
ar
X

iv
:2

00
2.

12
41

2v
1

 [
cs

.C
R

]
 2

7
Fe

b
20

20

Formal Synthesis of Monitoring and Detection

Systems for Secure CPS Implementations

Ipsita Koley1, Saurav Kumar Ghosh1, Soumyajit Dey1, Debdeep Mukhopadhyay1,

Amogh Kashyap K N2, Sachin Kumar Singh2, Lavanya Lokesh2, Jithin Nalu Purakkal2, Nishant Sinha2

1Indian Institute of Technology,Kharagpur, 2Robert Bosch Engineering and Business Solutions Private Limited

{ipsitakoley, soumyajit, debdeep}@iitkgp.ac.in, saurav.kumar.ghosh@cse.iitkgp.ernet.in

{Amogh.Kashyap, SachinKumar.Singh, Lokesh.Lavanya, Jithin.NaluPurakkal2,Sinha.Nishant}@in.bosch.com

Abstract—We consider the problem of securing a given control
loop implementation of a cyber-physical system (CPS) in the
presence of Man-in-the-Middle attacks on data exchange between
plant and controller over a compromised network. To this end,
there exists various detection schemes which provide mathemat-
ical guarantees against such attacks for the theoretical control
model. However, such guarantees may not hold for the actual
control software implementation. In this article, we propose
a formal approach towards synthesizing attack detectors with
varying thresholds which can prevent performance degrading
stealthy attacks while minimizing false alarms.

Index Terms—Cyber Physical System, False data injection
attack, Formal method, Residue based detector.

I. INTRODUCTION

Unattended communication among devices in distributed

CPS implementations makes new pathways for malicious

interference. Given that such systems often need to perform

safety critical functionalities with real time deadlines within

stringent power, energy requirements, the impact of attacks on

safety-critical CPS may have catastrophic consequences. In the

past decade, many such high profile attacks have been reported

spanning a variety of application domains ([1]–[4]). It is infea-

sible to physically secure every packet transmission between

CPS components due to limited communication bandwidth as

well as lightweight nature of computing nodes. This rules out

using heavyweight cryptographic encryption techniques (like

RSA, AES) along with MACs for securing all intra-vehicular

communication [5]. Hence, it makes sense to enhance the

security of CPS implementations by using suitable lightweight

monitoring primitives considering that an attacker has already

breached into the CPS communication infrastructure.

In this work, we focus on residue-based monitoring and

detection systems which compute the difference between

plant output measurements received through a communication

network and the estimates of the same based on earlier

measurements and knowledge about system dynamics, raising

an alarm if the difference (i.e. the residue) exceeds a pre-

defined threshold. Since this type of anomaly detector uses

the properties of the control system to detect an adversarial

action, it does not impose any significant overhead to the

system’s resource consumption in terms of communication

and computation. Although there exists significant literature on

The authors acknowledge generous support from Robert Bosch Engineering
and Business Solutions Private Limited.

residue-based detectors [6]–[8], none of these works discusses

an effective methodology for synthesizing thresholds given

a control system specification. Also existing works consider

static thresholds only, i.e. the difference in measurement and

estimate is compared with a constant pre-fixed threshold for

all closed loop iterations of the system.

As a potential example of targeted performance degrading

attack, consider the situation when the reference point of a

controller changes due to occurrence of some event. For such

systems, with a comparatively smaller fault injection at the

later stage of dynamics (i.e. when nearing the reference),

an attacker can prevent the system from reaching the close

vicinity of the reference. This brings in interesting trade-offs

from the detector design point of view. In a static threshold-

based detection scheme, if the threshold is decided based on

the required attack amount at the later phase of settling time,

it may be the case that any process or measurement noise

induced by environmental disturbance in the system is con-

sidered an attack and a false alarm is generated. This implies

the False Alarm Rate (FAR) will increase. If the threshold

is decided based on the attacker’s effort at the earlier phase

of settling time, the attacker can easily bypass the detection

scheme by injecting sufficiently small anomalies whenever

the system is very close to the reference and deteriorate the

system’s performance. This motivates the case for a variable

threshold based anomaly detection method which may ensure

reduced FAR while identifying even small attack efforts that

may lead to potential performance degradation.

