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The Bulletin of Symbolic Logic 
Volume 7, Number 3, Sept. 2001 

POLISH METRIC SPACES: 

THEIR CLASSIFICATION AND ISOMETRY GROUPS 

JOHN D. CLEMENS. SU GAO, AND ALEXANDER S. KECHRIS1 

? 1. Introduction. In this communication we present some recent results on 

the classification of Polish metric spaces up to isometry and on the isometry 

groups of Polish metric spaces. A Polish metric space is a complete separable 
metric space (X,d). 

Our first goal is to determine the exact complexity of the classification 

problem of general Polish metric spaces up to isometry. This work was mo- 

tivated by a paper of Vershik [1998], where he remarks (in the beginning of 

Section 2): "The classification of Polish spaces up to isometry is an enor- 

mous task. More precisely, this classification is not 'smooth' in the modern 

terminology." Our Theorem 2.1 below quantifies precisely the enormity of 

this task. 

After doing this, we turn to special classes of Polish metric spaces and 

investigate the classification problems associated with them. Note that these 

classification problems are in principle no more complicated than the general 
one above. However, the determination of their exact complexity is not 

necessarily easier. 

The investigation of the classification problems naturally leads to some 

interesting results on the groups of isometries of Polish metric spaces. We 

shall also present these results below. 

The rest of this section is devoted to an introduction of some basic ideas 

ofa theory of complexity for classification problems, which will help to put 
our results in perspective. Detailed expositions of this general theory can be 

found, e.g., in Hjorth [2000], Kechris [1999], [2001]. 
In mathematics one frequently deals with problems of classification of 

various objects up to some notion of equivalence by invariants. Quite often 

these objects can be viewed as forming a definable (Borel, analytic, etc.) 
subset X of a standard Borel space X (i.e., a Polish space with its associated 

cr-algebra of Borel sets), and the equivalence relation as a definable (Borel, 

analytic, etc.) equivalence relation E on X. A complete classification of A" 
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up to E consists then of finding a set of invariants / and a map c : X ?> / 

such that, for all x,y e X, 

xEy <& c{x) = c{y). 

For this to be of interest both / and c must be as simple and concrete as 

possible. 
For our purposes, the simplest case is when the invariants are concrete 

enough so that they can be represented as elements of a standard Borel 

space (and the map c is fairly explicitly definable). More precisely let us 

call E (and the classification problem it represents) concretely classifiable (or 
smooth or tame) if there is a standard Borel space Y and a Borel (measurable) 

map c : X ?> Y such that xEy o> c{x) = c{y). 
To apply these ideas to the classification problem of Polish metric spaces 

up to isometry, we first indicate how we view any such space as an element 

ofa standard Borel space, in other words we describe a standard Borel space 
of Polish metric spaces. One natural way to do that is the following: Fix 

a universal Polish metric space, like the Urysohn space U (which we will 

discuss more in ?2 below). Then every Polish metric space is, up to isometry, 
a closed subspace of U, and we can view F{V), the standard Borel space 
of closed subsets of U with the Effros Borel structure (see Kechris [1995], 

12.C), as the space of Polish metric spaces. Denote then by =/ the equivalence 
relation of isometry between metric spaces. Our objective is to understand 

the complexity of =,- on Polish metric spaces, or, equivalently, closed subsets 

ofU. 

First let us note that if we restrict =, to the space K{V) of compact subsets 

of U, in other words if we consider the isometry problem for compact metric 

spaces, then already Gromov (see, e.g., Gromov [1999], 3.11^+ or 3.27) has 

shown that it is concretely classifiable. However, as Vershik [1998] points 
out, the classification of general Polish metric spaces up to isometry is not 

concretely classifiable, thus quite complicated, in some sense. But can we 

make this more precise and calculate how complicated it really is? This is 

the problem that we address in the next section. 

To arrive at an answer, one first has to define in what sense a classification 

problem is at most as complicated as another. This is made precise by means 

of the concept of reducibility between equivalence relations. If E, F are 

equivalence relations on subsets X, Y, resp., of standard Borel spaces, we 

say that E is Borel reducible to F, in symbols, 

E <B F 

if there is a Borel map / : X ?> Y such that 

xEy^f{x)Ff{y). 

