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7 Topological Completeness for Higher-Order Logic
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Abstract

Using recent results in topos theory, two systems of higher-order logic
are shown to be complete with respect to sheaf models over topological
spaces—so-called “topological semantics”. The first is classical higher-
order logic, with relational quantification of finitely high type; the
second system is a predicative fragment thereof with quantification
over functions between types, but not over arbitrary relations. The
second theorem applies to intuitionistic as well as classical logic.

Introduction

Higher-order logic (also known as “type theory”) is logic that includes quan-
tification over functions or relations. Many basic mathematical objects and
theories can only be defined using this logic; the natural numbers and topo-
logical spaces are familiar examples. A more precise specification of what
we call classical higher-order logic is given in §1 below.

As is well-known, higher-order theories are generally incomplete with
respect to (standard) models in Sets; that is, T |= σ does not imply T ⊢ σ
for T a theory in higher-order logic and ⊢ the entailment relation of any
reasonable deductive calculus. It is by now also well-known that higher-
order logic can be modeled in suitable generalized categories of sets, namely
(elementary) topoi, and that with regard to such topos-valued semantics,
standard higher-order deduction is complete (see [11] for details).

Our results in this paper are concerned with topos models of a very
special and natural kind, namely sheaves over topological spaces. If X is
a space, a model in the category Sh(X) of all sheaves on X shall be called
a topological model. We will show that higher-order logic is complete with
respect to such models; for the reader unfamiliar with sheaf theory, we wish
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to emphasize their elementary topological character. Under the equivalence
Sh(X) ≃ Etale/X a sheaf on a space X is essentially the same thing as
an étale space over X: a space E equipped with a local homeomorphism
p : E → X (also called an étale bundle). The various fibers p−1x of E (the
stalks of the sheaf) for the points x ∈ X may be regarded as sets varying
continuously over X. A morphism of étale spaces is just a continuous map
f : E → E′ over X, i.e. with p′f = p as in the commutative triangle

E
f ✲ E′

❅
❅

❅
❅

❅
p

❘ ✠�
�

�
�

�

p′

X.

Products, exponentials (“function spaces”), etc. of étale spaces of course
agree with those calculated as sheaves. A topological model of a single-
sorted theory thus consists of an étale space p : E → X over a base space X
together with suitable operations, which are simply continuous maps over X.

As the reader who is familiar with sheaf theory will have noted, our
topological models are just what are usually called “sheaves of . . . s”, at
least in the case of equational, first-order theories. Thus a topological model
of the theory of groups is a sheaf of groups, and so on.

Despite the ultimately simple character of topological models, we use
the more general language and methods of sheaf theory and topoi to study
them. Our first theorem, proved in §3 below, asserts the completeness of
standard, classical higher-order deduction ⊢c with respect to such topological
semantics.

Theorem A. Let T be a higher-order theory. There exists a classical topo-
logical model M of T such that, for any higher-order sentence σ in the lan-
guage of T,

T ⊢c σ if and only if M |=c σ.

Moreover, the model M has the property that every continuous function
between the interpretations of type symbols is logically definable.

What permits theorem A to be true is our notion of a classical model. In
an arbitrary topological sheaf topos Sh(X) there are two natural candidates
for the interpretation of the type 2 of formulas (or “propositions”, or “truth
values”) of a higher-order theory; to wit, the sheaf Ω of open subsets of
X and the coproduct 1 + 1. In the language of étale spaces, 1 + 1 is the
double covering X × 2 → X. As detailed in §2 below, a classical model
uses the latter to interpret the type of formulas. Function and power types
are then interpreted as exponentials of sheaves (sometimes called “internal
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homs” or “sheaf-valued homs”). This standard treatment of exponentials is
what chiefly distinguishes topological models from so-called Henkin models
(see the appendix below for the exact relation between the two). Thus in
particular, for any type Z the power type 2Z is interpreted as the sheaf of
complemented subsheaves of the interpretation of Z. By further requiring
of a classical model that the types be interpreted by so-called decidable
sheaves, we can model classical higher-order logic in non-boolean topoi like
Sh(X), which is impossible when interpreting the type 2 by the subobject
classifier Ω. Indeed under that interpretation the analogue of theorem A
fails—even permitting arbitrary Grothendieck topoi in place of topological
sheaf topoi—as can be seen using Gödel incompleteness.

