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In this paper, formation tracking for a multi-AUV system (MAS) using an improved adaptive

sliding mode control method is studied in the Three Dimensional (3-D) underwater environment.

Firstly, the kinematics model and the dynamic model of the AUVs are given as the Six Dimen-

sions of Freedom (6-DOF) considered. Then, control law based on the mathematical model of

the AUVs is proposed based on the improved sliding mode method. A second order sliding mode

control method is adopted to eliminate the chatting phenomenon of the controller. Thirdly, con-

sidering the water flow in the underwater working environment of the AUVs, an adaptive module

is added to the controller. With the adaptive approach, the finite disturbances caused by water

flow could be handled with the controller. The proposed method achieves stability by substitut-

ing an adaptive continuous term for the switching term in the controller. At last, a robust sliding

mode controller with continuous model predictive control strategy for the multi-AUV system is

developed to achieve leader-follower formation tracking under the presence of bounded flow dis-

turbances, and simulations are implemented to confirm the effectiveness of the proposed method.
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1. Introduction

Autonomous underwater vehicles (AUVs) are playing important roles in ocean explorations [1, 2],

such as missions for seabed mapping, underwater surveillance, oil and gas exploration, salvage

tasks, etc. As the underwater tasks become more and more complex, it is necessary to carry out

underwater missions using multiple AUV systems (MASs). In certain missions, the AUVs should

move collectively as a formation. Formation control is a technology to control a group of vehicles,

including ground robots, aerial crafts, surface vehicles and AUVs moving along the desired path as

the task requires while maintaining desired formation patterns and adapting to the environmental

constraints, such as obstacles, ocean currents, and limited space [3, 4]. In recent years, a number

of scholars have investigated the formation control problem as a key technology for MAS control.

From a general viewpoint, a qualified formation controller must realize MAS’s instant trajectory

tracking and the stability of the formation shape while facing unknown bounded disturbances, such
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as ocean currents and communication delays.

According to recent literature, consensus control method has been proposed for MASs with

a centralized structure or a distributed structure [5, 6]. Consensus control for MAS formation

can be used with or without a formation leader [7, 8], and it is often used to handle the situation

of time-delays in the MAS. However, most of the researches based on consensus controller are

focused on the mathematical derivation and stability proof, without the practical system’s dynamics

taken into consideration. As a result, the consensus control method can not be used to implement

path planning and formation tracking for the MAS in complex environments [9, 10]. Rigid body

concept is often used in the formation keeping researches, as well as the digraph or undigraph

theories. Based on these methods and event-triggered concept, great formation control type can be

achieved without dynamic analysis [11]. In the literature [12], dynamics of the formation system

are considered, but analysis is focused on the structure layer, not the implementation layer. In most

existing works, the agent dynamics are restricted to be first-order integrators, and the proposed

consensus protocols are based on relative states among neighboring agents, which in many cases

are not available [13, 14]. In the work of [15], general linear or linearized dynamics of agents are

studied for formation flight, which is similar to the MAS formation, and communication topology

contains a directed spanning tree is proposed, but the technique in this study lacks efficiency to

realize the dynamic control of the agents in the formation. In the research of [16], the output

synchronization of leader-follower systems with an active leader is formulated as a distributed

optimal tracking problem, and inhomogeneous algebraic Riccati equations are derived to solve

it. This research is using the most popular machine learning method to solve the MAS control

problem, which is innovative and promising. However, in order to solve the disturbance problem

in the MAS formation control, such as the water flow influences, traditional control theories seems

to be more powerful.

To keep the AUVs’ formation on the right path, the system must be stable and the controller

must be robust. To achieve this purpose, the AUV’s dynamics are inevitably taken into the con-

troller [17]. As the MASs are nonholonomic and underactuated, it is difficult to build the system’s

accurate model and realize dynamic control. In recent years, some scholars are trying to do re-

searches about formation control regarding dynamics. The commonly used dynamic control tech-

niques are PID, LQR, Feedback Linearization, and Sliding Mode Control, etc. Those techniques
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have achieved the formation control purpose to some extent, while most of them ignore the pres-

ence of environmental disturbances or model uncertainties [18]. A control method based on an

enhanced reduced-order extended state observer is proposed to control the motor-wheels dynamic

model of a differential driven mobile robot to deal with single system’s model uncertainties and

external disturbances, which could be further employed with multiagent systems [19,20]. Another

well-known dynamic control technique is sliding mode control. It has certain advantages such as

the insensitivity to parameter variations to achieve robustness and guarantee the system stability,

but it presents the inconvenience of high-frequency switching of the control signal [21,22]. Recent

researches in sliding mode control theory present a kind of robust, continuous, and even smooth

controller suitable for MAS formation [23,24]. Some additional methods for SMC have been pro-

posed to reduce the system’s chattering. For example, adaptive sliding mode control methods have

been applied to underwater vehicles [25, 26]. However, the disturbances caused by the water flow

in the AUV working environments were not taken into consideration [27, 28]. The most important