2 4 6 8 10

Time(x10 -1)(s)

-0.2

0

0.2

0.4

0.6

de
vi

at
io

n(
m

)

deviation under no noise
deviation under noise
deviation under attack

(a) Effect of noise and attack

2 4 6 8 10

Time(x10 -1)(s)

0

0.05

0.1

re
si

du
e

residue under noise residue under attack th Th v
th

(b) Static vs dynamic threshold

Fig. 1: Trajectory tracking system

As a motivational example, we consider a trajectory tracking

system (Fig. 1) taken from [9]. A suitably crafted attack can

steer the system towards instability as shown in the same

figure. In Fig. 1b, we consider three possible residue based

detectors, with the smaller threshold th, the bigger threshold

Th and the variable threshold curve vth. Note that with th,

http://arxiv.org/abs/2002.12412v1

the detector considers even the harmless noise as an attack, as

shown (Fig. 1b). On the other hand, with Th, the actual attack

could easily bypass the detector. However using the variable

threshold curve vth (dotted red line in Fig. 1b), the attack

does not remain stealthy while harmless noise is allowed to

pass reducing the FAR.

In this article, we propose a formal approach for synthe-

sizing residue based attack detectors with variable thresholds

for CPS implementations that can prevent stealthy attacks.

These detectors are also guaranteed to have smaller FAR w.r.t.

provably safe static threshold based detector options.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a discrete linear time invariant (LTI) plant model

S given as, xk+1 = Axk +Buk+wk, yk = Cxk +Duk+ vk,

where xk ∈ Rn, yk ∈ Rm, wk ∈ Rn ∼ N (0, Q) and

vk ∈ R
m ∼ N (0, R) represent system state variables, sensor

measurements of plant, zero mean Gaussian process and

measurement noise at kth sampling instance respectively. Also

A, B and C are transition matrix, input map and output map

for the plant model respectively. To estimate the system states

x̂k from the observed ones, a Kalman filter based observer is

deployed, given by, zk = yk−Cx̂k, x̂k+1 = Ax̂k+Buk+Lzk,

where residue zk = yk − Cx̂k is the difference between

measured and estimated output at kth time instance, and

L is Kalman gain. The controller output uk is computed

as, uk = −Kx̂k. In this paper we contemplate false data

injection based attack scenario in which the attacker falsifies

the sensor measurements by injecting ak ∈ Rm to sensor

output yk at kth sampling instance. The resulting altered

sensor measurements ỹk = yk + ak are fed to the estimator

which in turn affects the control input calculation. Due to this,

the closed loop dynamics deviates from the expected behavior.

For this system description, we consider a threshold based

detection scheme such that the detector will raise an alarm

whenever ‖zk‖ ≥ Th[k] where Th[k] is threshold at kth

sampling instance. We say an attack is stealthy if some given

safety or performance criteria of the system is violated by the

attacker while ‖zk‖ remains below Th[k] for all k.

Formal Problem Statement: Consider the plant model S
as discussed earlier, a controller implemented as a software

program C running on an ECU, and a safety or performance

criteria pfc. The objective of C is to satisfy pfc withing some

(j + T)th samples starting from any sampling instance j. An

l length threshold specification Th is represented by a vector

∈ Rl. Threshold is said to be static if Th[i] is same for all i,

else it is variable. We formally define the threshold synthesis

problem as follows.

Given 〈S, C, pfc〉, what would be an optimal threshold spec-

ification Th such that any stealthy attack is guaranteed to be

detected as well as FAR is minimized ?

III. THRESHOLD SYNTHESIS AND METHODOLOGY

As a first step in our approach, we propose Algorithm 1

which formally checks the implementation C and identifies

whether there exists any possible attack vector that can violate

the target properties of the system. Given S, C, let xdes be the

reference point for the system and the target property pfc is to

reach xT ∈ {xdes + ǫ} for some ǫ ∈ R within a finite number

of iterations, say T starting from any initial state x1 ∈ V ⊆
Rn. An attacker would want to achieve xT 6∈ {xdes + ǫ} after

T such closed loop iterations. Some CPS implementations

often incorporate certain monitoring constraints in addition to

residue based attack detectors to check the sanity of the sensor

measurements. Such constraints are captured using suitable

predicates denoted as mdc. Algorithm 1 takes as input mdc,

pfc, a threshold vector Th and a finite duration T allotted

for achieving pfc. The variable ak signifying false data is

assigned a value nondeterministically (Line 4) and is added

with measurements subsequently. We say that an attack is

stealthy but successful when predicates ‖zk‖ ≤ Th[k] and

mdc are satisfied, but pfc is violated. This is modeled by the

assertion A in Line 9. A is given as input to an SMT tool with

the assert clause. It returns a successful attack vector A if the

assertion A is satisfied (Line 11). Otherwise, it returns NULL

(Line 13) which guarantees that no attack vector exists that

remains stealthy over T iterations and violates the performance

criteria pfc of the system.

