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CONSTRUCTING STRONGLY EQUIVALENT NONISOMORPHIC
MODELS FOR UNSUPERSTABLE THEORIES, PART A

Tapani Hyttinen and Saharon Shelah*

Abstract

We study how equivalent nonisomorphic models an unsuperstable theory can
have. We measure the equivalence by Ehrenfeucht-Fraisse games. This paper con-
tinues the work started in [HT].

1. Introduction

In [HT] we looked how equivalent nonisomorphic models first-order theories
can have i.e. we tried to strengthen S.Shelah’s nonstructure theorems. We used
Ehrenfeucht-Fraisse games to measure the equivalence (see Definition 2.2 below). If
the theory is unstable or it has OTOP or it is superstable with DOP then we were
able to prove maximal results by assuming strong cardinal assumptions. We showed
that if A<* = X then there is a model A of the theory such that |A| = A and for
all AT A-trees ¢ there is a model B such that |B| =\, A% B and 3 has a winning
strategy in the Ehrenfeucht-Fraisse game G?(A, B).

By assuming only that the theory is unsuperstable we were not able to say much
if we tried to measure the equivalence by the length of Ehrenfeucht-Fraisse games in
which 3 has a winning strategy. But if instead, we measured the equivalence by the
length of Ehrenfeucht-Fraisse games in which V does not have a winning strategy,
then we were able to get rather strong results.

In this paper we look the unsuperstable case again. We measure the equivalence
by the length of Ehrenfeucht-Fraisse games in which 4 has a winning strategy. We
study AT,k + 1-trees (see Definition 2.1) and give a rather complete answer to the
question: how equivalent nonisomorphic A", k + 1-trees can there be? In Chapter 3
we show that if A= ™, c¢f(u) = pu, K = cf(k) < p and A<F = X\ then there are

* partially supported by the United States Israel binational science foundation, publ.

474


http://arxiv.org/abs/math/0406587v1

ATk + 1-trees Iy and I; such that |Io|U|[;| < A%, Iy % I; and
IO szm Il

(see Definition 2.2 and Definition 2.4 (iii)). Instead of two such trees it is possible
to get 2* such trees.

In chapter 4 we show that if in addition A € I[\] then the result of Chapter 3
is best possible.

As in [HT], this implies that essentially the same is true also for the models of
the canonical example of unsuperstable theories.

In [HS] we will prove the results of chapter 3 for unsuperstable theories in
general.

This paper was born during the first author’s visit to the second author at
Rutgers University. The first author wishes to express his gratitude to Rutgers
University for the hospitality shown to him during the visit.

2. Basic definitions
In this chapter we define the basic concepts we shall use.

2.1 Definition. Let A be a cardinal and « an ordinal. Let t be a tree (i.e.
for all x € t, the set {y € t| y < z} is well-ordered by the ordering of t). If x,y € t
and {z €t|z<uz}={z€t]|z<y}, then we denote x ~ y, and the equivalence
class of x for ~ we denote [z]. By a A\, a-tree t we mean a tree which satisfies:

(i) |[z]| < X for every x € t;

(ii) there are no branches of length > « in t;

(iii) t has a unique root;

(iv) if x,y € t, x and y have no immediate predecessors and x ~ vy, then
x=1y.

If t satisfies only (i), (ii) and (iii) above, we say that t is a wide \, a-tree.

Note that in a A, a-tree each ascending sequence of a limit length has at most
one supremum, but in a wide A, a-tree an ascending sequence may have more than
one supremumn.

2.2 Definition. Let t be a tree and k a cardinal. The Ehrenfeucht-Fraisse
game of length t between models A and B, G}(A,B), is the following. At each
move «:

(i) player ¥V chooses x4 € t, ko < k and either a® € A, f < ko or b2 € B,
B < kq, we will denote this sequence of elements of A or B by X, ;

(i) if ¥ chose from A then 3 chooses b2 € B, B < K, else 3 chooses a € A,
B < Ko, we will denote this sequence by Y, .

V must move so that (zg)s<s form a strictly increasing sequence in t. 3 must move
so that {(ag, bg)h < a,f < Ky} is a partial isomorphism from A to B. The player
who first has to break the rules loses.

We write A = B if 3 has a winning strategy for G§ (A, B).

2.3 Remark. Notice that the Ehrenfeucht-Fraisse game G (A, B) need not
be determined, i.e. it may happen that neither 9 nor V has a winning strategy for

G (A, B) (see [MSV]).