The issue of how to interpret the type of formulas of course vanishes when
one considers the fragment of higher-order logic that results from omitting
that type. This fragment—which we call λ-logic and describe in §4 below—
may be regarded as a marriage of elementary logic and the λ-calculus. In
addition to the usual propositional and quantificational language of elemen-
tary logic, it includes equations between and quantification over functions,
functions of functions, etc. But since there is no type of formulas, there is
no quantification over “propositional functions”, i.e. over relations.

Many familiar mathematical constructions, theorems, and proofs can be
formalized in λ-logic. A simple example is Cayley’s theorem that every
group is isomorphic to a group of permutations of its elements. The axiom
of choice, in the familiar form

∀x ∈ X∃y ∈ Y.ϕ(x, y) ⇒ ∃f ∈ Y X∀x ∈ X.ϕ(x, fx),

is also a statement of λ-logic. An example of a (non-elementary) λ-theory
is synthetic differential geometry, applications to which of the present work
shall be discussed elsewhere.

Our theorem B states the completeness of λ-logic with respect to topolog-
ical models. More generally than theorem A, theorem B holds for standard,
intuitionistic deductive entailment ⊢.

Theorem B. Let T be a λ-theory. There exists a topological model M of T

such that, for any λ-sentence σ in the language of T,

T ⊢ σ if and only if M |= σ.

Moreover, the model M has the property that every continuous function
between the interpretations of type symbols is logically definable.

Theorem B rests more squarely on one of the main supports of theorem
A, namely a recent covering theorem for topoi due to the second author and
I. Moerdijk. This covering theorem is the real heart of our completeness
theorems; we sketch its application to our situation as an appendix to this
paper. So as not to obscure the conceptual simplicity of this application, our
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treatment of the standard details of higher-order syntax and topos semantics
is held quite brief.

Before getting down to business, we make two remarks on the statements
of the completeness theorems. First, each has the form “there exists a model
M such that T ⊢ σ just if M |= σ”, rather than the more familiar (for
set-valued semantics) “T ⊢ σ just if for all models M , M |= σ ”. The
stronger form given here is made possible by considering models in topoi
other than Sets. The situation is analogous to that of the familiar Heyting-
valued completeness theorem for first-order intuitionistic logic [8], which
follows directly from our theorem B and indeed is the inspiration thereof.
Second, and more substantially, the additional “Moreover . . . ” clause of each
theorem states a further property of the respective logical system that may
be termed “definitional completeness”. It ensures that any function which
is “present in every model” is logically definable. As in the case of deductive
completeness, this definitional completeness is established in a strong form
simply by exhibiting a single model in which every function of suitable type
is definable. In light of the topological nature of the models at issue here,
logical definability then coincides with continuity in that “minimal” model.
For further discussion of this property (in the context of the λ-calculus) we
refer to [1].

Acknowledgments. We have both benefitted greatly from conversations
with Ieke Moerdijk on the spatial covering theorem and its logical applica-
tions. The Stefan Banach Mathematical Research Center in Warsaw, and
the organizers of the Rasiowa memorial conference held there in December
1996, are thanked for supporting our collaboration.

1 Theories in classical higher-order logic

The systems of classical higher-order logic that we consider are essentially
the same as those presented in [4, 11], which in turn are modern formulations
of [7]. We summarize one particular formulation for the reader’s convenience
and for the special purposes of §4.

Type symbols are built up inductively from a given list of basic type sym-
bols X1, . . . ,Xn and the type of formulas 2 by the type-forming operations
Y × Z and ZY .

