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Abstract 

The integration of cardiac magnetic resonance (CMR) 

imaging and electrocardiogram (ECG) data through 

advanced computational methods could enable the 

development of the cardiac ‘digital twin’, a comprehensive 

virtual tool that mechanistically reveals a patient’s heart 

condition from clinical data and simulates treatment 

outcomes. The adoption of cardiac digital twins requires 

the non-invasive efficient personalisation of the 

electrophysiological properties in cardiac models. This 

study develops and evaluates new computational 

techniques to estimate key ventricular activation 

properties for individual subjects by exploiting the synergy 

between CMR, ECG, and modelling and simulation. We 

present an efficient sequential Monte Carlo approximate 

Bayesian computation-based inference method, integrated 

with Eikonal simulations and torso-biventricular models 

constructed based on clinical CMR imaging to recover 

conduction speeds and earliest activation sites from 12-

lead ECGs. We demonstrate successful results of our 

inference method on a cohort of twenty virtual subjects 

with cardiac ventricular myocardial-mass volumes 

ranging from 74 cm3 to 171 cm3. 

 

1. Introduction 

Recent studies have shown the power of patient-specific 

image-based modelling and simulation for therapy 

guidance, arrhythmic biomarkers interpretation and 

patient’s phenotypic variability interpretation [1], [2]. This 

technology has paved the way towards realising the ‘digital 

twin’ vision [3], referring to a comprehensive virtual tool 

that coherently integrates a patient’s clinical data with 

mechanistic physiological knowledge and informs 

therapeutic and diagnostic decision-making through 

simulations. Generating cardiac digital twins requires 

estimating patient-specific properties from clinical data. 

We investigate new techniques for quantifying subject-

specific ventricular activation properties using CMR-based 

torso-biventricular modelling and simulation and 12-lead 

ECG recordings.  We present a 12-lead ECG-QRS-guided 

inference method combined with fast Eikonal simulations 

to determine the accuracy in estimating the conduction 

speeds and earliest activation sites (root nodes) as these 

properties determine the activation sequence in the 

ventricles [4]. We implement a sequential Monte Carlo 

approximate Bayesian computation (SMC-ABC) [5] based 

inference method and a dynamic time warping (DTW) 

based QRS distance metric. We evaluate our methods on a 

cohort of twenty virtual subjects from four anatomies. 

 

2. Materials and methods 

2.1. Virtual subjects and simulations 

We generated twenty virtual subjects by combining four 

biventricular geometries with myocardial-mass volumes 

ranging from 74 cm3 to 171 cm3 [6] and five conduction 

speeds (Table 1). 

 

Table 1. Five conduction-speed (cm/s) configurations 

considered [6]. Abbreviations: endo – endocardial speed; 

myo – myocardial speeds (fibre, sheet, and sheet-normal). 

 

Configuration 

name 
Endo Fibre Sheet 

Sheet-

normal 

Normal speeds 150 50 32 29 

Slow endo 120 50 32 32 

Fast endo 179 50 32 32 

Fast endo & myo 179 88 49 45 

Slow endo, fast myo 120 88 49 45 

 

We simulated the 12-lead ECGs for these virtual 

subjects using CMR-based torso-biventricular Eikonal 

models solved as shortest path-finding problems [7] paired 

with the pseudo-ECG algorithm [8] for our 12-lead ECG 

simulations. Considering virtual subjects allowed knowing 

the ground truth to evaluate the inference, as in [9]. We 

contaminated the target ECGs with white Gaussian noise 

to reach 20 decibels of signal-to-noise ratio. 

Our models implemented rule-based fibre orientations 

[10], orthotropic myocardial conduction speeds [11], 

isotropic endocardial speed, and root nodes, as in [9].  
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Figure 1. Proposed SMC-ABC based inference method. The process starts using Latin hypercube sampling (top-left) to 

generate a population of 512 Eikonal models with the same subject-specific CMR-based torso-biventricular mesh but 

different parameter values. During the iterative part of the algorithm, each model simulates its activation map, from which 

the pseudo-ECG algorithm computes the 12-lead ECG-QRS signals. Then, the discrepancy between each prediction and 

the target QRS complexes are computed and tested against the stopping criteria. If neither stopping criteria were met, the 

method would replace each parameter set within the top 12.5% discrepancies in the population by either a copy or mutation 

of another parameter-set with a discrepancy lower than the top 12.5%. Otherwise, upon the termination of the iterative 

process, the method outputs the centroids of the inferred root nodes and the median value of each inferred speed. 

 

2.2. Inference pipeline 

We present an SMC-ABC-based method (Figure 1) to 

infer the human ventricular activation properties, namely, 

fibre, sheet (transmural) and sheet-normal fibre-oriented 

speeds, endocardial speed, and root nodes.   

This inference process (Figure 1) searches for a 

population of models (with different parameter-sets but the 

same equations and subject-specific anatomical models) 

that yield 12-lead QRS simulations in agreement with the 

virtual subject’s QRS. This agreement was measured with 

a DTW-based discrepancy metric that implements a 

warping-slope and parallelogram constraints [12], [13] to 

physiologically compare different QRS complexes. 

