, 000
Monte Carlo simulations of the closed-loop with NMPC in
approximately 55 min and applied the simulations to quantify
the performance of the NMPC in presence of process noise.
We compared the NMPC performance to a hand-tuned PI

controller. Performance distributions provided by the Monte
Carlo simulations showed that the NMPC outperforms the
PI controller in both mean and variance. In addition, the
performance quantification method is well-suited for NMPC
tuning, e.g., tuning of stage cost or constraint back-off.

REFERENCES

[1] M. R. Wahlgreen, A. Thode Reenberg, M. K. Nielsen, A. Rydahl,
T. K. S. Ritschel, B. Dammann, and J. B. Jørgensen, “A High-
Performance Monte Carlo Simulation Toolbox for Uncertainty Quan-
tification of Closed-loop Systems,” Proceedings of the 60th IEEE
Conference on Decision and Control (CDC), pp. 6755–6761, 2021.

[2] M. R. Wahlgreen, J. B. Jørgensen, and M. Zanon, “Model Predictive
Control Tuning by Monte Carlo Simulation and Controller Matching,”
Proceedings of Foundations of Computer Aided Process Operations /
Chemical Process Control (FOCAPO / CPC), accepted, 2023.

[3] A. T. Reenberg, T. K. S. Ritschel, B. Dammann, and J. B. Jørgensen,
“High-performance Uncertainty Quantification in Large-scale Virtual
Clinical Trials of Closed-loop Diabetes Treatment,” Proceedings of
the American Control Conference (ACC), pp. 1367–1372, 2022.

[4] N. Kantas, J. M. MacIejowski, and A. Lecchini-Visintini, “Sequential
Monte Carlo for Model Predictive Control,” Lecture Notes in Control
and Information Sciences, vol. 384, pp. 263–273, 2009.

[5] S. K. Botchu and S. Ungarala, “Nonlinear Model Predictive Control
Based on Sequential Monte Carlo State Estimation,” Ifac Proceedings
Volumes (ifac-papersonline), vol. 40, no. 5, pp. 29–34, 2007.

[6] P. Ross, “Why CPU Frequency Stalled,” IEEE Spectrum, vol. 45, no. 4,
p. 72, 2008.

[7] M. R. Wahlgreen, E. Schroll-Fleischer, D. Boiroux, T. K. S. Ritschel,
H. Wu, J. K. Huusom, and J. B. Jørgensen, “Nonlinear Model Predic-
tive Control for an Exothermic Reaction in an adiabatic CSTR,” 6th
Conference on Advances in Control and Optimization of Dynamical
Systems ACODS, Chennai, India, February 16-19 2020.

[8] J. B. Jørgensen, T. K. S. Ritschel, D. Boiroux, E. Schroll-Fleischer,
M. R. Wahlgreen, M. K. Nielsen, H. Wu, and J. K. Huusom, “Simula-
tion of NMPC for a Laboratory Adiabatic CSTR with an Exothermic
Reaction,” Proceedings of 2020 European Control Conference (ECC),
pp. 202–207, 2020.

[9] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlin-
ear Approaches. John Wiley & Sons, 2006.

[10] R. Schneider and C. Georgakis, “How To NOT Make the Extended
Kalman Filter Fail,” Industrial & Engineering Chemistry Research,
vol. 52, p. 3354–3362, 2013.

[11] H. Bock and K. Plitt, “A Multiple Shooting Algorithm for Direct
Solution of Optimal Control Problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[12] G. Frison and J. B. Jørgensen, “Efficient Implementation of the Riccati
Recursion for Solving Linear-Quadratic Control Problems,” IEEE
International Conference on Control Applications (CCA), Hyderabad,
India, pp. 1117–1122, 2013.

[13] J. B. Jørgensen, “Moving Horizon Estimation and Control,” Ph.D.
dissertation, Technical University of Denmark, 2004.

[14] M. R. Wahlgreen and J. B. Jørgensen, “On the Implementation
of a Preconditioned Riccati Recursion based Primal-Dual Interior-
Point Algorithm for Input Constrained Optimal Control Problems,”
IFAC-PapersOnLine, vol. 55, no. 7, pp. 346–351, 2022, 13th IFAC
Symposium on Dynamics and Control of Process Systems, including
Biosystems (DYCOPS).

[15] M. J. D. Powell, “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Proceedings of the Biennial Conference
on Numerical Analysis, pp. 144–157, 1978.
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