advantage of the adaptive method is that it allows the development of the controllers to be robust,

accurate and continuous for each controlled plant, so that the controllers could resist finite distur-

bances. At the same time, higher-order sliding mode control technique preserves the properties

of standard SMC and removes the chattering effects [29, 30]. However, external disturbances are

usually not considered in the controller. For the multi-AUV formation control, an adaptive sliding

mode control method has been proposed in the work of [31], handling the chattering problem and

distubances, and simulations have been done to verify its effectiveness. However, the model of the

water flow was relatively sketchy and inconsistent with reality. [32] presents a fuzzy neural network

controller using impedance learning for coordinated multiple constrained robots to deal with the

presence of the unknown robotic dynamics and the unknown environment. Unfortunately, oscilla-

tions controller has not been designed and verified. [33, 34] address the leader-follower formation

control for multi-AUV systems based on improved sliding mode controllers, without considering

the actual mechanical structure of AUVs. What’s more, simulations on the software level can not

fully reflect the AUVs’ dynamic characteristics.

To deal with the formation control and formation tracking problems, we adopt the improved

SMC approach to replace the discontinuous term of the conventional sliding mode controller with

an estimate of the uncertainties with model predictive control in an adaptive way. Simulations of
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the AUV formation control problem in the water flow environment has been done using MATLAB

and Gazebo with physics engine to confirm the effectiveness of the proposed method. The combi-

nation of the SMC method and adaptive method could make better results for the MAS formation

control, which is further studied in this paper.

The organization of the paper is as follows. A hierarchical controller structure is proposed

for MAS formation control in Section II. The AUVs’ kinematics and dynamics are represented

in the specific reference frames in section III, where the water flow models are established as

well. In Section IV, we introduce the adaptive sliding mode control method and set the propeller

configuration for simulations. In section V, simulation results are presented for formation control

of a group of AUVs in the 3-D environment. Some conclusive remarks are given in Section VI.

2. Hierarchical Controller Structure for MAS Formation

Aiming at the particularity of underwater environment and the requirement of AUV underwater

tasks, this paper designs a hierarchical controller structure for MAS formation.

As shown in Fig. 1, an AUV’s control system is a constitutional unit of the whole formation of

the MAS. An open formation control system is built based on the basic single unit of each AUV.

Note that each AUV has a hybrid control system, which is shown in Fig. 2. This kind of formation

controller consists of three levels, namely the planning layer, the behavior layer, and the executive

layer. The three layers are top-down designed to make the controller easy to realize. At the same

time, the formation controller is open and extensible, benefiting from the clear hierarchy.

Figure 1: Multi-AUV hierarchical control system design.
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Figure 2: The AUV’s hybrid control system architecture.

Fig. 1 and Fig. 2 illustrate the design concept of the formation controller. In the top layer, i.e.

the planning layer, formation strategies including formation keeping, formation tracking and task

assignment are set with kinematic control algorithms as the core algorithms of this layer. As this

layer is for the strategy and kinematic control, it is top and general. The behavior layer mainly

realizes the behavioral coordination, including specific actions of the AUV such as heading to the

target, localizing in the position, and avoiding obstacles, etc. Obstacle avoidance algorithms and

optimal path planning methods are the core algorithms of the behavior layer. In the executive layer,

dynamic controller is implemented, which provides anti-interference ability and robustness for the

whole formation controller. The three levels of the formation control system are designed from top

to bottom and complement each other, but also have some mutual infiltration. For example, the

planning layer also provides some behavior actions, such as formation transformation, collision

avoidance among members in the formation, etc. The implementation of specific actions mainly

depends on the behavior layer, while the control of dynamics is mainly realized by the execution

layer. As mentioned in the former section, a lot of related literature ignore the dynamics of the

MAS, this paper mainly focus on the design of the executive layer in the bottom of the controller’s
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structure.

3. The AUV’s Mathematical Model

This paper focuses on AUVs’ dynamic control, and the proposed method aims at the optimization

of the control procedure. In the beginning, it’s necessary to investigate the kinematics of an AUV,

because all the efforts put on dynamic control is to obtain effective kinematic control results, such

as the velocity and trajectory of the AUV.

In the design of the AUV’s controller, water flow caused disturbances can be usually expressed

as constants or slowly changing quantities. It is difficult to find a unified mathematical model

because the mode of ocean current is time-varying. Therefore, the disturbances are treated as

bounded variables and a certain flow function is constructed in this paper to verify the effectiveness

of the algorithm.

3.1. Kinematics of an AUV

As shown in Fig. 3, the state vector (position and posture) of the AUV is defined as η =[
ηT

1 η
T
2

]T ∈ R6, where η1 = [x y z]T ∈ R3 is the vector of vehicle position coordinates in an

earth-fixed or inertial referenced frame and η2 = [φ θ ψ]T ∈ R3 is the vector of vehicle’s Euler-

angle coordinates in an inertial reference frame. At the same time, the dynamic vector of the AUV

is defined as v =
[
vT

1 v
T
2

]T ∈ R6, where v1 = [u v w]T ∈ R3 is the vector of vehicle linear

velocity expressed in the vehicle-fixed reference frame, and v2 = [p q r]T ∈ R3 is the vector of

vehicle angular velocity expressed in the body-fixed frame.