2.4 Definition. Let t and t' be trees.

(i) If x € t, then pred(x) denotes the sequence (zo)a<p Of the predecessors of
x, excluding x itself, ordered by <. Alternatively, we consider pred(x) as a set.
The notation succ(x) denotes the set of immediate successors of x. If x,y € t and
there is z, such that x,y € succ(z), then we say that x and y are brothers.

(ii) By t<“ we mean the set

{x € t| the order type of pred(z) is < a}.

Similarly we define t<¢.
(iii) If o and (B are ordinals then by a +  and a x 8 we mean ordinal sum
and product (see [Je]). Notice that ordinals are also trees.

3. On nonstructure of trees of fixed height

In this chapter we will assume that A = p*, cf(u) = p, K = c¢f(k) < p and
ASFE = .

Let I.7 ={n € =rAln(0) =n}—{()} and Iy = {n e <*Al n(0) =n} — {0},
n = 0,1. We consider these as trees ordered by initial segment relation. Because
for all § <, (I7)<% = (I7)<% (see Definition 2.4), we denote this set by I.~=° and
similarly we define IS0 = (IF)=° for all § < k.

If n € I and ¢ € I then we write nR™¢ and (R n iff n(j) = £(j) for all
0<j< min{length(n),length(f)} even. For all i < k odd, we define P; to be the
set of all n € I, such that length(n) =1i. Let P =|J{Pi| i < K, i odd}

3.1 Lemma. There is a partition {S,| n € P} of X\ such that for all n € P
(i) {6 € S| cf(0) = p} is stationary;
(ii) if § € S,, and cf(6) = p then 6 = sup(d N S,).

Proof. Because |P| = A we can find a partition of {o < A| ¢f(a) = p} which
satisfies (i). Let this partition be {5 |~y < A}, where {n,|~ < A} is an enumeration
of P. Let {07| v < A} be an enumeration of {a < Al cf(a) = pu} so that if o, > 0.
then v > ~'. We may assume that if § € S] , v # 0, then § > 0.,. By induction on
a < X we define sets S} . Let SO = She Uao and for all v > 0, SO =5, fais

limit ordinal and cf(« ) > 1, then we deﬁne Sy = Uﬁ<a 5 for all v < )\ Assume
« is successor or limit ordinal with ¢f(a) < u. " Let 0!, = Us<aos. Then we choose
Sy so that (a)-(f) below are satisfied:

Y

(a) U6<a 55 Sa

(b) Sh ﬁSO‘ —@ lf’y#'y ,

(c) oa C U <A 777

(d) Sy —Uoé—SO7 — 0, for all v < A,

(e) 1f o € Sy, then oo = sup(oa. NSy ),

H)if y<a then (00 —0y) NSH. 7&@

Then clearly S, = S,;\W, v < A, is a partition of A and (i) is satisfied. We show
that also (ii) is satisfied: If o5 € S,77 and J is successor or limit with cf(J) < u
then by (e) o5 = sup(os NS, ). Otherwise we know that os > o, i.e. § > v and
sup {og| B <} = o5. By (f) this implies that o5 = sup(c5 NSy, ). o
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3.2 Definition. = We define a relation R C (Ij — Iy) x (I7 — I7). Let
nelf —1; and £ € I} —I] . Then (n,€) € R iff

(i) nR™¢;

(ii) for every j < k odd, n and & satisfy the following: for all p € P, n(j) € S,
itf £(j) € Sy and if n(j) & Syy;, then n(j) = £(j);

(iii) the set W} is bounded in r, where Wy, is defined in the following way:

Let § <k, ne€lf —I5% and &€ € I} — I7° then
Wri& = {j < 4| j odd and n(j) € S,;; and

cf(n(4)) = p and £(5) > n(j)}.

In order to simplify the notation we write nR¢ and {Rn for (n,&) € R. Notice
that by this we do not try to claim that the relation is symmetric, in fact it is
antisymmetric, if (n,€) € R then always n € I — I, and &€ € I;7 — I;. We also
take liberty to write Wg . for W;g when it is convinient.

Our first goal in this chapter is to prove the following theorem. We will prove
it in a sequence of lemmas.

3.3 Theorem. If Iy and I; are such that
(i) I, CI,CIt, n=0,1
and

(i) if nRE, n € I and € € IF then ne Iy iff € € Iy,
then In =), I.

