Paper:
Tool Failure Mechanism in High-Speed Milling of Inconel 718 by Use of Ceramic Tools
Norikazu Suzuki*, Risa Enmei*, Yohei Hashimoto*,
Eiji Shamoto*, and Yuki Hatano**
*Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
**NGK Spark Plug Co., Ltd., 2808 Iwasaki, Komaki-shi, Aichi 485-8510, Japan
- [1] D. Zhu, X. Zhang, and H. Ding, “Tool wear characteristics in machining of nickel-based superalloys,” Int. J. of Machine Tools and Manufacture, Vol.64, pp. 60-77, 2013.
- [2] Y. Yamane and K. Sekiya, “An Evaluation of Difficulty in Machining Difficult-to-Cut Materials by using Difficult-to-Cut Rating,” J. of the Japan Society for Precision Engineering, Vol.70, No.3, pp. 407-411, 2004. (in Japanese)
- [3] H. Usuki, K. Uehara, M. Isaka, and K. Kubota, “Machining of Inconel 718 with Lubricant-Coated Tool,” J. of Automation Technology, Vol.7, No.3, pp. 306-312, 2013.
- [4] K. Sekiya, Y. Yamane, and N. Narutaki, “Tool Wear under High Speed End Milling of Nickel-Base Superalloy Inconel 718,” J. of the Japan Society for Precision Engineering, Vol.70, No.8, pp. 1086-1090, 2004. (in Japanese)
- [5] H. Schulz and T. Moriwaki, “High-Speed Machining,” CIRP Annals, Vol.41, Issue 2, pp. 637-643, 1992.
- [6] J. Vigneau, J. J. Boulanger, F. Le Maître, “Behaviour of Ceramic Tools During the Machining of Nickel Base Alloys,” CIRP Annals, Vol.31, Issue 1, pp. 35-39, 1982.
- [7] J. Vigneau, P. Bordel, A. Léonard, and R. Geslot, “Influence of the Microstructure of the Composite Ceramic Tools on their Performance when Machining Nickel Alloys,” CIRP Annals, Vol.36, Issue 1, pp. 13-16, 1987.
- [8] S. Hampshire, “Silicon nitride ceramics – review of structure, processing and properties,” J. of Achievements in Materials and Manufacturing Engineering, Vol.24, No.1, pp. 43-50, 2007.
- [9] M. A. Rodrigues and A. Hassui, “An Investigation into the High Speed Milling of the Nickel Base Alloy Inconel 625 with Ceramic Cutting Tools,” Proc. of the 3rd Int. CIRP HPC, p. 141, 2008.
- [10] J. Vigneau, P. Bordel, and R. Geslot, “Reliability of Ceramic Cutting Tools,” CIRP Annals, Vol.37, Issue 1, pp. 101-104, 1988.
- [11] M. A. El-Bestawi, T. I. El-Wardany, D. Yan, and M. Tan, “Performance of Whisker-Reinforced Ceramic Tools in Milling Nickel-Based Superalloy,” CIRP Annals, Vol.42, Issue 1, pp. 99-102, 1993.
- [12] D. Dudzinski, A. Devillez, A.Moufki, D. Larrouquere, V. Zerrouki, and J. Vigneau, “A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy,” Int. J. of Machine Tools & Manufacture, Vol.44, pp. 439-456, 2004.
- [13] R. Enmei, N. Suzuki, E. Shamoto, Y. Hasegawa, R. Shibata, Y. Hatano, and K. Itakura, “Fundamental Study on Tool Damage in High-speed Ceramic Milling of Inconel 718,” Proc. of the 8th Int. Conf. on MicroManufacturing (ICOMM2013), pp. 377-383, 2013.
- [14] N. Narutaki, Y. Yamane, K. Hayashi, T. Kitagawa, and K. Uehara, “High-speed Machining of Inconel 718 with Ceramic Tools,” CIRP Annals, Vol.42, Issue 1, pp. 103-106, 1993.
- [15] P. J. Arrazola, T. Ozel, D. Umbrello, M. Davies, and I. S. Jawahir, “Recent Advances in Modelling of Metal Machining Processes,” CIRP Annals, Vol.62, Issue 1, pp. 695-718, 2013.
- [16] Y. Altintas, “Manufacturing Automation – Metal Cutting Mechanics, Machine Tool Vibration, and CNC Design,” Cambridge University Press.
- [17] M. B. G. Jun, C. Goo, M. Malekian, and S. Park, “A new Mechanistic Approach for Micro End Milling Force Modeling,” J. of Manufacturing Science and Engineering, Vol.134, Issue 1, 011006, 2012.
- [18] E. Uhlmann, M. Graf von der Schulenburg, and R. Zettier, “Finite Element Modeling and Cutting Simulation of Inconel 718,” CIRP Annals, Vol.56, Issue 1, pp. 61-64, 2007.
- [19] Special Metals INCONEL®alloy718 Technical Bulletin,
http://www.specialmetals.com/products/inconelalloy718.php [accessed on September 10, 2014] - [20] IBP technology corporation, ceramic,
www.ibptech.jp/ [accessed on September 10, 2014]
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.