The parameters of the AUV’s 6-DOF model is show in Table 1. The vehicle-fixed linear and

angular velocities and the time derivative of the earth-fixed vehicle coordinates are related by the

following equations:

 v1 = RC
I η̇1

v2 = T η̇2

(1)

where RC
I is the rotation matrix expressing the linear velocity transformation from the inertial

earth-fixed frame to the body-fixed frame, and the angular velocity transformation matrix T ∈ R6

is Jacobian matrix, which can be both found in former literatures [35–37].
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Figure 3: The AUV’s coordinate systems.

Table 1: The 6 DOF parameters of the AUV

Kinematics Force/Moment Velocity/Angular velocity Position/Angel

Surge X u x

Sway Y v y

Heave Z w z

Roll K p φ

Pitch M q θ

Yaw N r ψ

3.2. Dynamics of the AUV

Considering the coordinate systems illustrated in Fig. 3, the dynamic equations of the AUVs in the

vehicle-fixed reference frame are written as

 M(q)q̇ + C(q)q + D(q)q + g(e) = τ − τc
ė = J(e) · q

(2)

where q = [u v w p q r ]T is the ROV spatial velocity state vector with respect to its body-fixed

reference frame, and e = [x y z φ θ ψ]T is the position and orientation state vector with respect

to the inertial reference frame. The spatial transformation matrix between the inertial frame and

the AUV’s body-fixed frame can be defined through the Euler angle transformation, denoted by

J(e) ∈ R6×6. The term M(q) ∈ R6×6 is the inertia matrix including the added mass effects.

C(q) ∈ R6×6 is the matrix of centrifugal and Coriolis terms. D(q) ∈ R6×6 is the drag matrix,
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with that g(e) ∈ R6×6 is the vector of gravity and buoyancy forces and moments. τ ∈ R6×1 is the

matrix of control forces and moments acting on the AUV center of mass [25, 38, 39]. τc ∈ R6×1 is

the matrix of forces and torques produced by the water flow which is acting on the AUV working

under the water. Note that as the disturbance is caused by the water flow, τc is complex and

changeable, so that it is difficult to build a model.

The dynamic equation of motion of AUVs in the inertial reference frame can be presented as

f = Me(e)ë+ Ce(q, e)ė+ De(q, e)ė+ ge(e) = J−T(τ − τc) (3)

where Me(e) = J−TMJ−1, Ce(q, e) = J−T
[
C−MJ−1J̇

]
J−1, De(q, e) = J−TDJ−1, and

ge(e) = J−Tg. The system dynamics are not exactly known, because the AUV dynamics are

underactuated and dominated by hydrodynamic loads. It is difficult to accurately measure or esti-

mate the hydrodynamic coefficients that are valid for AUVs’ operating conditions. Therefore, the

system dynamics can be written as the sum of estimated dynamics f̂ and the unknown dynamics

f̃ and we have

f = f̂ + f̃ . (4)

The estimated dynamics vector is defined as

f̂ = M̂e(e)ë+ ĥ(q, e) (5)

with ĥ(q, e) = Ĉe(q, e)e+ D̂e(q, e)e+ ĝe(e) and the unknown dynamics vector are defined

as

f̃ = M̃e(e)ë+ h̃(q, e) (6)

with h̃(q, e) = C̃e(q, e)e+ D̃e(q, e)e+ g̃e(e). M̃e, C̃e, D̃e, g̃e represents the unknown items. In

(6), as the additional disturbance is bounded in the environment, the nonlinear uncertainty vector

f̃ and its time domain differential could be assumed to be bounded.

3.3. Modelling the water flow

In the previous researches on multi-AUV systems, there are relatively few researches on the ocean

current. However, in practice, the influence of the current cannot be ignored, and it is even a very
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important factor for the successful tasks of the AUV formation. The existence of the water flow

can generate drifting motions, making AUVs deviate from the predetermined trajectories.

In the inertial coordinate system, the influence of the regular current can be expressed as the

vector τe,f of the force and torque. τ̃e,f is the force and torque vector generated by the propeller to

offset the disturbance of ocean current, then we have τ̃e,f = −τe,f in the ideal condition. It is either

a constant or as a quantity that transforms slowly and regularly. For the wind currents and other

flows, the speeds change as time varying, generally after the wind stops the flow can continue

change for a period. Such currents’ information are hard to predict or measure. In the inertial

coordinate system, it is assumed that the change of current disturbance is do ∈ R6×1 equivalent to

de,o in the body-fixed frame. If de,o is bounded, adaptive higher-order controller adopted in this

paper can deal with the disturbances in a certain range and ensure the normal operation of AUVs

in formation. Considering the influence of regular current and variable flow, the total influence on

the AUVs is

τe,c = τe,f + de,o (7)

where τe,c = J−Tτc as depicted in (3).