This search is conducted in a parameter space 

representing the four conduction speeds (endocardial, 

fibre, sheet, and sheet-normal speeds) and the number and 

locations of the root nodes. While the conduction speeds 

can be represented as continuous values (constrained to 

physiological ranges [14]), the root nodes can change in 

number and position throughout the 3D biventricular 

endocardial surface. Thus, we discretised the root node 

parameter space to the centres of each endocardial segment 

according to the American Heart Association’s 

segmentation guidelines [15], while ensuring that any 

point in either ventricle’s endocardia had at least one root 

node in the same ventricle not more than 2.5 cm away. This 

selection strategy led to about 30 candidate locations per 

heart, from which between six to ten could be ‘in use’, 

following the findings in [4] on seven root nodes being 

enough to simulate realistic healthy 12-lead ECG signals. 

These candidate root node locations were considered a 

binary parameter, with the inference yielding ‘in use’ or 

‘not in use’ to obtain a good match between simulated and 

target QRS signal. 

The navigation of this parameter space was conducted 

using an SMC-ABC algorithm. SMC-ABC uses a 

population of models with different parameter sets that 

represent the parameter search space of interest. The 

method then shrinks this parameter space of interest at each 

iteration, emphasising the ‘promising regions’. This 

resampling is done by replacing the highest (12.5%) 

discrepancy parameter sets with mutations or copies of low 

discrepancy parameter sets. 

The code of the inference pipeline can be found in 
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https://github.com/juliacamps/Inference-of-healthy-

ventricular-activation-properties. 

 

3. Results 

Our inference pipeline reproduced the standardised 

QRS complexes of the virtual subjects with 0.84 ± 0.18 

Pearson’s correlation coefficient (mean ± standard 

deviation). 

 

Figure 2. Root nodes inferred on virtual subjects with the 

Mesh-4 torso-biventricular anatomy. The stars indicate the 

ground-truth root node locations. The endocardial surface 

is coloured as a heatmap showing how often each location 

was inferred. 

 

The inference of root nodes was more accurate on the 

anterior side of the heart than on the posterior (Figure 2) 

due to the left-anterior positioning of most electrodes in the 

12-lead ECG test. The location errors for the root nodes 

across all twenty virtual subjects were 1.9 ± 0.5 cm and 1.7 

± 0.4 cm in the LV and RV, respectively. The analogous 

errors in the number of root nodes in the LV and in the RV 

were 0.6 ± 0.6 and 1.6 ± 0.8. 

 
Figure 3. Error in the conduction speeds inference. The 

errors (x-axis) are computed as 𝑒𝑟𝑟𝑜𝑟 = 100 ∗ (𝑆′ −
𝑆)/𝑆 , where 𝑆′ is the inferred conduction speed value, and 

𝑆 is the ground truth speed. They are represented as box 

plots grouped by anatomy (colour) and conduction speed 

(y-axis). The errors’ absolute mean ± standard deviation 

across all anatomies were: 9.6 ± 6.2 – endocardial; 25.4 ± 

16.0 – fibre; 20.5 ± 14.5 – sheet; and 27.7 ± 19.1 – normal. 

 

The inference of the conduction speeds (Figure 3) 

demonstrated that the endocardial and sheet-directed 

speeds were recovered more accurately than the fibre and 

sheet-normal directed speeds. This finding suggests that 

the endocardial and sheet-directed speeds determined the 

activation wavefront’s speed. 

 

4. Discussion 

This study presents an inference method combined with 

CMR-based torso-biventricular Eikonal models to estimate 

the root nodes and conduction speeds from 12-lead ECGs. 

Our approach aims to serve as an efficient tool for 

generating cardiac ‘digital twins’, which is of paramount 

importance for precision cardiology. We conducted the 

simultaneous ECG-guided inference of endocardial, fibre, 

sheet, and sheet-normal conduction speeds and the location 

and number of the root nodes in the endocardium. Previous 

work provided inference for a limited number of 

properties. For example, in [16], the estimation was 

focused on locating two root nodes in the left ventricle and 

the conduction speeds from ECG data; whereas, in [9], the 

focus was on activation times of a known set of root nodes 

and the conduction speeds from epicardial activation maps.  

Our inference method was successful at finding the 

ground truth conduction speeds (Figure 3) and root node 

locations (Figure 2) for a range of QRS complexes that 

represented the variability found in the healthy human 

population. The method was also shown to be robust to 

noise contamination. 

Our results (Figure 2) suggest that the most critical 

parameters that affect the healthy ventricular sinus-rhythm 

activation sequence are the root nodes, the endocardial 

speed, and the sheet-directed speed, as these were better 

identified compared to the fibre and sheet-normal 

conduction speeds. This difference in the identifiability of 

the speeds was due to the relatively negligible impact of 

the fibre and sheet-normal speeds on the activation 

sequence since they act on the plane parallel to the 

endocardial layer and are dominated by the isotropic 

conduction pattern of the endocardium due to its faster 

conduction speed. 

The root nodes were better recovered on the heart’s 

anterior side (Figure 2). This was due to the predominantly 

anterior positioning of the standard precordial electrodes in 

the 12-lead ECG test, as the influence of a root node on an 

electrogram is inversely proportional to the distance 

between the cardiac region affected by the root node and 

the electrode’s position.  

Overall, this study presented the foundations of a novel 

pipeline capable of non-invasively calibrating cardiac 

digital twins for healthy subjects from synthetic 12-lead 

ECG recordings. Our approach was designed to easily 

accommodate disease conditions, such as pathological 

tissue heterogeneities (scars or fibrosis). We anticipate that 
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our methodology can be adapted to work with clinical ECG 

recordings from disease patients to generate cardiac digital 

twins in the clinic. 
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