Terms are built up inductively from variables and a given list of basic
terms c1, . . . , cm. Each variable and basic term has a type. The terms and
their types are as follows, writing τ : Z for “τ is a term of type Z”.

• If τ1 : Z1 and τ2 : Z2, then 〈τ1, τ2〉 : Z1 × Z2.

• If τ : Z1 × Z2, then π1(τ) : Z1 and π2(τ) : Z2.

• If τ : Z and y is a variable of type Y , then λy.τ : ZY .

4



• If α : ZY and τ : Y , then α(τ) : Z.

• If τ, τ ′ : Z, then τ = τ ′ : 2.

• If ϕ,ψ : 2 and y is a variable of type Y , then the following are terms
of type 2:

⊤, ⊥, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, ∀y.ϕ, ∃y.ϕ.

A basic language (or signature) consists of basic type symbolsX1, . . . ,Xn

and basic constant symbols c1, . . . , cm. A theory consists of a basic language
and a list of sentences (closed formulas) σ1, . . . , σk therein, called axioms.
Given a theory T, the language L(T) of T is the set of terms in the basic
language of T.

The entailment relation ϕ ⊢ ψ between formulas is specified in the usual
way by a deductive calculus. To include the possibility of “empty” types, it
is convenient to give a family of entailment relations ϕ ⊢x ψ indexed by lists
x = (x1, . . . , xi) of distinct variables including all those occurring free in ϕ
and ψ. These relations are generated by the following conditions (“rules of
inference”):

1. Order

(a) ϕ ⊢x ϕ

(b) ϕ ⊢x ψ and ψ ⊢x ϑ implies ϕ ⊢x ϑ

(c) ϕ ⊢x,y ψ implies ϕ[τ/y] ⊢x ψ[τ/y]

2. Equality

(a) ⊤ ⊢x τ = τ

(b) τ = τ ′ ⊢x ϕ[τ/y] ⇒ ϕ[τ ′/y]

(c) ϑ ⊢x ϕ⇒ ψ and ϑ ⊢x ψ ⇒ ϕ implies ϑ ⊢x ϕ = ψ

(d) ∀y.α(y) = β(y) ⊢x α = β

3. Products

(a) ⊤ ⊢x 〈π1τ, π2τ〉 = τ

(b) ⊤ ⊢x πi〈τ1, τ2〉 = τi, i = 1, 2

4. Exponents

(a) ⊤ ⊢x (λx.τ)(x) = τ

(b) ⊤ ⊢x λx.α(x) = α
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5. Elementary logic

(a) ⊥ ⊢x ϕ

(b) ϕ ⊢x ⊤

(c) ϕ ⊢x ¬ψ iff ϕ ∧ ψ ⊢x ⊥

(d) ϑ ⊢x ϕ and ϑ ⊢x ψ iff ϑ ⊢x ϕ ∧ ψ

(e) ϑ ∨ ϕ ⊢x ψ iff ϑ ⊢x ψ and ϕ ⊢x ψ

(f) ϑ ∧ ϕ ⊢x ψ iff ϑ ⊢x ϕ⇒ ψ

(g) ϑ ⊢x,y ϕ iff ϑ ⊢x ∀y.ϕ

(h) ∃y.ϑ ⊢x ϕ iff ϑ ⊢x,y ϕ

In the foregoing, the τ ’s are arbitrary terms; ϕ, ψ, ϑ are formulas; and α, β
are terms of the same exponential type. In writing e.g. ϕ[τ/y] ⊢x ψ[τ/y] in
1(c) it is assumed that ϕ[τ/y] and ψ[τ/y] are formulas with no free variables
apart from x1, . . . , xi; so the term τ must have the same type as the variable
y and no other free variables. As usual, the substitution notation ϕ[τ/y] is
understood to include a convention to avoid binding free variables in τ .

A sentence σ is called provable if ⊤ ⊢ σ, also written ⊢ σ. For a theory
T, the notions of T-entailment and T-provability are given by adding the
rules ⊢ σ for each axiom σ of T.