UXK

From now on in this chapter we assume that Iy and I; satisfy (i) and (ii) above.

3.4 Definition. Let a < k.

(i) G is the family of all partial functions f satisfying:

(a) f is a partial isomorphism from Iy to Iy;

(b) dom(f) and rng(f) are closed under initial segments and for some 3 < A
they are included in {n € If| for all j < k, n(j) < B} and {€ € I| for all j <
K, £(7) < B}, respectively;

(c) if f(n) =& then nR™E;

(d)if n € Iy, £ € I, f(n) =& and length(n) = j+ 1, j odd, then n and §
sat.isfy thg following: for all p € P, n(i) € S, iff £(i) € S, and if n(j) & Sy, , then
n(J) = €0);

(e) assume n € I — IS and {n | v| v < 8} C dom(f) and let & = U7<5 fnl
), then ng has order type < «;

(f) if n € dom(f) then {y < A| n ~ () € dom(f)} = {v < A| f(n) ~ (7) €
rng(f)} is an ordinal.

(ii) We define F, C G, by replacing (f) above by

() if n € dom(f) then {y <Al n ~ (y) € dom(f)} ={y <Al f(n) ~ (v) €
rng(f)} is an ordinal of cofinality < u.

3.5 Definition. For f,g € G, we write f < g if f C g and if v < < kK,
nely =I5, nlyedom(f), nl(y+1)&dom(f), nljedom(g) forall j <§
and £ =U;59(n 1), then W;'E:Wg’g.
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Notice that f < g is a transitive relation.

3.6 Remark._ Let f € G,.
(i) We define f by

dom(f) = dom(f)U{n € Iy| n | v € dom(f) for all v < length(n)

and length(n) is limit}
and if n € dom(f) — dom(f) then

fo= U f@ry.

y<length(n)

(ii) If f € F,, then f € F, and if f € G, then f € G,.

3.7 Lemma. Assume a <k, 0 <pu, fi € F, forall i < and f; < f; for all
1<j<4d.

(i) Uics fi € Ga-

(ii) If 6 < p then |J, 5 fi € Fo and f; <|J;4 fi forall j <34.

Proof. Follows immediately from the definitions. o

3.8 Lemma. Ifd<k, fy€G; forall i < ¢ and f; C f; forall i < j <6
then

Ufi € Gs.

<6
Proof. Follows immediately from the definitions. o

3.9 Lemma. If feF, and AC IyUlI, |A| <\, then there is g € F,, such
that f < g and A C dom(g) Urng(g).

Proof. Let n € dom(f) and let

{i <Al ~ () € dom(f)} = {i <Al f(n) ~ (i) € rng(f)} =9,

cf(8) < p, and let 8 > 6. We show first that there are 7% € F, and v > 8 such
that 7% > f, c¢f(y) < p and

{i <Al —~ (i) € dom(f7)} = {i < Al f(n) ~ (i) € rng(f")} = 7.

Let length(n) = j. If j is even it is trivial to find 7% and . So we assume
that j is odd. We choose v > /3 so that cf(vy) < pu. For any ¢ € v — § satisfying:

(i) cf (1) = p

(i) i € Sy,
we choose j; € i — ¢ so that j; € S, c¢f(ji) < p and if i # ' then j; # jir. These
Ji exist because sup i NS, =14 and 7 # 9.

Then we define f7°(n ~ (i)) = f(n) ~ () and f7°(n ~ (ji)) = f(n) ~ (i).
For all other i € v — & we let f"(n —~ (1)) = f(n) —~ (i). It is easy to see that
"% e F, and f"° > f.

and



It is easy to see that we can choose 7n; € Ip and B; < A, © < i, so that the
following functions are well-defined:

(i) 9o = f;

(i) git1 = (g:)""";

(iil) gi = (U;j<; 95), if 7 is limit;
and A C dom(U;., 9;) Urng(U;-, 9:). Furthermore we can choose n; and 3; so
that if ¢ # ¢’ then n; # ny. Then g = is as wanted. o

3.10 Lemma. If f € G,, then thereis g € F,41 such that f C g.

Proof. Essentially as the proof of Lemma 3.9. o

Theorem 3.3 follows now easily from the lemmas above.

In the rest of this chapter we prove that there are trees Iy and I; which satisfy
the assumptions of Theorem 3.3 and are not isomorphic. For this we use the following
Black Box. We define H_,+(A) to be the smallest set H such that

(i) \CH
and

(ii) if x C H and |z| < k then x € H.