Since the pattern of ocean current is time-varying, it is difficult to find a unified mathematical

model, and the general disturbance of ocean current is bounded. Therefore, we build a function to

verify the effectiveness of the algorithm by means of a trial water flow example [40].

The 3-D working environment of AUVs is represented by cartesian coordinate system. Let

z = 0 be the water surface level, and the z-axis points to the bottom of the sea or river. The

working space is stratified by depth z into N (N ∈ N+) layers, and each layer is an x-O-y plane

of two dimensions (2-D). Each z = N (N = 1, 2, 3, ...) plane is rasterized, and each grid is a

square with equal side length of 1 (m). The currents in the areas within each grid can be regarded

as the same. An east-west flow field with a meandering north-south flow field is adopted, and the

mathematical expression of the flow function C(x, y, t) at time t is

C(x, y, t) = 1− tanh
y −B(t) cos(k(x− ct))√

1 + k2B2(t) sin2(k(x− ct))
. (8)

In (8), B(t) = (B0 + E cos(ωt+ θ)), B0 = 1.2, w = 0.4, θ = π/2, c = 0.12, k = 0.82,
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E = 0.3. According to the flow function, the current velocity can be calculated as

U(x, y, t) = −∂C(x,y,t)
∂y

V (x, y, t) = ∂C(x,y,t)
∂x

 (9)

where U(x, y, t) and V (x, y, t) are the velocity components of the water flow in the x and the y

directions at time t, respectively.

Suppose that the water flow field in the workspace of a depth of z ∈ [−20 0] (m) is equally

divided into three layers, and the velocity gradually decreases from the water surface to the bottom

layer. |Vci| (i = 1, 2, 3) denotes the the module value of the current velocity in each layer, with

|Vc1| = 2.4 |Vc2| = 4 |Vc3|. Then the 2-D current field is illustrated in Fig. 4(a) and the 3-D

current field is illustrated in Fig. 4(b). As shown in Fig. 4, the arrow indicates the direction of the

current at this position, and the length of the arrow is proportional to the velocity of the current.

Taking this kind of water flow field as an example, simulations to test the proposed algorithm can

be implemented.

4. The Improved Sliding Mode Controller

An adaptive sliding mode controller is proposed and implemented for multi-AUV systems. The

AUVs could form a formation as needed and implement formation tracking. As a rule, sliding

mode control could be divided into two parts. Firstly, we define the sliding manifold. Secondly,

we find a control law to move the system trajectory towards the sliding manifold with finite time. In

order to reduce the chattering phenomenon, we adopt a kind of higher-order sliding mode control

law and add the adaptive features to it.

4.1. Sliding mode for the AUVs

The sliding order r refers to the number of zeros of the continuous full derivatives which equal to

zero on the sliding mode surface of the sliding mode variable s. The sliding set of order r related to

the sliding mode surface is defined as the equation s = ṡ = s̈ = . . . = s(r−1) = 0. If the sliding set

of order r exists, and it is assumed to be the local set in the sense of Filippov, the motion satisfying

this equation is named r order sliding mode about the sliding mode surface s(x, t) = 0, and the

order r − 1 is called the relative order of the system.
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The sliding order of the AUV system is designed as a number of continuous total derivatives of

in the vicinity of the sliding mode. It fixes the dynamics smoothness degree. The r-th order sliding

mode is determined by the equation:

σ = σ̇ = σ̈ = · · · = σ(r−1). (10)

The main problem of higher-order sliding mode control is the increment of the demanded

information. For example, the system degree is 3, and then a 3-sliding controller needs an input

control parameters σ = σ̇ = σ̈ = σ(r−1). Fortunately, the super twisting algorithm that we adopt

needs only the measurement of σ. Then the higher-order controller’s action uHOSMC can be defined

as

uHOSMC = u1 + u2. (11)

Note that u1 and u2 are both functions of time t, corresponding respectively to a continuous

function of the sliding mode surface and an integration of the sliding mode surface in the time

domain [41]:

u1 =

 −λ |σ0|ρ sign(σ), |σ| > σ0

−λ|σ|ρ sign(σ), |σ| ≤ σ0

(12)

and

u̇2 =

 −u, |u| > umax

−W sign(σ), |u| ≤ umax

(13)

where umax ∈ N+, and can be normalize to 1. The remaining parameters are set in the simulations.

According to [42], the sufficient conditions to ensure convergence to the origin for the sliding mode

plane in finite time is

W > Φ
ΓM

0 < ρ ≤ 0.5

λ2 ≥ 4ΦΓM (W+Φ)
Γ2
m(W−Φ)

 (14)

where W , ρ, λ, Φ are positive constants to be adjusted in the simulation.
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The algorithm does not need any differential information of sliding mode surface σ in time

domain, so the computation burden of controller is greatly reduced. Although the algorithm has

good robustness, when σ is very small, the control signal output is not Lipshitz, which may cause

some noise in control output. In the simulations, parameters of the controller are continuously

adjusted to find the most suitable values.