The classical entailment relation ⊢c results from ⊢ by adding the rule

⊢c ∀p.p ∨ ¬p.

Remark 1. It is sometimes convenient to give a more succinct statement of
the logical calculus by defining some of the logical primitives in terms of oth-
ers. We mention one particularly simple primitive basis which will be useful
in the next section (cf. [11]). Exponential types ZY occur only in the form
2Y (“power types”, usually written P (Y )); λ-terms λx.ϕ and evaluations
α(τ) are then restricted accordingly, and more naturally written {x|ϕ} and
τ ∈ α. Projection operators πi(τ) are eliminated in favor of additional rules
of inference. The logical operations ⊤, ⊥, ¬, ∧, ∨, ⇒, ∀, ∃ are defined in
terms of = and 〈−,−〉, {x|−}, ∈. We shall use the fact that this primitive
basis suffices in the following way: to interpret the language of a theory it
suffices to interpret the basic language, the type of formulas, product and
power types, and the term-forming operations 〈−,−〉, {x|−}, ∈, =.

In the opposite direction, one can enlarge the primitive logical basis by
including basic relation and function symbols in addition to basic constant
symbols, although these are not needed in the presence of higher relation
types. Relation symbols will be useful in §4, however, where there is no type
of formulas; and both relation and function symbols are used in elementary
logic, where there are no higher types at all.
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2 Semantics in topoi

Let T be a theory in classical higher-order logic, as defined in the foregoing
section. It is fairly obvious how to interpret T in an arbitrary boolean topos
B: An interpretation M of T in B assigns to each basic type symbol X an
object XM of B, and to the type 2 of formulas, the coproduct 1B + 1B in B
(which is the subobject classifier),

2M = 1B + 1B.

The interpretationM is then extended to product and power types by setting

(Y × Z)M = YM × ZM (product in B),

(2Y )M = (2M )(YM ) (exponential in B).

On terms, M assigns to each basic constant symbol c of T, having say type
Z, a morphism

cM : 1B → ZM

of B, and variables are interpreted as identity morphisms. The interpretation
is then extended inductively to all terms in L(T) in the evident way, using
the internal logic of B (cf. [12, §§VI.5–7], also for the external meaning of
the logical operations thus modeled). For example,

(τ = τ ′)M = δ ◦ 〈τ, τ ′〉M ,

where δ : ZM × ZM → 1B + 1B classifies the diagonal morphism ∆ =
〈1ZM

, 1ZM
〉 : ZM  ZM × ZM , when Z is the type of the terms τ, τ ′.

In particular, M assigns to each formula ϕ(y1, . . . , yn) with free variables
yi of types Yi a morphism

ϕ(y1, . . . , yn)M : (Y1)M × . . .× (Yn)M −→ 1B + 1B

of B. A sentence σ is said to be true in M , written M |= σ, if

σM = true: 1B → 1B + 1B,

where true: 1B → 1B + 1B is the first coproduct inclusion, which is the
universal subobject. Of course, an interpretation M is a model of T if each
axiom of T is true in M .

2.1 Representing the category of models

Given models M and N of a theory T in a boolean topos B, there is an
evident notion of an isomorphism h : M

∼
−→ N of T-models, namely a family

of isos h = (hX : XM
∼

−→ XN ) (indexed by the basic types X of T) that
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preserve the interpretations of the constant symbols of T, in the obvious
sense. Together with the evident composites and identities, one thus has
for any theory T and any boolean topos B a category of models of T in B,
denoted

ModT(B).

Observe that ModT(B) is always a groupoid, i.e. a category in which ev-
ery morphism is iso. For example, if T is the theory of topological spaces and
B is the topos Sets, then ModT(B) is the category of all topological spaces
and homeomorphisms. One can of course also consider other morphisms of
models, but the groupoid of isomorphisms suffices for our purposes.