3.11 Theorem. ([Sh3] Lemma 6.5) There is W = {(M",n*)| a < a(*)} such
that:

(i) M = (M?| i < k) is an increasing continuous elementary chain of models
belonging to H_,.+(\) and n® € "\ is increasing;

(i) M Nk* s an ordinal, k+1 C M, M € Hepr (n*(i)), (M§]|j <i) €
Mgy, and n® [i€ M7, ;

(iii) In the following game, G(k, A\, W), player ¥ does not have winning strategy:
The play lasts k moves, in the i-th move Y chooses a model M; € H_,+(\) and
then 3 chooses 7v; < A. V must choose models M;, i < k, so that (M;| i < k)
is an increasing continuous elementary chain of models, M; N kT is an ordinal,
k+1C M; and (M;| j < i) € M,11. In the end 3 wins the play if for some
a < a(x), n® = (vi|i<k) and M; = M for all i < k;

(iv) n® #n° for a# B.

Notice that in the game above V can choose the similarity type of models freely
as long as other requirements are satisfied.

We define Iy and I; with help of W. We do this by defining J,, -J,, K,
and —K, by induction on o < a(x) so that J, N —=J, =0 and K, N =K, = and
then letting Io = Iy UUycn(e) Jo and It = Iy Uy o4 Ko We assume that we
have well-ordered I — I .

We say that a < a(x) is active, if there is € I — I, such that a and 7
satisfy (i)-(vii) or (i)-(v), (vi’) and (vii’) below.

(i) For all ¢ < k, the similarity type of M is {€,I;,I; ,g9} where € and g
are two-ary relation symbols and /; and I; are unary relation symbols;

(ii) for all i < &,

Mz‘a r {€7I0_7I1_} = (H</{+<)‘)v €7I0_7]1_);

(iii) for all i < m, n i€ M ;



(iv) for all i <k, M = "¢ is an isomorphism from I to I; ”;
(v) for all w < i < K, if i = v + 2k for some 7 limit and k£ < w then
n(i) =n*(y+ k), and for all i < w, if i = 2k 4+ 2 then n(i) = n*(k);

let
¢=J galn 1),
1<K
where g, is the interpretation of ¢g in MJ,
(vi) nR~¢
(Vi) n R~ ¢
(vii) for all i < k odd, n(i) satisfies:
(a) cf(n(i)) = p and n(Z)ESn

(b) Mg = "the set {n [ i~ (j)| j <n()}U{gn i)~ () <n(@)} is closed
under ¢ and g=1”

(vii’) there is j, < k such that for all i > j, odd the following holds:

(a) if i = +4n+1 for some limit ordinal v and n € w then £(i) € Sy

(b) if 4 = v+ 4n + 3 for some limit ordinal v and n € w then n(i) € Sy,
cf(n(i)) = p and &(i) > n(i).

If « is active and there exists such 1 that « and 7 satisfy (i)-(vii) above, then
we define 7, to be the least such 7 € I — I; in the well-ordering of I] — I .
Otherwise we let 7, to be the least n € I — I; in the well-ordering of ISF -1y
such that o and 7 satisfy (i)-(v), (vi’) and (vii’) above. Let

= J ga(na 14),

1<K

where ¢, is the interpretation of g in M. If «a is active and 1, R~ £, then let
ja = jna -
Let R be the transitive and reflexive closure of R.

3.12 Lemma. If v is active then 7, R &, .

Proof. Clearly we may assume that 7, R~¢,. For a contradiction assume, that
there are po, ..., p, such that py =1y, p, =&, for all m <n, p,, Rpm41 and for
all k <m <n, pr # pm. We choose i < k so that

(a) i is odd;

(B) forall k<m <n, pp [ i % pm | 1;

(v) forall m<n, Wg . Ci.

Because n,(i) € Sy, 1i and cf(n,y( ) = i, p1(i) < po(i) and py(i) € Sy 1i. By the
definition of R, ,02( ) € Sy 1i- By (B) above pa(i) = p1(i) and pg( ) = pg(i). We
can continue this and get pn( ) = ...=p1(i). So ny(i) > g(ny I (¢ +1))(¢) which
contradicts with (vii)(b) in the definition of active. o

3.13 Lemma. Let o and 3 be active, a # 3, £,Rés and 1, R~ &, then
nsR™Ep .

Proof. For a contradiction assume 7z R~ £g. By (vil’) (a) in the definition
of active we can find ¢ < x odd such that {,(i) € S, ;; and g(i) € Sp,1i. By
Definition 3.2 (ii) this implies &, R &g, a contradiction. o
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3.14 Lemma. Let o and (3 be active.