On the phase plane defined by the estimable second-order state equation (5), a first order dy-

namic equation is designed to represent the switching surface σ:

σ = ε̇+ 2Mε+ M2

∫
εdt (15)

where M ∈ R6 is positive definite diagonal matrix for the expected error response. When

σ = 0, the dynamic response of the system is as expected, which means σ can represent the

difference between the current system state and the desired state. ε = e − ed represents the

tracking error between the actual system and the desired system. ed is the desired AUV position

and attitude vector. Substituting ε in (15), we have

σ = ė− ėr (16)

where ėr = ėd − 2Mε−M2
∫
εdt, and rr represents the reference trajectory of the AUV.

As shown in (11), uHOSMC represents the control force acting on the AUV’s center of mass; u1

and u2 represent the equivalent control and switching control respectively. The equivalent control

u1 is a continuous function based on the AUV’s model. If there is no uncertainty in the system

dynamics, the equivalent control rate can achieve the desired state. However, AUV has a dynamic

model and works with external disturbances, so the controller should include a switching con-

trol quantity W sign(σ), where W is the upper limit of system model parameter uncertainty. the

switching control u2 could be a discontinuous feedback function, which is mainly used to com-

pensate the differential characteristics and external disturbances of the expected AUV’s dynamics,

so as to make the system stable. However, the switching control rate function is easy to make the

system oscillate near the switching surface, causing the chattering phenomenon, so it is necessary

to redesign an adaptive switching controller to help the system to achieve stability.
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According to the super twisting algorithm, the control law can be written as

uHOSMC = u1 + u2 = −λ|σ|ρ sign(σ)−
∫
W sign(σ) (17)

Then the control equation is

uHOSMC =

 −λ|σ|ρ −
∫
Wdt, σ > 0

λ|σ|ρ +
∫
Wdt, σ < 0

(18)

Let f̂r = M̂e(e)ër+ĥ(q, e) be the predictable dynamic vector f̂ ’s equivalent control quantity,

then the system input control quantity obtained based on the equivalent control law is

u1 = JT(e)τe =

 −λ |ė− ėr|
ρ + JT(e)f̂r, σ > 0

λ |ė− ėr|ρ + JT(e)f̂r, σ < 0
(19)

For the system dynamics model without external disturbance, the equivalent control law of

u1 could meet the requirements. Otherwise, the switching control u2 needs to be added adaptive

characteristic in order to achieve robustness.

4.2. The adaptive control law

By adding an adaptive control link to the higher-order sliding mode controller, we can obtain a

chattering-free and anti-interference controller. The controller’s block diagram is shown in Fig. 5.

As mentioned above, the switching control u2 becomes the adaptive controller after adding

the adaptive characteristic to it. In order to replace the discontinuous function in the switching

controller, we use a continuous adaptive control law

u2 = JT(e)
(
f̃est −

(
K + Ĉe(q, e)

)
σ
)

(20)

where K ∈ R6×6 is a positive definite diagonal matrix relative to the convergence rate of the

controller. f̃est is an adaptive term realizing the estimation of lumped parameter uncertainty vector

f̃ in (6). The renewal rate of f̃ is designed as

˙̃fest = −Γσ (21)
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where Γ ∈ R6×6 is the positive definite diagonal matrix related to the adaptive rate. The adaptive

term f̃est is the error estimation of sliding mode surface σ, which can make the predicted system

dynamic state more close to the actual system dynamic state under unknown disturbances. If f̃est

is bounded, ˙̃fest is also bounded.

Assumption 1. Let w = f̃est − f̃ . If and only if ˙̃fTΓ−1w < 0, the following inequality is true:

σT
(
M̃e(e) + K

)
σ ≥

∣∣∣ ˙̃fTΓ−1w
∣∣∣ (22)

Theorem 1. For the nonlinear dynamic system described in (3), assuming that the uncertain

lumped parameter vector f̃ is bounded and satisfies Assumption. 1, the whole closed-loop sys-

tem is asymptotically stable after using the adaptive controller in Fig. 5.

Proof 1. See Appendix A.

If the speed of the formation is slow and f̃ is relatively small, thenw decreases with the effect

of adaptive control law. Then the inequality in Assumption. 1 is easier to implement. Even in the

worst case, condition in (22) can be meet by adjusting K and Γ.

4.3. Dynamic model based predictive control

As we can model the AUV’s dynamics in the physical engine simulation system, a kind of model

predictive control method is combined into the adaptive higer-order sliding mode controller to

make the control output more smoother.

4.3.1. Propeller arrangement and dynamic modeling

For an AUV, the control forces are usually generated by the thrusters. Different thruster allocations

result different control outputs and need different control input signals [43]. τ ∈ R6×1 is the control

forces and torques generated by the actuator. All the forces and torques are measured relative to the

center of mass of the AUV. Normally, an AUV can have 1 to 5 thrusters. Combined with the action

of the servos, these thrusters generate five degrees of freedom forces (roll degree is not considered
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here). The forces and torques generated by the thruster are indicated by matrix ut ∈ RPt , where

Pt is the number of thrusters. Then we have

τ = Btut (23)

where Bt ∈ R6×Pt is the thruster control matrix (TCM). Because the AUV studied is usually

underactuated, we have Pt < 6.

