Paper:
Theoretical Comparison of McKibben-Type Artificial Muscle and Novel Straight-Fiber-Type Artificial Muscle
Hiroki Tomori and Taro Nakamura
Chuo University, Kasuga 1-13-27, Bunkyou-ku, Tokyo 112-8551, Japan
- [1] T. Nakamura, “Experimental Comparisons between McKibben Type Artificial Muscles and Straight Fibers Type Artificial Muscles,” SPIE Int. Conf. on Smart Structures, Devices and Systems III, 2006.
- [2] C. Ferraresi, W. Franco, and A. M. Bertetto, “Flexible Pneumatic Actuators: A Comparison between The McKibben and the Straight Fibers Muscles,” J. of Robotics and Mechatronics, Vol.13, No.1, pp. 56-63, 2001.
- [3] M. M. Gavrilovic and M. R. Maric, “Positional Servo-Mechanism Activated by Artificial Muscles,” Medical and Biological Engineering 7, pp. 77-82, 1969.
- [4] G. K. Klute, J. M. Czernieki, and B. Hannaford, “McKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence,” Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 221-226, 1999.
- [5] C. P. Chou and B. Hannaford, “Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 281-286, 1994.
- [6] B. J. Park, C. W. Park, S. W. Yang, H. M. Kim, and H. J. Choi, “Core-Shell Typed Polymer Coated-Carbonyl Iron Suspension and Their Magnetorheology,” ERMR08, p. 102, 2008.
- [7] H. Maeda, H. Tomori, and T. Nakamura, “Orbit Tracking Control of 6-DOF Rubber Artificial Muscle Manipulator Considering Nonlinear Dynamics Model,” 15th ROBOTICS Symposia, pp. 429-435, 2010.
- [8] T. Nakamura and H. Shinohara, “Position and Force Control Based on Mathematical Models of Pneumatic Artificial Muscles Reinforced by Straight Glass Fibers,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA 2007), pp. 4361-4366, 2007.
- [9] “Rubbertuator technical data of Bridgestone,” 2002
- [10] B. S. Kang, C. S. Kothera, B. K. S. Woods, and N. M. Wereley, “Dynamic Modeling of McKibben Pneumatic Artificial Muscles for Antagonistic Actuation,” IEEE Int. Conf. on Robotics and Automation, pp. 182-187, 2009.
- [11] N. Delson, T. Hanak, K. Loewke, and D. N. Miller, “Modeling and Implementation of McKibben Actuators for a Hopping Robot,” Advanced Robotics, 2005. ICAR’05. Proc. 12th Int. Conf. on, pp. 833-840, 2005.
- [12] C. P. Chou and B. Hannaford, “Measurement and Modeling of McKibben Pneumatic Artificial Muscles,” IEEE Trans. on Robotics and Automation, Vol.12, No.1, pp. 90-102, 1996.
- [13] N. Tsagarakis and D. G. Caldwell, “Improved Modelling and Assessment of Pneumatic Muscle Actuators,” Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, pp. 3641-3646, 2000.
- [14] JISB8390, “Air pressure-Apparatus for Compressive Fluid – The Test Method of a Flow Characteristic,” Japanese Standards Association, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.