A logical morphism between boolean topoi plainly preserves models and
their morphisms. Such a functor f : B → B′ therefore induces a functor

ModT(f) : ModT(B) → ModT(B′)

(a groupoid homomorphism) on the associated categories of models.
Now, every theory T in classical higher-order logic has a (higher-order)

classifying topos, a boolean topos BT determined uniquely (up to equiva-
lence) by the property: for any boolean topos B there is an equivalence of
categories, natural in B,

Log(BT,B) ≃ ModT(B),(1)

where Log(BT,B) is the category of logical morphisms BT → B and natu-
ral isomorphisms between them (cf. [2]). The classifying topos BT can be
constructed “syntactically” from L(T) in the style of [4, 11]; in particular,
it is a small category (indeed, it is countable). In virtue of its universal
mapping property (1), BT is freely generated as a boolean topos by the
“universal model” UT ∈ ModT(BT) associated to the identity logical mor-
phism BT → BT under (1). By the syntactic construction of BT this universal
model has the following properties, which we record for later use:

Proposition 2. (i) For any sentence σ ∈ L(T),

T ⊢c σ just if UT |= σ.

(ii) For any types Y and Z and any morphism f : YUT
→ ZUT

in BT, there
is a formula ϕ(y, z) ∈ L(T) such that

graph(f) = {〈y, z〉 | ϕ(y, z)}UT

(as subobjects of YUT
× ZUT

).

Observe that (i) of proposition 2 and the universal mapping property (1)
together entail the soundness and completeness of the deductive calculus of
§1 with respect to topos semantics: T ⊢c σ if and only if for every T-model
M , M |= σ.
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2.2 Classical semantics

We now extend the foregoing topos semantics for classical higher-order logic
to non-boolean topoi. Let T be a fixed theory and E an arbitrary topos. We
begin with a bit of notation: Let true: 1E → ΩE be the subobject classifier
in E , and let us write

|−| = (true, false) : 1E + 1E −→ ΩE

for the canonical map from the coproduct which, observe, is a monomor-
phism. An arbitrary morphism ϕ : E → ΩE of E factors through |−| just if
the subobject Sϕ  E it classifies is complemented, i.e. if there is a subob-
ject S  E with Sϕ + S ∼= E (canonically). When this is the case, let us
write ϕ : E → 1E + 1E for the unique morphism such that

ϕ = |ϕ|,

as indicated in

E
ϕ✲ 1E + 1E

❅
❅

❅
❅

❅
ϕ

❘
ΩE .

|−|

❄

Recall that an object E of E is said to be decidable if its diagonal ∆: E 

E × E is complemented, thus just if δ : E × E → 1E + 1E exists.
Next, we define an interpretation of the basic language of T in E exactly

as in a boolean topos; in particular the type 2 of formulas is interpreted as
1E + 1E , which is plainly decidable. An interpretation M such that for each
type symbol Z the object ZM in E is decidable shall be called a classical
interpretation (or c-interpretation).

Finally, by remark 1 any c-interpretation M can be extended to all of
L(T) exactly as in a boolean topos, by interpreting the term-forming oper-
ations 〈−,−〉, {x|−}, ∈ as before and taking δ : ZM × ZM → 1E + 1E to
interpret = at each type Z. Thus just as before a c-interpretation M assigns
to each formula ϕ(y1, . . . , yn) with free variables yi of types Yi a morphism

ϕ(y1, . . . , yn)M : (Y1)M × . . .× (Yn)M −→ 1E + 1E .

Definition 3. The relation |=c of satisfaction for c-interpretations is de-
fined by:

M |=c σ iff |σM | = true .
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Thus a c-interpretation M satisfies a sentence σ just if the following triangle
commutes

1E
σM✲ 1E + 1E

❅
❅

❅
❅

❅
true

❘
ΩE .

|−|

❄

A c-model of the theory T is of course a c-interpretation that satisfies
the axioms of T. A c-interpretation M is therefore a c-model just if for each
axiom σ the interpretation

σM : 1E −→ 1E + 1E

is the first coproduct inclusion, just as in the boolean case. Indeed, if the
topos E is boolean, then every object is decidable, and a c-model in E is the
same thing as a model.