The open-frame AUV named “LAUV” is the research object for formation control in this pa-

per. This kind of AUV has one horizontal thruster and four symmetrically located fins (two vertical

and two horizontal), forming an underactuated controller model, as shown in Fig. 6(a) [44]. This

mechanical configuration leads to a simple dynamic model. The dynamics of the thruster motor

and fin servos are generally much faster than the remaining dynamics, therefore, they can be ex-

cluded from the model. The LAUV is also symmetric in shape. For safety reasons, it usually is

slightly buoyant. The center of gravity is slightly below the center of buoyancy, providing a restor-

ing moment in pitch and roll which is useful for these underactuated vehicles. Traditionally, three

parameters including propeller velocity, horizontal fin inclination, and vertical fin inclination, are

considered in modelling. In this work, we compare the fin’ force and moment from [45] with a

traditional thruster’ force and moment, and find that the LAUV’s dynamic model could be equiva-

lently represented with a three thruster model shown in Fig. 6(b), where THi (i=1,2,3) represents

the ith thruster. In this way, the proposed sliding mode controller could be directly applied to the

thrusters without considering the fin’s servo control variables and transition formulas, which fa-

cilitates our physics engine simulations. The coupling relationship between control quantity and

the propellers can be obtained according to this kind of model making the representation of forces

and moments more direct. After that, we implemented simulations with the three thrust model in

a way that the physical dynamic can be included. Then we could generate the control equations of

the three thrusters.

In the 3-D environment, the LAUV moves with 6-DOF under underactuated conditions. For

the AUV operation or simulations, the rolling action could be neglected temporarily as τp = 0.

Then the dynamic parameters of the AUV can be obtained by decoupling as τ = [τu τv τr τw τq]
T

with e = [x y ψ z θ]T accordingly. Let Ki be the propellers’ control parameters, and uThi be the

ith thruster’s force, i = 1, 2, 3. According to (23) and the propeller configuration shown in Fig. 6,
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The control force and torque equation can be written as (24).

τ =



τu

τv

τr

τw

τq


= Btut =



K1L1 K2L2 0

−t1 (1−K1)L1 t2 (1−K2)L2 0

K1L1r1 −K2L2r2 0

0 0 K3

t3K1 (1− L1) r3 t4K2 (1− L2) r3 0




uTh1

uTh2

uTh3

 (24)

In (24), let K1, K2 ∈ [0.2 1], K3 ∈ [−1 1], L1, L2 ∈ [0.3 1], t1, t2 ∈ [0 1], and t3, t4 ∈

[−0.5 0.5], which are all adjustable coefficients. At the same time, in (12) and (13), parameters

are set as that ρ = 0.36, W = 0.3, σ0 = 0.1. These parameters can be adjusted according to

the situation to obtain better control results. As for the parameters of adaptive control, we set

K = diag(50 50 0 0 0 50) and Γ = diag(50 50 0 0 0 100).

4.3.2. Predictive control strategy combined with the SMC controller

Model predictive control (MPC) is a multivariable control algorithm that uses an internal dynamic

model of the process, a cost function over the receding horizon, and an optimization algorithm

minimizing the cost function using the control input.

In this formation control problem, we adopt MPC as a shell for the proposed SMC controller.

As the SMC controller could handle the finite water flow and other disturbance, we don’t worry

about the single propeller’s control input and output. Howerver, sudden changes on large temporal

and spatial scales are intractable by the SMC controller in some complex water flow environments.

MPC can be used to some extent for preprocessing of sudden and dramatic changes in perturbation.

In this way, the SMC controller can avoid abrupt input changes on the sliding surface.

The MPC control flow mainly consists of two main blocks. As shown in Fig.7, one is the

prediction of future system behavior on the basis of current measurements and a system model

(hence referred to as AUV model prediciton and feedback states), and the other is solution of

an optimization for determining future values of the manipulated variables, subject to constraints

(hence referred to as control action sequence).

In the AUV’s model prediction, the future system output in the prediction domain is given as
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min J =
Ne∑
k=1

‖ė(t)− ėd(t+ k)‖2 +
Ne∑
k=1

Nu∑
i=1

‖u(t+ k)− u(t+ k + i)‖2 (25)

s.t. ė(t+ 1) = f(ė(k), τ (t+ k)) (a)

τ (t) ∈ [A, Ā], t ∈ T (b)

e(t) ∈ [B, B̄], t ∈ T ) (c)

In (25), ė(t) is quoted as the tracking error’s first order derivative obtained by the solution

of system state at the current moment. ėd(t + k) is expressed as the expected tracking error’s

first order derivative as the system state at the kth prediction time, where k ∈ [1, Ne]. u(t + k)

is the controller’s action related to τ in (24) at the corresponding moment of the kth prediction.

u(t + k + i) is the ith control matrix of the SMC controller at a instant predction time, where i ∈

[1, Nu]. In (25), constraint (a) represents the dynamic characteristics of the controlled object which

related to τ (t + k); (b) and (c) represent the control quantity and the state quantity, respectively

subject to an upper and lower bound. In real world simulation, the upper and lower bound mainly

means the maximum force and torque of the thruster, and the maximum acceptable errors for

formation tracking.