Intuitively, this means that any complete invariants for F work as well for 

E (after composing with /) and therefore, in some sense, the classification 
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problem represented by E is at most as complicated as that of F. Also E is 

Borel bireducible with F, in symbols 

E ~B F & E <B F & F <B E, 

means that the classification problems represented by E, F have the same 

complexity. Finally, 

E<B F &E <B F &F ?B E, 

signifies that the classification problem of E is strictly simpler than that of F. 

The (partial pre-)order <# imposes a hierarchy of complexity on clas? 

sification problems and our goal here is to find the place of the isometry 

problem of Polish metric spaces in this hierarchy. In the study of this subject 
several important benchmarks have been discovered, which can be used to 

calibrate the difficulty of specific classification problems that come up in 

various fields of mathematics. We will review the ones that are relevant to 

us here. See Becker and Kechris [1996] for more details. 

For any Polish group G and Borel action (g,x) >-+ gx ofG ona, standard 

Borel space X (a Borel G-space for short) we denote by E% the corresponding 
orbit equivalence relation 

xEgye>3g(g-x = y). 

(This is an analytic but not always Borel equivalence relation.) It turns out 

that among all Eg, with G fixed, there is a most complex, i.e., universal, one. 

In other words, there is a Borel G-space X such that for all Borel G-spaces 
Y we have E$ <b Eq. It is unique up to ~b and we denote it by E$?. 

Now, letting G vary over all Polish groups, there is a universal relation of 

the form E?. This is again unique up to ~b and we call it the universal equiv? 
alence relation induced by a Borel action ofa Polish group. It can be realized 

by Ef?, where G is either the homeomorphism group of the Hilbert cube 

or the isometry group of the Urysohn space. This follows from the results 

of Uspenskii [1986],[1990] that these groups are universal Polish groups, 
i.e., contain every Polish group as a closed subgroup. In many ways, that 

the theory of Borel reducibility makes precise, the univeral equivalence rela? 

tion induced by a Borel action of a Polish group is an enormously complex 

equivalence relation. 

Let Soo be the infinite symmetric group of all permutations of N, with 

the topology of pointwise convergence. We can also consider E^, the 

universal equivalence relation induced by a Borel action of Sco- This is 

much smaller, in terms ofthe ordering <#, than the universal equivalence 
relation induced by a Borel action of a Polish group. Nevertheless, it is 

already not concretely classifiable. An important concrete realization of E^ 
is graph isomorphism, the isomorphism relation between countable graphs 

(see Becker and Kechris [1996]). 
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Among the equivalence relations ofthe form E%?, where G varies over all 

countable groups (they are Polish with the discrete topology), there is also 

a universal relation, which we denote by Eqq. Again Eqo is much smaller, 
in terms of <^, than graph isomorphism. Yet it is still not concretely 
classifiable. Recall that a Borel equivalence relation is countable if all of its 

equivalence classes are countable. By a theorem of Feldman and Moore 

(see, e.g., Dougherty, Jackson, and Kechris [1994]), every countable Borel 

equivalence relation can be viewed as the orbit equivalence relation ofa Borel 

action of a countable group. Thus Eoo is also universal among countable 

Borel equivalence relations. A realization of ?00 is Ef*, where jFqo is the 

free group with No many generators (see Dougherty, Jackson, and Kechris 

[1994]). It is a result of Jackson-Kechris-Louveau (see, e.g., Hjorth and 

Kechris [1996], p.241), that ?00 is Borel bireducible with the isomorphism 
relation of countable connected locally finite graphs (i.e., graphs in which 

every vertex has finitely many neighbors) and also with the isomorphism 
relation of countable locally finite trees (i.e., connected acyclic graphs). 

We shall show in the sequel that these benchmark equivalence relations, 
which play important roles in the general theory of equivalence relations, 
come up naturally in our study ofthe classification problem of Polish metric 

spaces and serve as quantitative measures for the complexity of the equiva? 
lence relations involved. 