(i) If o # B then 1o Frp.
(ii) If noa R~ &, then for all active v, na R &~ .

Proof. (i) By (vii) (a) and (or) (vii’) (b) in the definition of active there is
i < k odd such that 74 (i) € S, 1i, 15(i) € Spspe and 1o [ # ng [ 1. By Definition
3.2 (ii) this implies no, K ng.

(ii) If v = « the claim follows immediately from Lemma 3.12. So assume 7y # «.
We may also assume 7,R™ &, because otherwise we have proved the claim. Then
ny R~ & . By (vii) (a) and (vii’) (a) in the definition of active we can find i < &
odd such that 74(i) € Sy, 1i, & (i) € Sy 1 and 1o [ @ # 1y [ 4. As above this implies
Na R §y. o

3.15 Lemma. Let o and 8 be active. If 1, REs then there is lop < r such
that for all i > log, i =y +4k+3, v limit and k € w, 1o(7) > £3(7).

Proof. By Lemma 3.14 (ii) we may assume 7, R~ &,. For a contradiction
assume, that there are po,...,p, such that pg = 1., pp = &g, for all m < n,
PmBRpm41 and for all k <m < n, py # py. We choose l,3 < Kk so that

(@) Jna <lag;

(B) forall k <m <n, pg[i# pm | 1;

(v) forall m<n, Wy . Ci.

Let @ > log, @ = v+ 4k + 3, ~ limit and k € w. Because 7,(i) € S, ;; and
cf(a(i)) = 1, p1(i) < po(i) and pi(i) € Sy, 1. By the definition of R, pa(i) €
Snati- By (B) above pa(i) = p1(i) and p3(i) = p2(i). We can continue this and get

pn(i) = .. = p1(i). S0 1a(i) > &p(i). o

3.16 Lemma. There does not exist a sequence (1, ...T,), n € w, n > 3, such
that

(i) for all m < n there is active a such that 7, = 1, or T, = &,

(ii) for all m < n either

(a) TmRTmi1

or

(b) there is active « such that T,, = 7o and Tp,11 = &, or T, = &, and
Tm+1 = Na

and at least case (b) exist in the sequence,
(iii) To = Tn,
(iv) for all m,m’ < n if m # m' then T,, # T

Proof. For a contradiction assume that such sequence exists. By (ii) (b) we
may choose the sequence so that for some a, 790 = &, and 7 = 1,. Then by (iv)
and because n > 3, 7 R7y. By Lemma 3.12 1, R &, and so we may drop elements
from the sequence so that (i)-(iv) remain true, there are still at least 4 elements in
the sequence and

(*) if m<n—1and 7,,R7my1 then Tp1 R Tongo-

By induction on m < n we show that if 7,,, R 7,41 then Tm+1ETm+2 and if
Tm = Mg OF Ty = &g for some B then 1z R~ 5. Above we showed that 7, R7.
By Lemma 3.14 (i) 7 = &3 for some active 8. By Lemma 3.14 (i) n, B~ &a.
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Then by (*) above 73 = ng. By (iv) and Lemma 3.14 (i) 74 = &, for some active -,
v # B and nzRE,. By Lemma 3.14 (ii) 73 B~ &. We can continue this and get
the claim.

So there are active «y, ..., a,, such that the sequence is of the following form:

(5&07”04076041777&17 "'7nam7§ao)-

We choose i < k so that for all k < m, i > jq,, for all k <m, i > la 0,
i > la,,a, and i = v+ 4p + 3 for some limit v and p € w. By (vii’)(b) &, (i) >
Nao (7). By Lemma 3.15 14, (1) > &, (7). We can continue this and finally we get
Neey, (1) > Eap (1) . S0 Eqy (1) > &€ay (1), a contradiction. o

We define now J,, =J,, K, and =K, by induction on a < a(x). We say that
(Jo, 7oy Ko, 7Ky is closed if

(i) Jo UK, and —.J, U~-K, are closed under R,

(ii) if 5 is active then ng € J, iff {5 € =K, and ng € ~J, iff {5 € K,,

(i) JoN—=Jo =0 and K, N—-K, = 0.