Proposition 4 (Soundness). If M is a c-model then for any sentence σ,

T ⊢c σ implies M |=c σ.

Proof. Consider the classifying topos BT with universal model UT. There is
an evident functor m : BT → E with M = m(UT) and

σM = σm(UT) = m(σUT
)

for each sentence σ. Although m is not logical if E is not boolean, it still
takes true : 1BT

→ 1BT
+ 1BT

to true : 1E → 1E + 1E . The claim thus
follows from the soundness of standard topos semantics (in particular, from
proposition 2).

Remark 5. If the interpretation ZM is decidable then for any type Y the
canonical inclusion (ZM )(YM )

 Ω(YM×ZM ) factors as indicated in the fol-
lowing diagram.

(1E + 1E )(YM×ZM )

�
�

�
�

�✒

(ZM )(YM )✲ ✲ Ω(YM×ZM )

|−|(YM×ZM )

❄

Thus even when defined in terms of power types as mentioned in remark
1, the exponential types ZY are still interpreted as exponentials by a c-
interpretation.
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3 Topological completeness

In this section we consider small topoi equipped with the finite epi topology.
The covering families for this Grothendieck topology on a topos E are finite
families of morphisms (Ci → E)i such that the canonical map

∐
i Ci → E

is epic. Of the following two technical lemmas, we omit the straightforward
proof of the first; its second part is folklore.

Lemma 6. (i) The finite epi topology is subcanonical.

(ii) For each morphism e : E′ → E in E, the sheafified Yoneda embedding
y : E → Sh(E) preserves not only the pullback functor e∗ : E/E →
E/E′, but also its left and right adjoints,

Σe ⊣ e
∗ ⊣ Πe : E/E′ → E/E.

(Indeed, this is true for any subcanonical topology on a small category
and any locally cartesian closed structure present there.)

Lemma 7. Let F : B → E be a left-exact functor from a boolean topos B to
any topos E. If F is continuous for the finite epi topology then it preserves
finite coproducts and first-order logic. If F also preserves exponentials, then
it preserves c-models.

Proof. An object of a topos has an empty covering family for the finite epi
topology just if it is initial; so the continuous functor F preserves initial
objects. The coproduct inclusions B1, B2  B1 + B2 are a covering family
of monos with B1 ∧ B2 = 0  B1 + B2. Since F is also left-exact, it then
preserves coproducts as well. Moreover, it then preserves boolean comple-
ments of subobjects, whence it preserves negation ¬ since B is boolean. The
logical operations ⇒ and ∀ are then also preserved, since in a boolean topos
these can be constructed from negation and operations that are preserved
by left-exact, continuous functors generally. Finally, if F also preserves ex-
ponentials then by the foregoing it preserves the interpretations of all types
and the associated term-forming operations, in addition to first-order logic;
whence it clearly preserves c-models.

Theorem A will now follow by applying the covering theorem of the
appendix, which states that every Grothendieck topos with enough points
can be covered by a topological space via a connected, locally connected
geometric morphism. We remind the reader that a Grothendieck topos G
is said to have enough points if the geometric morphisms p : Sets → G
are jointly surjective (i.e. if the inverse images p∗ : G → Sets of these are
jointly faithful), and that a geometric morphism f∗ ⊣ f∗ : E → F of topoi
is connected if the inverse image functor f∗ is full and faithful, and locally
connected ([3]: “molecular”) if f∗ commutes with Π-functors.
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Theorem A. Let T be a higher-order theory. There exists a topological
space XT and a c-model M of T in Sh(XT) such that:

(i) for any sentence σ ∈ L(T),

T ⊢c σ if and only if M |=c σ;

(ii) given types Y,Z, every continuous function f : YM → ZM over XT is
definable: there is a formula ϕ(y, z) ∈ L(T) such that

graph(f) = {〈y, z〉|ϕ(y, z)}M

(as subsheaves of YM × ZM ).