The results presented in this announcement come from two separate 
sources, the work ofthe first author (Clemens [2001]), and the joint work 

ofthe second and the third authors (Gao and Kechris [2000]). For brevity 
we shall cite Clemens [2001] as (Cl) and Gao and Kechris [2000] as (GK) 
in the subsequent sections. These two papers, whose work was done in? 

dependently, have only one overlapping result (which we will discuss in ?2 

below) and use quite different methods, so essentially complement each 

other. Taken together they provide a more complete picture of the subject 
we study here. 

Acknowledgements. We would like to thank G. Hjorth, V. Kanovei, A. 

Louveau and S. Solecki for many useful comments and for allowing us to 

include their results in this announcement. 

?2. The classification of general Polish metric spaces. Our first result com? 

putes the complexity of the isometric classification of Polish metric spaces 
as being exactly that ofthe universal equivalence relation induced by a Borel 

action of a Polish group. More precisely: 

Theorem 2.1. The equivalence relation of isometry of Polish metric spaces, 
=/, is Borel bireducible with the universal equivalence relation induced by a 

Borel action ofa Polish group. 

In the rest of this section we will sketch the proof of Theorem 2.1. A 

complete proof can be found in (GK). One direction ofthe theorem, that 
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Eq <b?i for every Borel G-space X, is independently proved in (Cl) by 
a different method. We shall sketch both methods below. Further results 

presented in subsequent sections are mostly proved by variations of one of 

the methods we sketch here. 

The Urysohn space U plays a crucial role in the arguments of (GK). This 

space was introduced by Urysohn [1927] and further studied in Katetov 

[1988], Uspenskil [1990], Vershik [1998], and Gromov [1999] 3.11|+. 
A separable metric space M is called Urysohn if for any finite metric space 

X and any subspace Y C X every isometric embedding / : Y ?? M can 

be extended to an isometric embedding g : X ?? M. Urysohn [1927] 
showed that there is a unique, up to isometry, Polish metric space which is 

Urysohn. This is what we call the Urysohn space and denote it by U. It is 

also characterized as the unique Polish metric space which is universal and 

ultrahomogeneous, where universality means that every Polish metric space 
can be isometrically embedded into it, and ultrahomogeneity means that 

any isometry between finite subsets of it can be extended to an isometry of 

the whole space. Moreover, Katetov [1988] gave a canonical construction of 

the Urysohn space which, starting from any Polish metric space X, arrives 

at an extension X* of X which is isometric to U. This construction has 

the additional property that, if (p : X ?> Y is an isometry between Polish 

metric spaces, then it induces a canonical extension tp* : X* ?? Y* (which 
is essentially an isometry of U). These nice properties, together with some 

careful computations, give a Borel reduction from =,- to the orbit equivalence 
relation on F(V) induced by the application action of Iso(U), the isometry 

group of U. 

For the other direction of the theorem, it is enough to establish that 

I70O ^ rsj 
^Iso(U) 5-?-/> 

where we recall that E? is the universal equivalence relation induced by a 

Borel action of G. This can be done in three steps. 

Step 1. Consider the action of Iso(U) on n?>i F(Un) given by 

<p ? (Rn) = (<p(Rn)) 

and call the corresponding orbit equivalence relation 2s ??(U). One can show 

that 2sj?(u) <b 2s??(U). In fact, it is a general theorem (also proved in 

(GK)) that the same conclusion remains true if in the above assertion every 
occurrence of U is replaced by some arbitrary Polish metric space X. 