Input Control property pfc, existing monitoring constraint mdc, computed threshold

vector Th, attack duration T
Output Attack vector A(if it exists, otherwise NULL)

1: function ATTVECSYN(Th, pfc, mdc, T)

2: x1 ← V ; x̂1 ← 0; u1 ← 0; ⊲ Initialization

3: for k = 1 to T do

4: ak ← nondeterministic choice;

5: yk ← Cxk + Duk + ak; ŷk ← Cx̂k + Duk ;

6: zk ← yk − ŷk;

7: xk+1 ← Axk + Buk ; x̂k+1 ← Ax̂k + Buk + Lzk;

8: uk+1 ← −Kx̂k+1;

9: A←assert((∀Th[p] ∈ Th, ‖zp‖ < Th[p] && mdc) 6→ pfc);

10: if A is valid then

11: return A ← [a1 · · · aT];
12: else

13: return NULL;

Algorithm 1: Attack vector synthesis

We now propose a methodology in Algorithm 2 to syn-

thesize a monotonically decreasing vector of thresholds to

provably secure a given CPS against attacks. Given the state

space of possible l-length variable threshold functions (l ∈ N),

we formulate heuristic approaches guided by our hypothesis

of monotonically decreasing thresholds. To verify whether

existing monitoring constraint (if any) suffices to detect any

stealthy attack we generate an attack vector without any

threshold based detector (Line 2−3) using Algorithm 1. If any

attack vector is retrieved, we make a greedy choice and select

the sampling instance i where maximum residue is generated

due to this attack (Line 4) as a pivot point. A threshold at i

is introduced to thwart the current attack (Line 5). With this

new threshold we call Algorithm 1 (Line 6) to check if any

attack can bypass this detector. If found, we now search for

new thresholds to be added to Th to stop this new attack in

the following manner.

Case 1a [Line 9 − 11]: For any of the existing thresholds

Th[p] ∈ Th, we try to find out whether the current attack has

produced any residue ‖zk‖ ≥ Th[p] before the pth instance,

i.e. k ≤ p. If any such zk exists, we consider the maximum of

them and include it to Th while ensuring monotonicity (Line

9 − 10). If we get such a new threshold Th[i] that keeps the

monotonic decreasing order in Th intact, we stop searching

(Line 11). Otherwise, we consider Case 1b.

Input Performance criteria pfc, existing monitoring constraint mdc, number of sam-

pling instances T required by the controller to attain pfc
Output Threshold Vector Th = { Th[i]: threshold required at ith sampling instance

to thwart false data injection attack} of length T

1: function PIVOTBASEDTHRESHOLDSYN(pfc, mdc, T)

2: Th← NULL; ⊲ Initialization

3: if ATTVECSYN(Th, pfc, mdc, T) then

4: ∃i ∈ [1, T] , ∀ k ∈ [1, T], i 6= k ∧ ‖zi‖ ≥ ‖zk‖
5: Th[i]← ‖zi‖;

6: while ATTVECSYN(Th, pfc, mdc, T) do

7: found← false;

8: for each p ∈ [1, T] s.t. Th[p] 6= 0 do ⊲ New threshold addition

9: if ∃i ‖zi‖ ← max(∀k ∈ [1, p− 1] ‖zk‖ ∧ ‖zk‖ ≥ Th[p]) then

10: Th[i]← min(∀k ∈ [1, i− 1] Th[k] 6= 0, ‖zi‖);

11: found← true; break;

12: if ∃i ‖zi‖ ← max(∀k ∈ [p + 1, T] ‖zk‖) then

13: if ∀k ∈ [i+ 1, T] ‖zi‖ ≥ Th[k] then

14: Th[i]← min(∀k ∈ [1, i− 1] Th[k] 6= 0, ‖zi‖);

15: found← true; break;