We assume that for all 5 < a we have defined Jg, —=Jg, Kz and —Kpg so that
(Jg,~Jg, Kz, ~Kpg) is closed.

If o is not active or for some 8 < a, 14 € JgU—Jg then welet Jo =z, J3,
—'Ja = U5<a—|J5, Ka = UB<aK5 and —|Ka = Uﬁ<a_'K5'

If « is active and for all § < «, 14 & JgU—Jg then we let (Jo, 2 Jo, Ko, 7 Kq)
be such that it is closed and J, 2 {n,} U U5<a Jg, 2Jo 2 U5<a ~Jg, Ko D
U6<a Kg and -K, 2 U5<a —Kp3. We prove the existence of these set by defining
sets JL, —J!, K! and —K! by induction on i < |a(x)|T.

We let Jg = {na}U U6<a Jg, —|Jg = Uﬂ<a -Jg, K 0 = U6<a Kg and —|Kg =
Upco 7Kp- If i < |a(x)[T is limit we let J =, J! and similarly for the other

J<Z o . .
sets. If =7+ 1 and odd then we let the sets JB’ _'JB’ Kj and —Kj be the least

sets so that J, D JI, =~Ji D —JI, K! D KJ, =K! 2 -KJ and J! UK} and
—-J! U—-K! are closed under R. If i = j + 1 and even then if there is not active
such that

(1) n, € J2 and &, ¢ ~KJ or

(2) ny € ~JJ and &, ¢ KI or

(3 )SWEKJ and 7, ¢ —JI or

(4) & € =K}, and ny & J2
then we let J! = JJ and similarly for the other sets. Otherwise we let « be the
least such ordinal and define

case (1): Ji =JI, =J. =-J), K = KJ and —=KJ U{&,};
case (2): JL =JI, —~J =-J), K, = KJU{{,} and —K7;
case (3): J —JC{ ﬂJC’X——'Jg[U{n,Y}, K! = KJ and ~KJ;
case (4): Ji =JIU{n,}, ~J, =-Ji, K! = KJ and —KJ.

Finally we deﬁne Jo = Ui<|oz(*)|+ J? and similarly for the other sets. If these

sets are not as required then for some i = j+1 < |a(x)|" even we have defined f.ex.
=K! = -KJ U{¢} while &, belongs already to K7 . If i is the least such ordinal
then we can easily find a circle such that it contradicts Lemma 3.16.

So the sets J,, -J,, K, and —K, exist.

We define Iy = I, U )Ja and I, :IfUUa<a(*) K,.

a<a(x

9



3.17 Lemma. I() A;l_é Il .

Proof. For a contradiction assume g : Iy — I; is an isomorphism. By Theorem
3.11 (iii) there exists an active o < «(*) such that for all i <k,

Mia = (H<,$+()\), 6710_7]1_79)'

But then 7, € Iy iff £, ¢ I1 and g(n.) = &, which contradicts the assumption
that ¢ is an isomorphism. o

3.18 Conclusion. Assume A = u*, cf(u) = pu, k = cf(k) < p and \<F = \.
Then there are \™, k + 1-trees Iy and I, such that Iy % I; and

—A
Io =)« I

If \¥ = X\ then Iy and I, are of cardinality \.

Notice that if we replace Theorem 3.11 with a slightly stronger black box (see
[Sh3]), we can, instead of two A1, k-trees, get 2* AT, k-trees such that any two of
them satisfy Conclusion 3.18.

4. On structure of trees of fixed height

In this chapter we will show that trees of fixed height are isomorphic if they are
equivalent up to some relatively small tree. This implies that essentially the same is
true for the models of the canonical example of unsuperstable theories (see [HT]).

4.1 Definition. ([Shl]) Let A be a regular cardinal. We define I[\] to be the
set of A C X such that there exist a cub E C XA and P = {P,| o < A} satisfying

(i) P, is a set of subsets of a and |P,| < A;

(ii) for all limit § € AN E such that cf(6) < d, there exists C' C 0 such that

(a) the order type of C is < ¢ and sup C =9;

(b) CNa€lUg s Pp forall a<i.

Notice that for example w; € Ilwi]: Let E C wy be the set of all limit ordinals
<wj and P = {P,| a < A} such that P, = {B C a| |B| < w}. Then (i) and (ii)
above are satisfied. For further properties of I[A] see [Shl].