Step 2. Consider the action of Iso(U) on _F(U)N given by 

<p-(CuC2,...) = (<p(Cl),<p(C2),...), 

and let El(V) be the corresponding equivalence relation. We argue that 

E??(V) <b El(V). The argument here can also be interpreted as coding 
closed relations of arbitrary arity on U by sequences of unary closed relations 

(i.e., closed subsets!) of U, while preserving the isometry type ofthe relations. 
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It is easy to fabricate examples to see that this cannot be done for general 
Polish metric spaces. Thus we have to use in an essential way the properties 
of the Urysohn space. It turns out to be enough (and actually simpler) to 

argue that there is some Polish metric space X such that E??(V) <b Ex{X), 
where EX{X) is defined in a similar fashion as that of Ex (U). The basic idea 

here is to consider the sequence of isometric embeddings 

u c_> u3 ?-? u9 ?-?... ?-? u(3,,)<-?..., 

where any x e U(3"} is identified with (jc, Jc, x) e U(3"+,) and each VN, N > 

1, is endowed with the metric 

1 
N 

dN{x,y) = 
jj^dixi.yi) 

Now put U?? = \Jn U(3M) and let X be the completion of U??. Then closed 

relations of arbitrary arity on U become automatically closed subsets of A". 

To argue that E??(V) <b El {X), it remains to see that among all isometries 

of X those induced by isometries of U are recognizable with the help of a 

sequence of closed subsets of X. This actually can be done, making use of 

the universality and homogeneity of U. For full details, see (GK) 2H. 

Step 3. It now remains to show that for any Polish metric space X, 

EX{X) <B?i. Let d be the metric of X, and assume without loss of 

generality that X has at least 2 elements. Consider then the equivalent 
metric d = 

y^ so that {X,d) is a Polish metric space and 6{x,y) < 1 

for all x,y e X (in the sequel we also write S < 1 for short). Given 

C = (Co, Q,...) e F{X)N, consider the Polish metric space (Xs, dc) de? 

fined as follows: For each nonempty Cn, choose a point x? not in X and 

assume that all these points are distinct. Let Xg 
= X U {x%}. Define the 

metric d^ as follows: d^ agrees with d on X. The distance between any two 

distinct x? , x% is equal to \n 
- 

m\ + 1. Finally, if u e X we define 

d?(xj~,u) 
= (n + 2) +S(u9Cn)9 

where S{u, Cn) is the 5-distance of u from Cn. It is then easy to check that 

C and D are Ex (Ar)-equivalent iff Xg and Xg are isometric. 

We now turn to the method used in (Cl) to prove that for any Borel G- 

space X, Eq <^=,. By earlier results of Becker and Kechris [1996] we can 

assume, without loss of generality, that A" is a compact Polish G-space, i.e., 
X is compact and the action ofGonl is continuous. The idea then is to 

study the action of 6 on J and to code the orbits by constructing Polish 

metric spaces with distiguished isometry types. 
To do this, let do be a compatible left-invariant metric on G and dx be a 

compatible complete metric on X with dc,dx < 1. Define a new metric d'G 
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on G by 

d'G{gugi) = ~dG(gi,g2) + -supdx(g{1 -x,g2X -x). 
^ ? xex 

Then d'G is still a compatible left-invariant metric on G with d'G < 1. In 

addition, it has the obvious but useful property that for any x e X and 

gi,g2 e G, d'G(g\,g2) > ?(gf 
* ? 

x,g2l 
- x). Intuitively, the distances of 

group elements have certain control on the distances of points in a single 
orbit. Let G be the completion of G under d'G. 

Fix a countable dense subset of X, {qn}- Let n : Z <-> N be the bijection 

given by 

, x f 2n ifn >0 
*W = 

| _i_2n ifn<0. 

Next we define for each x e X a Polish metric space (Mx, dx). Let Mx be 

G x Z x Z2. To define rfx it is enough to specify its values on a convenient 

dense subset of Mx, namely, G x Z x Z2. For go?_fi ? G, ?o,?i ? Z and 

i'o.ii eZ2letrfx((go,w0,/o),(gi,wi,/i)) = 

d'G (go. gi) if '0 = 11 and w0 = "1 

| +4-^-"'l^(g0.l?i) if/o = h and |no -m| = 1 

1 + 4-1"^-??)[l + dx{q*o-nx,grl 
* *)] if h = 0 and ix = 1 

1 + 4-i-*(i.i-i*)[i + dx(qni-no,gQl 
? x)] if/o = 1 and m = 0 

One can then check that x-5^^ iff (Jkfx, dx) =, (My, rfy) and that the assign- 
ment x h-> (Mx, dx) is Borel. 