16: if found = false then ⊲ Threshold reduction step

17: ∃i ∈ [1, T] ∀k ∈ [1, T] i 6= k ∧ Th[i] 6= 0 ∧ Th[k] 6= 0 ∧
((Th[i]− ‖zi‖) ≤ (Th[k]− ‖zk‖));

18: Th[i]← ‖zi‖;
19: for all k ∈ [i+ 1, T] do

20: if Th[k] > Th[i] then

21: Th[k]← Th[i]

22: return Th

Algorithm 2: Pivot Based Threshold Synthesis

Case 1b [Line 12− 15]: For any of the thresholds Th[p] ∈
Th, we try to find out whether the current attack has produced

any residue ‖zk‖ ≥ Th[j] for all j ∈ [k+ 1, T] where k > p.

In that case, we consider the maximum of them (Line 12) and

include it to Th while ensuring monotonicity (Line 13− 14).

Otherwise, one or more existing thresholds in Th need to be

reduced to detect the current attack (Case 1c).
Case 1c [Line 16 − 21]: We choose the candidate threshold

Th[i] from Th which can be reduced with minimum effort i.e.

the minimum difference between the current threshold value

Th[i] and the residue ‖zi‖ generated by the attack (Line 17).

For that i, we set Th[i] = ‖zi‖ (Line 18) and adjust subsequent

thresholds in order to ensure monotonicity (Line 19− 21).

Once a new threshold is introduced or existing thresholds are

modified to detect the current attack, we call Algorithm 1 (Line

6) with the modified Th. If it returns NULL, it is ensured that

the latest Th is enough to thwart any stealthy attack. If not,

we repeat the process with Case 1a, 1b or 1c with the newly

generated attack vector. While Algorithm 2 can be used to

synthesize monotonically decreasing thresholds, it can take a

long time to converge. Hence we propose Algorithm 3 which

also starts with generating an attack vector without considering

any threshold using Algorithm 1 and finds the sampling

instance i at which maximum residue is generated (Line 3−4).

Considering a staircase approximation of the target variable

threshold vector, we maintain the vector Steps to keep track

of the heights of the step edges of the staircase where Steps[k]
denotes height of the kth step. In this algorithm, a step captures

a subsequence of consecutive constant thresholds. First step of

staircase is created by setting ∀1 ≤ j ≤ i, Th[j] = Steps[i]
where Steps[i] = ‖zi‖ (Line 5− 6). With this new threshold

vector Th, we call Algorithm 1 to check if any attack can

bypass this detector. If yes, we generate new threshold steps

in the following ways.

Input Performance criteria pfc, existing monitoring constraint mdc, number of sam-

pling instances T required by the controller to attain pfc

Output Threshold Vector Th = { Th[i]: threshold required at ith sampling instance

to thwart false data injection attack}
1: function STEPWISETHRESHOLDSYN(pfc, mdc, T)

2: Th← NULL;Steps← NULL; ⊲ Initialization

3: if ATTVECSYN(Th, pfc, mdc, T) then

4: ∃i ∈ [1, T] ∀ k ∈ [1, T] i 6= k ∧ ‖zi‖ ≥ ‖zk‖
5: Steps[i] ← ‖zi‖;
6: ∀1 ≤ j ≤ i, Th[j]← Steps[i];k ← i;

7: while ATTVECSYN(Th, pfc, mdc, T) ∧ k 6= T do ⊲ Initial steps formation

8: ∃i i < T ∧ Th[i] 6= 0 ∧ Th[i + 1] = 0;

9: ∃k i < k < T ∀j i < j < T ∧ j 6= k ∧ ‖zj‖ ≤ ‖zk‖ ≤ Th[i];
10: Steps[k] ← ‖zk‖;
11: ∀i < j ≤ k Th[j] ← Steps[k];

12: while A ← ATTVECSYN(Th, pfc, mdc, T) do ⊲ Reducing height of steps

13: k ←MINAREARECTANGLE(A,Steps,T);

14: ∃p k < p < T ∀q k < q < T ∧ p 6= q ∧ Steps[p] ≤ ‖zk‖ ∧
Steps[q] ≤ ‖zk‖ ∧ Steps[p] ≥ Steps[q];

15: Steps[k] ← Th[k]; Steps[p]← ‖zk‖;
16: ∀i k < i ≤ p, Th[i]← Steps[p];

17: return Th

18: function MINAREARECTANGLE(A,Steps′ ,T)