4.2 Definition. Let \ be a regular cardinal and t a AT, \-tree of cardinality
A. Let {z;| i < A} be an enumeration of t and let t' be a subtree of t. Then S[t']
is the set of those limit ordinals 6 < \ which satisfy the following condition (*):

(*) {x; € t'| i <6} contains a branch of length 9.

From now on we assume that when ever we talk about a tree t, we have fixed
an enumeration {x;| i < |t|} for it. We assume that the enumeration is such that if
Ti < Zj then 7 < 7.

4.3 Definition. Let A and x be regular cardinals, kK < X\ and t a AT, \-
tree of cardinality A. Let {x;| i < A} be the enumeration of t. We say that t is

A, k-large if t satisfies the following condition: There are sets E¢, £ < k, such that
(i) E¢ Ct and if £ # ¢’ then EcNEg = 0;
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(ii) for £ < 0 and = € Ej there is a unique y € E¢ such that y < z;

(iii) if § < k is limit, x¢ € E¢ for all £ < § and (x¢)e<s Is increasing then there
is y € E5 such that ¢ <y for all { <6;

(iv) if £ < k, x € E¢ then we write

ty ={y € t| * <y and there is z € E¢y; such that y < z}

and require than there exists a set © of regular cardinals < \ such that

(a) S[tz] U{d < A ¢f(d) <9, c¢f(d) € ©} contains a cub set (in \);

(b) {6 <Al ¢f(0) <6, cf(d) €O, 6 & S[ta]} € I[A];

(c) for 6 € © there is y € t, such that the order type of {z| x < z <y} is 0;

(v)if y=0+1<k, (x¢)e<s is an increasing sequence in t, xo € Eg and for
all £ < ¢ there is y¢ € E, such that x¢ < y¢, then there is y € E, such that v <y
for all £ <.

Notice that if A = p*, A € I[\] and k < X is regular then u X kK + 1 is a
A\, k-large A1, A-tree. If \ is weakly compact then there is no \, k-large AT, A-trees.

The proof of the theorem below is a modification of the proof of related result in
[HT]. The most conspicuous difference is the use of elementary submodels of H(A*).
They are used only to make it easier to define the closures needed in the proof.

4.4 Theorem. Let A\ and k be regular cardinals, k < A\ and Iy and I; be
AT, Kk + 1-trees. Assume t is a A, k-large AT, A-tree of cardinality \. Then

Iy=1 & I,~I.

Proof. Without loss of generality we may assume that Iy and I; are such that
if x,y € Iy (€ I), they have no immediate predecessors, x ~ y and pred(zx) is of
power < Kk then z =y.

Let p be a winning strategy of 3 in G (lo,I;). We define by induction on
a < k the following;:

(i) an isomorphism f, from I5* onto I=%;

(ii) for each z € I=* U T=" we define an initial segment R, = ((as, Xi,Y;))i<p
of a play in G} (I, I1), such that z € Ui<s(rng(X:)Urng(Yi)), rng(X;)Urng(Y;) C
IOSO‘ U Ilgo‘ for all 4 < 8, 3 has used p and if x is not a leaf then for some ¢ < k
there is a, € Fs such that a; < a, for all ¢ < 8. Furthermore we require that if
z <z’ then R, is an initial segment of R,/ and for each = € IS® fo(x) is the
element J has chosen to be the image of = in R,.

If we can do this we have clearly proved the theorem. The cases a = 0 and «
is limit are trivial. So we assume that o« =y + 1.

Let z € Iog’y - U5<V10§6. Clearly it is enough to define f, | succ(z) and R,
for all € succ(z) so that f, [ succ(z) is onto succ(fy(2)). Let y = f,(2) and
let » : A\ — t be the function that gives the enumeration of t, t = {n(i)| i < A}
(see the assumption after Definition 4.2). Let R, = ((ai, Xi,Y:))i<g. By induction
assumption there is a, € Es, § < k, such that a; < a, for all : < 5. Let F and
P ={P;| i <A} be the sets which show that

{6 <A ef(6) < d,cf(0) € ©, § & S[ta.]} € I[A].
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Let A* be large enough, say (J19(A\))". We choose A;, i < A, so that

(a) |A;] < A and A; < (H(NY), €, 1y, 11,t,<0,<1,<), where < denotes the
ordering of I, <; denotes the ordering of I; and < denotes the ordering of t;

(b) p,n, (B¢l § < K),E,(Pi|i<A),R.,\ B,a,€ Ay, k+1C Ap and i C A;;

(c) A; < A if i <j and A; = Uj;A; if @ limit;

(d) for all i < 3, dom(X;) € Ay (see Definition 2.2);

(e) A; N\ isordinal, A; € A;41 and A; N A € A4
(f) succ(z) U suce(y) € U<y Ais

C CSta. ] U{d <Al ef(d) < b and cf(6) € O}

be cub. We may assume that for all ce C, A.NA=cand ce F.