This last method has the advantage that many properties of the group G 

are carried over to the constructed spaces (Mx, dx). This allows us to reuse 

the method in many other situations to give proofs of lower bounds on the 

complexity of classification problems. 

?3. The classification of special classes of Polish metric spaces. The main 

result of ?2 settles the question concerning the classification for general Polish 

metric spaces. It is however of further interest to understand the complexity 
ofthe isometry problem for special classes of Polish metric spaces. We shall 

consider three groups of properties used in defining the special classes in 

our consideration. These are (in some very general sense) connectedness 

properties, properties of the isometry groups (like homogeneity, rigidity, 

etc), and compactness properties. 

3.A. Ultrametric and zero-dimensional spaces. A metric rfona space X is 

an ultrametric if for any x,y,z ? X, 

d(x,y) < max{d(x, z),d(z,y)}. 

Because of the continuity of the metric function to check that d is an ultra? 

metric, it is enough to verify this inequality only on a countable dense set 
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of points in A\ It follows that the class of all ultrametric Polish spaces is a 

Borel subset of the standard Borel space of all Polish metric spaces F{V), 
and thus is itself standard Borel. For the classification of this class of spaces 
we have the following characterization for its complexity. 

Theorem 3.1 (GK). The isometry equivalence relation of ultrametric Polish 

spaces is Borel bireducible with graph isomorphism. 

Thus the classification of ultrametric Polish spaces is strictly simpler than 

that of all Polish metric spaces. Note that every ultrametric space is 0- 

dimensional. (Recall that a space is O-dimensional if it has a clopen basis.) 
Therefore we have a lower bound for the isometry equivalence relation of 0- 

dimensional Polish metric spaces, namely graph isomorphism. This implies, 
in particular, that this equivalence relation is non-Borel. 

Making use of Hjorth's theory of turbulence (see Hjorth [2000]) we can 

obtain the following result. 

Theorem 3.2 (Cl). The isometry equivalence relation of ̂ -dimensional Pol? 

ish metric spaces is not Borel reducible to graph isomorphism, thus it is strictly 

bigger, in the sense of Borel reducibility, than graph isomorphism. 

However, we do not know the exact complexity of this classification prob? 
lem. Solecki noted that the isometry equivalence relation of 1-dimensional 

Polish metric spaces is also not Borel reducible to graph isomorphism, by 

essentially the same proof as for the above theorem. 

Note also that 0-dimensionality and 1-dimensionality are not Borel prop? 
erties; they areL}. 

In contrast to 0-dimensionality one can consider connectedness. It is not 

hard to see that graph isomorphism is Borel reducible to the isometry equiv? 
alence relation of connected Polish metric spaces. But the exact complexity 
of this equivalence relation is not known. 

3.B. Homogeneous, ultrahomogeneous and rigid spaces. A metric space X 

is homogeneous if its group of isometries, \so{X), acts on X transitively, i.e., 
for any x,y e X there is an isometry <p e Iso(Ar) so that (p{x) = y. A 

homogeneous space is intuitively regarded as having a large isometry group. 
We first consider discrete spaces, i.e., those with a discrete topology. 

Theorem 3.3 (Cl). The isometry equivalence relation of homogeneous dis? 

crete Polish metric spaces is Borel bireducible with graph isomorphism. 

About general homogeneous spaces we have the following partial result. 

Theorem 3.4 (Cl). If G is an abelian Polish group, then E? is Borel re? 

ducible to the isometry equivalence relation of homogeneous Polish metric 

spaces. 

Consequently, again by Hjorth's theory of turbulence, this isometry equiv? 
alence relation is not Borel reducible to graph isomorphism. 
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In the other extreme, we can consider the class of rigid Polish metric spaces, 
i.e., those spaces with no non-trivial isometries (thus their isometry group is 

the smallest possible). 

Theorem 3.5. If G is a Polish group, X a Borel G-space and the action is 

free, then EG is Borel reducible to the isometry equivalence relation of rigid 
Polish metric spaces. In particular, the isometry equivalence relation of rigid 
Polish metric spaces is not Borel reducible to graph isomorphism. 