19: MinArea ←∞;MinAreaPositon ← NULL;
20: for i = 1 to T do

21: Areai ← 0;
22: while ∃j i < j < T ∀k i < k < T ∧ j 6= k ∧ Steps′ [j] ≥

Steps′[k] ∧ Steps′[j] > ‖zi‖ do;

23: Areai ← Areai + (Steps′ [j] − ‖zi‖)× (j − i);

24: Steps′[j]← NULL;

25: if Areai < MinArea then

26: MinArea ← Area;MinAreaPosition ← i;

27: return MinAreaPosition;

Algorithm 3: Step-wise Threshold Synthesis

Case 2a [Line 7− 11]: Let i be the last step with non-zero

threshold (Line 8). To generate a new step after i, we find

out the sampling instance k at which the maximum residue

is generated by the current attack vector such that k > i.

The record of new step edge Steps[k] = ‖zk‖ is added to

Steps vector (Line 10) and the new step is enforced by setting

∀ j ∈ (i, k], Th[j] = Steps[k] (Line 11). If the last step edge

is at i = T or no stealthy attack can be found that bypasses

the current threshold steps, we proceed to Case 2b to build

new steps by fine-graining the existing ones.

Case 2b [Line 12 − 17]: In this case, we have two possibil-

ities. If no attack vector exists (Line 12), then the algorithm

terminates. If any attack is found that bypasses the current

detector threshold Th, heights of the existing steps need to be

reduced. Instead of diminishing the height of an entire step, we

break a portion or the whole step whichever involves minimum

effort i.e. the minimum area from under the threshold curve

that can be removed to detect the current attack. The function

MINAREARECTANGLE (Line 18 − 27) computes such mini-

mum area ensuring both staircase like structure and monotonic

decreasing property.

IV. CASE STUDY AND OBSERVATIONS

We demonstrate the efficacy of our approach using a Ve-

hicle Stability Controller (VSC) case study. The VSC system

receives data from four wheel speed sensors (WSS), lateral

acceleration (Ay), longitudinal acceleration (Ax), yaw rate

sensor (Yrs) and steering angle sensor (SaS). Generated ac-

tuator command is sent to the hydraulic unit of a vehicle.

Wheel speed sensors are hardwired between the wheels and

the controller unit. However, data from Ay, Ax, Yrs, SaS, along

with actuator signal, are transferred through CAN bus and is

considered vulnerable to attack. In this work, we use VSC

model of [10]. Sampling period is considered as Ts = 40ms.

Relevant variables are taken from [11]. We consider an attack

model where the attacker forges output of both Y rs and Ay

sensors. However, most modern automobiles have monitoring

systems already in place to detect any abnormal behavior

of VSC. We consider one such monitoring system which

performs the following checks for all measurements: 1) Range

and gradient based monitors check if range and gradient of

yaw rate γ and lateral acceleration ay are within permissible

limit; 2) Relation based monitor checks if difference between

measured yaw rate γ from Yrs and estimated yaw rate γest
from Ay is less than allowedDiff . An immediate violation of

both the schemes does not raise an alarm. It waits for certain

duration, called dead zone. Continuous violation during the

dead zone causes the monitoring system to raise an alarm.

The allowedDiff , range of γ, gradient of γ, range of ay and

gradient of ay are considered 0.035 rad/s, 0.2 rad/s, 0.175
rad/s2, 15 m/s2 and 2 m/s3 respectively. The dead zone is

considered to be 300 ms i.e. ⌊ 300
Ts

⌋ = 7 samples. We define

pfc of the system as: yaw rate must reach within 80% of

desired value within 50 sampling instances.

0 20 40 60

Time(x40x10-3)(s)

0

0.1

0.2

0.3

ra
d
/s

 under attack

(a) Plant state γ

10 20 30 40 50 60
Time(x40x10-3)(s)

0

20

40

60

80

m
/s

2 (s
ca

le
 o

f 1
)

0

2

4

m
/s

3 (s
ca

le
 o

f 2
)a

y
[1]

allowed range of a
y
[1]

gradient of a
y
[2]

allowed gradient of a
y
[2]

(b) Monitoring on ay

0 10 20 30 40 50 60
Time(x40x10-3)(s)

0

0.1

0.2

0.3

ra
d/

s
(s

ca
le

 o
f 1

)