Proof. First, one has the universal model UT in the classifying topos BT,
as in §2.1. The Grothendieck topos Sh(BT) of sheaves on BT for the finite
epi topology is coherent, and so has enough points (cf. [12]). The covering
theorem of the appendix therefore guarantees the existence of a topological
space XT and a connected, locally-connected geometric morphism

m : Sh(XT) → Sh(BT).

The inverse image m∗ : Sh(BT) → Sh(XT) of m satisfies all hypotheses of
the foregoing lemma 7, as does the sheafified Yoneda embedding

y : BT → Sh(BT).

In particular, these functors preserve exponentials since they preserve Π-
functors (using lemma 6). The composite m∗ ◦ y : BT → Sh(XT) therefore
also satisfies the hypotheses of lemma 7, whence one has the c-model

M = m∗ ◦ y(UT)

in Sh(XT). Since each of its factors is full and faithful, so is the functor
m∗ ◦ y; the assertions (i) and (ii) thus follow from proposition 2.

Remark 8. (Infinitary generalizations) Theorem A clearly applies equally
to “theories” T with infinitely many type and/or constant symbols and/or
axioms, since in such cases the foregoing proof can begin with a small topos
BT which is a suitable colimit of classifying topoi for (finite) theories. We
also merely mention that for the case of infinitary logic, with set-indexed
meets and joins of formulas, a theorem analogous to theorem A holds, with
complete Heyting algebras in place of topological spaces.
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4 λ-logic

What we call λ-logic differs from classical higher-order logic in that it has no
type 2 of formulas. Type symbols are now built up inductively from basic
type symbols by the operations −×? and −?. Terms are built up inductively
from variables, basic constant symbols, and just the term-forming operations
〈−, ?〉, π1(−), π2(−), λy.(−), and ?(−). Formulas are then constructed from
terms and basic relation symbols in the customary way, using the language
of first-order logic with equality. Finally, a λ-theory consists of (finitely
many) basic type, constant, and relation symbols, and closed formulas in
these parameters.

As rules of inference for the (intuitionistic) entailment relation ϕ ⊢x ψ
on formulas one may take a standard deductive calculus for (intuitionistic)
many-sorted, first-order logic with equality, augmented by the usual rules
for the (typed) λ-calculus. Indeed, the rules given in §1 above are suitable,
under the omission of 2(c).

The notion of a model of a λ-theory in a topos is essentially the same
as that already given in §2. It is, however, now more natural to interpret
basic relation symbols and other formulas by subobjects (rather than their
classifying morphisms), as is usually done for first-order logic (cf. [12]). In
particular, the equality sign = is interpreted in the standard way as a diag-
onal morphism, and since classical logic is not being assumed, the notion of
a c-model is not required.

Deduction is clearly sound with respect to such semantics. To show that
it is also complete—even with regard to just topological models—one can
proceed as in the classical higher-order case in §3:

(i) Construct the syntactic category ST of provable equivalence classes of
formulas, to be equipped with the finite epi topology (which is sub-
canonical).

(ii) Apply the sheafified Yoneda embedding y : ST → Sh(ST) (which pre-
serves λ-logic by lemma 6) to get a full and faithful model in a Grothen-
dieck topos with enough points.

(iii) Apply the covering theorem of the appendix to get a connected, locally
connected geometric covering map Sh(XT) → Sh(ST) from a topolog-
ical sheaf topos Sh(XT).

We leave it to the reader to fill in the details of this sketch to provide the
proof of the following.

Theorem B. Let T be a λ-theory. There exists a topological space XT and
a model M of T in Sh(XT) such that:

(i) for any λ-sentence σ in the language of T,

T ⊢ σ if and only if M |= σ;

13



(ii) given types Y,Z, every continuous function f : YM → ZM over XT is
definable: there is a λ-formula ϕ(y, z) in the language of T such that

graph(f) = {〈y, z〉|ϕ(y, z)}M

(as subsheaves of YM × ZM ).

