Paper:
Calibration of Kinematic Parameters of Robot Arm Using Laser Tracking System: Compensation for Non-Geometric Errors by Neural Networks and Selection of Optimal Measuring Points by Genetic Algorithm
Seiji Aoyagi*, Masato Suzuki*, Tomokazu Takahashi*,
Jun Fujioka**, and Yoshitsugu Kamiya***
*Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
**Ishikawa National College of Technology, Ta-1, Kitatyujo, Tsubata-machi, Kahoku, Ishkawa 929-0392, Japan
***Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- [1] B. W. Mooring, Z. S. Roth, and M. R. Driels, “Fundamentals of Manipulator Calibration,” Wiley & Sons, New York, 1991.
- [2] B.W.Mooring and S. S. Padavala, “The Effect of Kinematic Model Complexity on Manipulator Accuracy,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 593-598, 1989.
- [3] D. E. Whitney, C. A. Lozinski, and J. M. Rourke, “Industrial Robot Forward Calibration Method and Results,” J. Dyn. Sdyst. Meas. Contr., Vol.108, No.1, pp. 1-8, 1986.
- [4] R. P. Judd and Al. B. Knasinski, “A Technique to Calibrate Industrial Robots with Experimental Verification,” IEEE Trans. Robotics and Automation, Vol.6, No.1, pp. 20-30, 1990.
- [5] H. W. Stone, “Kinematic Modeling, Identification, and Control of Robotic Manipulators,” Kluwer Academic Publishers, Norwell, Mass. 1987.
- [6] S. Komai and S. Aoyagi, “Calibration of Kinematic Parameters of a Robot Using Neural Networks by a Motion Capture System,” in Proc. Annual Spring Meeting The JSPE, pp. 1151-1152, 2007. (in Japanese)
- [7] Y. Koseki, T. Arai, K. Sugimoto, T. Takatsuji, and M. Goto, “Accuracy Evaluation of Parallel Mechanism Using Laser Tracking Coordinate Measuring System,” J. Society of Instrument and Control Engineers, Vol.34, No.7, pp. 726-733, 1998. (in Japanese)
- [8] J. Fujioka, S. Aoyagi, K. Ishii, H. Seki, and Y. Kamiya, “Study on Robot Calibration Using a Laser Tracking System (2nd Report) – Discussion on How to Select Parameters, Number of Measurement and Pose of Measurement in Multiple Positioning Method –,” J. The Japan Society for Precision Engineering, Vol.67, No.4, pp. 676-682, 2001. (in Japanese)
- [9] J. Fujioka, S. Aoyagi, H. Seki, and Y. Kamiya, “Development of Orientation Measuring System of a Robot Using a Gyroscope (2nd Report) – Proposal of Position and Orientation Calibration Method of a Robot Using Both Laser Tracking System and Gyroscope –,” J. The Japan Society for Precision Engineering, Vol.67, No.10, pp. 1657-1663, 2001. (in Japanese)
- [10] J. H. Jang, S. H. Kim, and Y. K. Kwak, “Calibration of Geometric and Non-Geometric Errors of an Industrial Robot,” Robotica, Vol.19, pp. 311-321, 2001.
- [11] K. Maekawa, “Calibration for High accuracy of Positioning by Neural Networks,” J. Robotics Society of Japan, Vol.13, No.7, pp. 35-36, 1995. (in Japanese)
- [12] W. Tanaka, T. Arai, K. Inoue, Y. Mae, and Y. Koseki, “Calibration Method with Simplified Measurement for Parallel Mechanism,” J. The Japan Society of Mechanical Engineers, Vol.71, No.701, pp. 206-213, 2005. (in Japanese)
- [13] J. Imoto, Y. Takeda, H. Saito, and K. Ichiryu, “Optimal Kinematic Calibration of Robots Based on the Maximum Positioning-Error Estimation,” J. The Japan Society of Mechanical Engineers, Vol.74, No.748, pp. 243-250, 2008. (in Japanese)
- [14] D. Daney, Y. Papegay, and B. Madeline, “Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search,” The Int. J. Robotics Research, Vol.24, No.6, pp. 501-518, 2005.
- [15] J. Borm and C. Menq, “Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure,” The Int. J. Robotics Research, Vol.10, No.1, pp. 51-63, 1991.
- [16] M. Ishii, S. Sakane, M. Kakikura, and Y. Mikami, “Robot Manipulator Calibration for 3D Model Based Robot systems,” J. Robotics Society of Japan, Vol.7, No.2, pp. 74-83, 1988. (in Japanese).
- [17] K. Lau, R. J. Hocken, and W. C. Haight, “Automatic Laser Tracking Interferometer System for Robot Metrology,” Precision Engineering, Vol.8, No.1, pp. 3-8, 1986.
- [18] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower Pair Mechanism Based on Matrices,” ASME J. Applied Mechanics, pp. 215-212, 1955.
- [19] M. Riedmiller and H. Braun, “A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm,” in Proc. IEEE Int. Conf. Neural Networks, pp. 586-591, 1993.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.