0

0.1

0.2

R
ad

/s
2 (s

ca
le

 o
f 2

)

-
est

[1]

allowed difference[1]

[1]

allowed range of [1]

gradient of [2]

allowed gradient of [2]

(c) Monitoring on γ

Fig. 2: Attack demonstration on VSC

To verify whether this apparently efficient monitoring sys-

tem can be bypassed by an attacker, we formulate an SMT

problem in Algorithm 1. We model all monitors as predicate

mdc in Algorithm 1. We include pfc and mdc in the assertion

clause A (Line 9 of Algorithm 1) and use the popular SMT

solver Z3 [12]. The output array A, in Algorithm 1, if

nonempty, reports attack vectors for the system. The effect

of one such synthesized vector for the VSC system is demon-

strated in Fig. 2a. The attack bypasses the existing monitoring

schemes (Fig. 2b,c). For mitigating these vulnerabilities, we

synthesize suitable residue based detectors using our methods.

10 20 30 40 50 60

Time(x40x10 -3)(s)

0

2

4

6

8

T
hr

es
ho

ld

Pivot Based Threshold Synthesis
Step-wise Threshold Synthesis

Fig. 3: Output of variable

threshold synthesis Algorithms

With pfc, mdc of VSC

and T as input, we execute

Algorithms 2 and 3 with

a timeout of 12 hours for

each SMT call. Based on the

greedy choices made during

simulation, Algorithm 2 ter-

minates in the 56th round

while Algorithm 3 termi-

nates much faster, in the

37th round. The final threshold sets computed by both al-

gorithms are presented in Fig. 3. For comparison purpose,

we also synthesize a static threshold based detector for VSC.

We generate 1000 random measurement noise vectors of

bounded length with each value sampled from a suitably

small range such that pfc is maintained. Among these, we

discard the noise vectors that are detected by mdc. From the

remaining, we compute false alarm rate of the three threshold

based detectors as: a) 61.5% for Algorithm 2, b) 45.6% for

Algorithm 3, and c) 98.9% for static threshold based detector.

We can see that both our proposed algorithms outperform

static threshold based detector in terms of FAR.

V. CONCLUSION

In the present work, we provide a synthesis mechanism

for variable threshold based detectors in the context of se-

curing CPS implementations. Our approach, based on formal

techniques, can provide provable guarantees for an actual

controller implementation instead of probabilistic guarantees

as is standard for mathematical control models. In future, we

would like to perform more exhaustive experimental as well

as analytical evaluation of our proposed techniques.

REFERENCES

[1] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical
system security,” in IECON. IEEE, 2011.

[2] J. Slay et al., “Lessons learned from the maroochy water breach,” in
ICCIP. Springer, 2007.

[3] R. Khan et al., “Threat analysis of blackenergy malware for synchropha-
sor based real-time control and monitoring in smart grid.” ICS-CSR,
vol. 16, pp. 1–11, 2016.

[4] Y. Shoukry et al., “Non-invasive spoofing attacks for anti-lock braking
systems,” in CHES. Springer, 2013.

[5] I. Jovanov et al., “Secure state estimation with cumulative message
authentication,” in CDC. IEEE, 2018.

[6] Y. Liu, et al., “False data injection attacks against state estimation in
electric power grids,” ACM Transactions on Information and System

Security, vol. 14, no. 1, p. 13, 2011.
[7] H. Sandberg et al., “On security indices for state estimators in power

networks,” in SCS, Stockholm, 2010.
[8] Y. Mo and B. Sinopoli, “False data injection attacks in cyber physical

systems,” in SCS, Stockholm, 2010.
[9] A. J. Kerns et al., “Unmanned aircraft capture and control via gps

spoofing,” Journal of Field Robotics, vol. 31, no. 4, pp. 617–636, 2014.
[10] Y. Aoki et al., “Experimental demonstration of body slip angle control

based on a novel linear observer for electric vehicle,” in IECON. IEEE,
2005.

[11] S. Zheng et al., “Controller design for vehicle stability enhancement,”
Control Engineering Practice, vol. 14, no. 12, pp. 1413–1421, 2006.

[12] L. De Moura et al., “Z3: An efficient smt solver,” in TACAS. Springer,
2008.

	I Introduction
	II System Model and Problem Formulation
	III Threshold Synthesis and Methodology
	IV Case Study and Observations
	V Conclusion
	References