Note that E% is Borel when G acts freely on X, but there are free actions 

whose orbit equivalence relation is of arbitrarily high Borel complexity. Thus 

the isometry of rigid Polish metric spaces is not a Borel equivalence relation. 

However, the space of rigid Polish metric spaces can be seen to be Ii}, thus 

the isometry may as well be a A{ equivalence relation on a II} subset of a 

standard Borel space. 
Recall from ?2 (where we discuss the Urysohn space) that a metric space 

X is ultrahomogeneous if any isometry between two finite subsets of X can 

be extended to an isometry of the whole X. Ultrahomogeneous spaces are 

necessarily homogeneous. Here using the proofs of Theorem 3.2 and 3.4 we 

get the following result. 

Theorem 3.6 (Cl). The isometry equivalence relation of ultrahomogeneous 
Polish metric spaces is not Borel reducible to graph isomorphism. 

As in the case of homogeneous spaces, a complete result can be obtained 

if we restrict our attention to discrete spaces. Let F2 be the equivalence 
relation of equality of countable sets of reals, i.e., for (xn), (yn) ? MN, 

(xn)F2(yn) &{xn:neN} = {yn:ne N}. 

This is a Borel equivalence relation strictly simpler than graph isomorphism. 

Theorem 3.7 (Cl). The isometry equivalence relation of ultrahomogeneous 
discrete Polish metric spaces is Borel bireducible with F2. 

Finally, in the special case of ultrametric spaces we have the following 
result. 

Theorem 3.8 (GK). The isometry equivalence relation of ultrahomogeneous 
discrete ultrametric Polish spaces is Borel bireducible with F2. The same is 

true for homogeneous ultrametric Polish spaces. 

3.C. Locally compact spaces. First there is the following result of Gromov. 

Theorem 3.9 (Gromov [1999] 3.11^+ or 3.27). The isometry equivalence 
relation of compact Polish metric spaces is concretely classifiable. 

The next step along these lines would be to calculate the complexity of 

isometry on locally compact Polish metric spaces. It is not hard to see 

that isometry of general discrete Polish metric spaces has exactly the same 

complexity as graph isomorphism. Therefore isometry of locally compact 
Polish metric spaces is at least as complex as graph isomorphism. The crucial 

question here is whether it is exactly the same as graph isomorphism. 
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Our results on the isometry groups of such spaces, which we will discuss 
in ?4, led us to the conjecture that in fact isometry of locally compact Polish 

metric spaces is Borel reducible to graph isomorphism, and therefore it 

has exactly the same complexity as graph isomorphism. Hjorth has shown 

that a weaker form of this conjecture is in fact true, namely that isometry of 

locally compact Polish spaces is reducible by a provably A2 function to graph 

isomorphism. This provides strong evidence for the truth ofthe conjecture. 
One can look further at important subclasses of locally compact spaces. 

These subclasses are again defined by the properties we have encountered in 

earlier parts of this section. Here we have several complete results. 

Theorem 3.10 (GK). The isometry equivalence relation of O-dimensional 

locally compact Polish metric spaces is Borel bireducible with graph isomor? 

phism. 

At the other extreme are the connected locally compact spaces. The 

universal countable Borel equivalence relation, Eqq, comes into play at this 

point. Note that the complexity of ?00 is rather mild compared to other 

complex equivalence relations we have seen in earlier parts of this paper. 
For example, it is well known that ?00 <b Fi. From the realization of ?00 
as the isomorphism relation among locally finite trees, it is not hard to see 

that ?00 is Borel reducible to the isometry of connected locally compact 
Polish metric spaces. Again results on their isometry groups motivated our 

conjecture that the isometry of connected locally compact Polish metric 

spaces is Borel bireducible with ?00. This has been confirmed by Hjorth. 

Theorem 3.11 (Hjorth, see (GK)). The isometry equivalence relation of 
connected locally compact Polish metric spaces is Borel bireducible with E^. 