5. Simulation Results

The simulation study is based on the algorithm proposed above. In this study, we sample and

simplify the water flow model data as provided in section III, which hourly reflect the current

situations in the real world. Physics simulation engine based experiments in Gazebo are adopted

as well as in the MATLAB software. The UUV Simulator [46] is employed mainly for the 3-D

physical simulations of the AUVs’ model based on the “LAUV” vehicle. The simulation scenario is

designed to explain how the algorithm is working. The water flow speed and direction is designed

alterable but the absolute value of speed is limited to a range of [0 0.5] (m/s), which is slower than

the AUVs’ speed, but changing in directions. The area is limited to a cubic water flow field of the

3-D workspace [(x, y) ∈ [0 80] (m), and (z) ∈ [−20 0] (m)].
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5.1. Formation tracking results

Considering a team of 3 AUVs in a triangular formation tracking an arbitrary curve path, we

assume that the leader AUV moves first and all the followers have essential sensors to contact with

the leader and acquire essential informations such as relative distances and angles to the leader.

The control object is to make the followers track the desired paths simultaneously as accurate

as possible. The whole formation is kept and the path is tracked in this way. The controller

adjusts the velocities and the directions of the AUVs in the formation to achieve this goal. In the

simulations, we set the time-varied water flow disturbance vector do = [Cx Cy 0 0 0 Cz] equivalent

to the parameter d depicted in Fig. 5. In this way the water flow influence is resolved into three

quantities in the x, y, z directions respectively, which is convenient for simulation. As the current

velocity is assumed to be bounded, let (Cx, Cy, Cz) ∈ [−20 20] (N).

Based on the formation control algorithm, 3 AUVs form a triangular formation at the starting

position. The leader runs along the desired path and meanwhile generates the desired path of the

2 followers. The follower AUV also runs along the desired path according to the adaptive higher-

order sliding mode control algorithm, until the formation reaches the target position. During the

tracking procedure, the trajectory tracking and formation keeping are both well maintained. As

shown in Fig. 8, the formation moves along the spiral trajectory in triangular shape. The formation

tracking test achieves good results.

Taking the left follower as the research object, the control effects in three directions of x, y

and z are analyzed, i.e. τu, τv and τw correspondingly. τu comprises two parts of u1 and u2 as

mentioned above. The input of the controller in x direction is show in Fig. 9.

Similarly, the controller input in the y direction is also comprised of u1 and u2 as shown in

Figure. 10. In the z direction, the controller input is shown in Figure. 11. From the simulation

results, we could find that the contoller input u1 are bounded and smooth, and u2 are bound pulses

which are realizable. Unlike the control inputs in the x and y directions, u2 in z direction tends

to be zero. This is because the water flow is layered in the 3-D space. The forces of the flow is

parallel with the x− y plane without vertical influence in the z axis.
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5.2. Controller phase trajectories and error analysis

Helical trajectory formation tracking results are smooth and interference resistible as illustrated

in Fig. 8. In the formation trajectory tracking process, we use the position error value e as the

x axis and the speed error value de as the y axis. Then the system phase trajectories with the

proposed adaptive higher-order sliding mode controller are depicted in Fig. 12 in the x, y and z

axis respectively.

Table 2: Analysis of formation tracking errors of spiral trajectory in 3-D environment

Axis
Speed error (after convergence) Position error (after convergence)

Minimum Maximum RMSE Minimum Maximum RMSE

x 0 0.10 0.18 0 0.05 0.20

y 0 0.15 0.13 0 0.08 0.05

z 0 0.11 0.11 0 0.06 0.10

As show in the figure, system phase trajectories converge to the expected location after certain

times of iterations. In the x, y and z directions, the system trajectories chatter a little after each

movement of the formation leader. That’s because the algorithm need some iterations to calculate

the control input. After the calculation is finished, the trajectories converge.

For the position and velocity errors in the 3 directions of x, y and z, the errors are limited to a

small range after the sliding mode control algorithm converges. Table. 2 gives the tracking error

analysis, using the root mean squared error (RMSE) to measure the velocity error and the position

error from the time t = 0. The maximum and minimum errors of the system after convergence

are recorded. In this experiment, the convergence moment is t = 11 (s). The velocity error and

position error do not converge to zero, but fluctuate regularly within a limited range, which is

acceptable in practical applications.