Appendix: The spatial cover

In the proofs of theorems A and B, use was made of the following covering
theorem for topoi, which is part of theorem 13.5 of [5] (also see [6]; cf. [10]
for a related result).

Covering theorem. For any Grothendieck topos G with enough points there
is a topological space XG and a connected, locally connected geometric mor-
phism

φ : Sh(XG) → G.

Thus in particular the inverse image functor φ∗ : G → Sh(XG) is fully faithful
and preserves exponentials and the internal first-order logic of G.

The purpose of this appendix is to describe the spaceXG and the covering
map φ : Sh(XG) → G in the case of principal interest here, namely when
G = Sh(BT) for BT the small classifying topos of a (classical) higher-order
theory, equipped with the finite epi topology. Thus we consider the situation
of theorem A; that of theorem B of course has a similar description. Before
going into details, let us mention that in fact there are many different spaces
which will do the job, depending on various parameters that one is free to
choose. We exhibit here just one such choice, intended to be illuminating.

To begin, recall from [9] that classical higher-order logic is complete with
respect to general models, nowadays called Henkin models. The basic fea-
ture of a Henkin model M of a theory T is that a function type ZY (or
power type 2Y ) is interpreted by a subset (ZY )M ⊂ (ZM )(YM ) of the set of
all functions from YM to ZM (resp. of the power set ℘YM ), rather than by
the set itself. Of course, certain closure conditions also have to be satisfied.
We mention only by the way that such models can be shown to arise “nat-
urally” as images of the universal model UT under continuous, left exact
functors BT → Sets, and that the said completeness can be inferred from
this fact. For the following, it will be convenient to define the underlying
set or universe |M | of a Henkin model M to be the (disjoint) union of the
sets ZM for all types Z,

|M | =
⋃

{ZM | Z a type}.

To define the space XT for the topos Sh(BT), fix a sufficient set ST of
countable Henkin models M of T, i.e. ST satisfies:

M |= σ for all M ∈ ST implies T ⊢ σ

14



for all T-sentences σ. For example, we could take (a set of representatives
of) all countable Henkin models of T as the set ST. We then define a labeling
of a Henkin model M in ST to be a partial function

N ⊃ dom(α)
α

−→ |M |

such that for each a ∈ |M | the fiber α−1(a) is infinite.
The points of the space XT are labeled Henkin models in ST, i.e. pairs

(M,α)

where M ∈ ST and α is a labeling of M . The topology is generated by basic
open sets of the form

Uϕ(z̄),n̄ = {(M,α) | α(ni) is defined and of type Zi,
and M |= ϕ(α(n1), . . . , α(nm)) }

for ϕ(z̄) = ϕ(z1, . . . , zm) a T-formula and n̄ = (n1, . . . , nm) a tuple of
natural numbers.

To describe the covering map φ : Sh(XT) → Sh(BT) we sketch the con-
struction of the c-model Φ in Sh(XT) induced by φ∗. Here we use the
equivalence, mentioned in the introduction, Sh(XT) ≃ Etale/XT of sheaves
on XT and étale bundles over XT. For each type Z we have the set

ZΦ =
∑

(M,α)∈XT

ZM ,

with the evident projection

πZ : ZΦ → XT.

We generate a topology on ZΦ by declaring to be open:

• the sets π−1
Z (U) for U ⊂ XT open (thus making πZ continuous),

• the sets Vn = {(M,α, a) | a ∈ ZM , α(n) is defined, and α(n) = a}.

It is easily checked that πZ then becomes a local homeomorphism (an
étale map). The assignment Z 7→ ZΦ extends in the obvious way to a
left exact, continuous functor BT → Sh(XT) that preserves exponentials,
inducing the covering map φ : Sh(XT) → Sh(BT). Finally, the stalk x∗Φ of
the c-model Φ at a point x = (M,α) of XT is just the Henkin model M
itself, which gives the relationship between our results and [9].
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