In fact this is only a part ofa general result Hjorth proved. In order to state 

this general result, we need to elaborate on some concepts and techniques 

developed in (GK). 
Assume that {X,d) is a locally compact Polish metric space. For each 

x e X, we define its radius of compactness, denoted by p{x), to be the 

supremum of r > 0 such that the closed ball of radius r with center x is 

compact. p{x) is always positive since X is locally compact. If p{x) = 00 

for some x (equivalently for all x), then d is called a Heine-Borel metric and 

{X, d) a Heine-Borel space. Now define an equivalence relation E on X by 

letting xEy when either x = y or the following happens: 

for some wo = x,u\,...,un = y we have that for all i < n, 

u\ ^ u,+\ and d{u,,Uj+\) < p{u,)\ and, conversely, for some 

vo = y,v\,... ,vm = x we have that for all j < m,Vj ^ Vj+\ and 

d{vj,Vj+i) <p{vj). 

We then call the is-equivalence class of x e X the pseudo-component of x, 
and we call X pseudo-connected if it has only one pseudo-component. 
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It is easy to check that each pseudo-component is clopen, therefore there 

are only countably many pseudo-components in each locally compact Polish 

metric space. It also follows that connected locally compact Polish metric 

spaces are pseudo-connected. But pseudo-connectedness certainly goes be- 

yond connectedness, since it is trivial from the definition that all Heine-Borel 

spaces are pseudo-connected. 
What we actually conjectured, and Hjorth proved, was that the isome? 

try equivalence relation of pseudo-connected locally compact Polish metric 

spaces is Borel bireducible with ?00 ? Moreover, the isometry of locally com? 

pact Polish metric spaces with finitely many pseudo-components has exactly 
the same complexity. 

Pseudo-connectedness proves to be a key concept in understanding the 

structure of locally compact Polish metric spaces and their isometry groups. 
It also generates new subclasses of Polish metric spaces the complexity of 

whose classification problems seems natural. An example of such results is 

the following. 

Theorem 3.12 (GK). The isometry of homogeneous pseudo-connected lo? 

cally compact Polish metric spaces is concretely classifiable. 

It is proved in (Cl) that the isometry of homogeneous locally compact 
Polish metric spaces with two pseudo-components is no longer concretely 
classifiable. In fact, Louveau showed the following stronger result using the 

method of (Cl). 

Theorem 3.13. If G is an abelian and countable Polish group, then E? is 

Borel reducible to the isometry of ultrahomogeneous locally compact Polish 

metric spaces with two pseudo-components. 

Using a similar proof as that of Theorem 3.5 one can show that, for a 

countable Polish group G and a free action of G on a Borel G-space X, 

EG is Borel reducible to the isometry of rigid locally compact Polish metric 

spaces with two pseudo-components. 

Finally, let Eo be the following equivalence relation on 2N: 

xE0y & 3riim >n(xm= ym). 

This is a countable Borel equivalence relation strictly simpler than 2s-o. In 

fact it is the simplest non-concretely classifiable equivalence relation. Then 

we have 

Theorem 3.14 (GK). The isometry of Heine-Borel ultrametric Polish spaces 
is Borel bireducible with Eo. 

?4. Groups of isometries. It turns out that our work on the classification 

problems has some interesting applications to the study of isometries of 

various metric spaces. For a Polish metric space X, we denote by Iso(Ar) 
the group of isometries of X, where the group operation is composition. 

Equipped with the pointwise convergence topology, Iso(Ar) becomes a Polish 
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group. Our first result shows that the converse is true, thus completely 
characterizes the isometry groups of Polish metric spaces. 

Theorem 4.1 (GK). Up to {topological group) isomorphism the isometry 

groups of Polish metric spaces are exactly the Polish groups. 

The proof of this theorem closely relates to the proof of Theorem 2.1 in 

(GK), which we sketched in ?2, and makes essential use of the Urysohn 

space. 
We next consider the case of locally compact separable metric spaces 

{X,d), where d is not necessarily complete. For any such space it still turns 

out that its isometry group is Polish. Moreover, the analysis of pseudo- 

components we sketched in ?4 still goes through for such spaces. In case 

the space is pseudo-connected, we have the following result for its isometry 

group. 