Fig. 13 shows the tracking error comparison of the traditional sliding mode method and the

proposed method in the paper, taking the left follower as example, too. Note that the traditional

method uses the first order sliding mode controller without the adaptive module proposed in this

paper. Fig. 13(a) compares the tracking errors of the two kinds of methods in the x axis direction.

Tracking errors of the position and the speed of the AUV converge to a certain range. As the leader
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AUV moves, the tracking error increases and then decrease as the controller taking effect. The

traditional method results jumping errors with obvious water flow influences, while the tracking

error curves are smoother and smaller with the proposed method. In the same way, Fig. 13(b)

shows the tracking error comparison in the y axis direction and Fig. 13(c) shows the tracking error

comparison in the z axis direction. From these simulation results, we could find that the proposed

method is effective to the formation control problem in the water flow environment.

6. Conclusion

In this paper, the formation control method based on an adaptive sliding mode control is proposed

by analyzing the dynamic model of AUVs. A hierarchical controller structure for MAS formation

is built firstly. Then an improved the higher-order sliding mode controller with the adaptive feature

is designed with a model predictive controller shell on it. The controller’s stability is proved by

physical engine simulations. Based on the analysis of the water flow in 2-D and 3-D workspace, a

mathematical model of the ocean current is established, and the AUV formation control simulation

is carried out with flow influence added. The simulation results show that the AUVs in formation

could maintain the relative positions in the process of trajectory tracking, and the controller has a

strong ability to resist external interference.

In our future work, advanced neural network method with be combined with the proposed

dynamic controller to adapt it to more kinds of situations, and real-world validation of the proposed

controller architecture on an existing MAS will be involved.

A. Proof of Theorem 1

Define a Lyapunov function as

V =
1

2

(
σTMe(e)σ +wTΓ−1w

)
(26)

Function V differentiated in the time domain results

V̇ =
1

2

(
σTṀe(e)σ + σ̇TMe(e)σ + σTMe(e)σ̇ + ẇTΓ−1w +wTΓ−1ẇ

)
(27)
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According to the property of positive definite diagonal matrix, σ̇TM(q)σ = σTM(q)σ̇, and

ẇTΓ−1w = wTΓ−1ẇ. From (3), Me(e)ë = τe − (Ce(q, e)ė+ De(q, e)ė+ ge(e)); from (15),

ė = σ + ėr; then we have

V̇ =
1

2
σT
(
Ṁe(e)− 2Ce(q, e)

)
σ+

σT [τe − (Me(e)ër + Ce(q, e)ėr + De(q, e)ė+ ge(e))] + ẇTΓ−1w

(28)

where Ṁe(e)− 2Ce(q, e). It’s an anti-symmetric matrix. Then σT
(
Ṁe(e)− 2Ce(q, e)

)
σ = 0.

Equation (28) can be simplified into

V̇ = σT [τe − fr] + ẇTΓ−1w (29)

where fr = Me(e)ër+Ce(q, e)ėr+De(q, e)ė+ge(e). Substituting the controller input τe in the

inertial coordinate system with the adaptive control rate u2 in the body-fixed coordinate system,

and adding the predictable quantity of control f̂r, (29) changes to

V̇ = σT
(
f̃est − (f − f̂)−

(
Me(e)− M̂e(e)

)
σ −Kσ

)
+ ẇTΓ−1w (30)

Considering Assumption 1, (30) reduces to

V̇ = −σT
(
M̃e(e) + K

)
σ − ˙̃fTΓ−1w (31)

By adjusting the parameters K and Γ,
∣∣∣ ˙̃fTΓ−1w

∣∣∣ ≤ 0, and σT
(
M̃e(e) + K

)
σ ≥

∣∣∣ ˙̃fTΓ−1w
∣∣∣

could be both satisfied. Then −σT
(
M̃e(e) + K

)
σ − ˙̃fTΓ−1w ≤ 0, i.e. V̇ ≤ 0, which satisfies

the Lyapunov stability criterion. This completes the proof of Theorem 1.
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(a)

(b)

Figure 4: 2-D and 3-D flow field generated by the water flow function. (a) 2-D workspace, (b) 3-D

workspace.
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Figure 5: Block diagram of adaptive higher-order sliding mode controller.

(a) (b)

Figure 6: Thruster configuration for the experiment platform. (a) The LAVU’s dynamic configura-

tion, (b) the equivalent three thruster model.
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Figure 7: Diagram of the model predictive control flow.

(a) (b)

Figure 8: Simulation results of AUV formation tracking under 3-D water flow environment, (a)

based on MATLAB, (b) based on physical engine of Gazebo 7 with ROS
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Figure 9: x-axis controller input in 3-D environment.

Figure 10: y-axis controller input in 3-D environment.
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Figure 11: z-axis controller input in 3-D environment.
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(a) (b)

(c)

Figure 12: System phase trajectories of the controller in 3-D environment. (a) x direction, (b) y

direction, (c) z direction.
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(a) (b)

(c)

Figure 13: Comparison of tracking errors with the proposed method and the traditional sliding

mode method. (a) x direction, (b) y direction, (c) z direction.
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