For all i < A\ we define by induction ¢; € C and f, [ (succ(z) N A.,). If @ is
limit then ¢; = J,;_; ¢; and fo [ (succ(z) N Ac;) is already defined.

Assume that we have defined ¢; and f, [ (succ(z) N A.,) as wanted and

rng(fo | (succ(z) NA.,)) = succ(y) N A, .

Let us define ¢; 411 and
fo I (succ(z) N (Ac,,, — Ae,))-

Now either ¢; € S[t,.] or ¢; € {d < A| ¢f(6) < 0 and cf(d) € O}.
(1) ¢; € S[ta.]: Let B € A., 41 be a branch in

Slta.] N Ae, = {n(4)] j < ¢i}

of length ¢;. Let h € A., be a one-one function from (succ(z) U suce(y)) N A., to
Ac;, N A. We let the players continue the play R, so that in the next c¢; moves V
chooses the sets {h=1(8)}, § < ¢;, from IoUI; and from t he chooses elements of B.
We let 3 follow p. If B’ is an initial segment of B then B’ = {y € t| a, <y < x}
for some x € B. So B’ € A,.,, which implies that every initial segment of the play
belongs to A.,. Because A, is closed under p, all the elements 3 chooses are from
A., . It is also easy to see that this play belongs to A, for all v > ¢;.

By Definition 4.3 (v) we can find a € Esyq1 N A, 41, such that a is larger than
any element b € t chosen by V in the play above. Let

C' C S[ta] U{d < A ¢f(8) <6 and cf(d) € ©}
be cub. Let ¢;41 € CNC’ be such that ¢;41 > ¢;. Then a € A, ,. Now either
Cit1 € S[ta] or cit1 € {d < Al ¢f(9) < and ¢f(0) € O}. In the first case we let
V play the elements (succ(z) U succ(y)) N Ae,,, as above. So let us assume that
civ1 & S[ta] and ci41 € {0 < A| ¢f(6) < 6 and cf(d) € ©}. Especially then
(%) civ1 € EN{0 <A cef(0) <o, cf(6) €O, § & S[tal}-
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Let W' € A
Acipi N AL Let

¢;+1 e a one-one function from (succ(z)Usucc(y)) NAe,,, to cip1 =

D' Ceipq

be a set such that for all £ < i1, £ND" € U, ,,
order type of D’ is ¢f(c;11). The existence of this set follows from (*) above. Let
D ={d;| j < cf(cit1)} be the closure of D’ in c;11. Because cf(cit1) € Ac,, , it
is easy to see that in ¢, N A, there is a branch B of length cf(c;+1). We let the
players continue the play above so that in the next c¢f(c;+1) moves V chooses the
sets {W'71(k)| k < d;} from IoU I, j < cf(cit1), and from ¢ he chooses elements
of B. We let 3 follow p.

Because |, <o Bi € A, , every initial segment of this play is in A
so all elements chosen by 3 from Iy U I; are from A
of 3 we can define

P;, sup D" = ¢;41 and the

ciyr and
cis1 - Then by using the moves

fa f (SUCC(Z) N (Aci+1 - *Acz))

For each = € succ(z) N (Ac,,, — Ac,;), R, will be the play defined above.

(2) ¢; & S[ta.]: Now we first let V play the elements of (succ(z)Usucc(y))NAe,
as in the second half of the case (1) and then continue as above. Notice that in
this case (also) we have to define the first ¢f(c;) moves so that the play belongs to
A We can guarantee this by choosing D’ C ¢; so that D' € A, 411. o

Cit1 °

4.5 Remark. Let A = u™ and k < X regular. Let Iy and I; be AT,k + 1-
trees. Assume \ € I[\]. Above we proved that if « = u X k+ 1 then

(*) Iy Eg\é L & (=21
In Chapter 3 we showed that if p is regular then this is best possible. But if u is
not regular then we can get better results.

If k < cf(u) < p then (*) is true if « = p and if k = ¢f(u) < p then (*) is
true if « = p+ 1. This can be proved as Theorem 4.4.
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