Theorem 4.2 (GK). Let X be a pseudo-connected locally compact separa? 
ble metric space. Then Iso{X) is locally compact. 

This generalizes earlier results of van Dantzig and van der Waerden [1928] 
(for the connected case) and Strantzalos [1989] (see also Strantzalos [1974] 
and Manoussos and Strantzalos [2000]). 

Using this, and some further constructions, we can characterize completely 
the isometry groups of locally compact separable metric spaces. 

Theorem 4.3 (GK). Up to {topological group) isomorphism the following 
classes ofof groups are the same: 

i) The isometry groups of locally compact separable metric spaces. 

ii) The isometry groups of locally compact Polish metric spaces. 

iii) The isometry groups of a-compact Polish metric spaces. 

iv) The closed subgroups of groups ofthe form 

n(Soo k o, 
n 

where {Gn) is a sequence of locally compact Polish groups, and S^ k Gn is 

the semi-directproduct ofSoo and GN, with Sqo acting on GN by g ? x{i) = 

x(g-l(i)). 

This characterization can in turn be used to get information about actions 

of such isometry groups. 

Theorem 4.4 (GK). Let X be a locally compact separable metric space 
and Y be a Borel Iso{X)-space. Then Ej , , is Borel reducible to graph 

isomorphism. 

This extends a result of Hjorth [2000] who proved such a theorem for 

countable products of locally compact Polish groups. 
These theorems helped to motivate our conjectures discussed in ?3.C, since 

it seems that the complexity of a classification problem is connected to the 

automorphism groups of the objects and their actions. 
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It is also shown in (GK) that, up to isomorphism, the isometry groups 
of O-dimensional locally compact Polish metric spaces are exactly the closed 

subgroups of Soc Concerning ultrametric Polish spaces it is not hard to see 

that these isometry groups are, up to isomorphism, closed subgroups of S-o 
but we do not know how to characterize them. 

?5. Open problems. In this final section, we discuss some open problems 
and directions for further research. We are not attempting to compile a 

complete list of open questions that arise here, some of which we mentioned 

earlier in this paper. 
One important question left open from our study is the classification of 

locally compact Polish metric spaces. 

Problem 5.1. Determine the exact complexity of the isometry of locally 

compact Polish metric spaces. 

The problem seems quite challenging despite Hjorth's result mentioned 

in ?3.C, following Theorem 3.8. The difficulty lies in trying to understand 

the interactions of various pseudo-components of the space, when infintely 

many of them are present. 
Another interesting problem is the classification of compact Polish spaces 

up to homeomorphism. 

Problem 5.2. Determine the exact complexity of homeomorphism of com? 

pact metric spaces. 

Hjorth [2000] has shown that this equivalence relation is strictly above 

graph isomorphism. It has been also proved (by Kechris and Solecki) 
that homeomorphism of compact Polish spaces is Borel reducible to an 

equivalence relation induced by a Borel action ofa Polish group. In fact, the 

Banach-Stone Theorem (see, e.g., Semadeni [1971], 7.8.4) implies that, for 

compact Polish spaces X and Y, 

X and Y are homeomorphic 
& C(X) and C(Y) are isometric Banach spaces 
<& C(X) and C(Y) are isometric as Polish spaces, 

where C(X) denotes the space of all continuous functions from X into R 

with the supnorm (metric). It is easy to see that the map X h-> C(X) is 

Borel. Thus by our Theorem 2.1, we have an alternative proof of the fact 

that homeomorphism of compact Polish spaces is Borel reducible to an orbit 

equivalence relation induced by a Borel action of a Polish group. 
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We also see from the above computation that linear isometry of Banach 

spacs is above homeomorphism of compact metric spaces. This leads to the 

following problem. 

Problem 5.3. Determine the exact complexity of isomorphism and linear 

isometry of separable Banach spaces. 

We believe that the study of these problems will further our understanding 
of the mathematical structures in question, as well as that of the descriptive 
set theory of definable equivalence relations. 
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