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During in-flight emergencies, a pilot’s workload increases significantly, and it is often during this period of

increased stress that human errors occur that consequently diminish the flight safety. Research studies indicate that

many plane crashes can be attributed to ineffective cockpit instrument monitoring by the pilot. This paper entails the

development of Flight Guardian¶ system being first of its kind that aims to provide efficient flight-deck awareness to

improve flight safetywhile assisting the pilot in abnormal situations. The system is intended to beused in older aircraft

that cannot easily or cost effectively bemodifiedwithmodern digital avionic systems.One of the important features of

theFlightGuardian system is beingnot physically connected to the aircraft,whichavoids any impact onairworthiness

or the need for recertification. For the first time, a composite of techniques including video analysis, knowledge

representation, and machine belief representations are combined to build a novel flight-deck warning system. The

prototype system is tested in both simulation-based laboratory and real flight environments under the guidance of

expert pilots. The overall system performance is evaluated using statistical analysis of experimental results that

proved the robustness of the proposed methodology in terms of automated warning generation in hazardous

situations.

I. Introduction

T HE current generation of civil air transport aircraft are usually equipped with advanced intelligent warning systems (IWSs). One of the
important aspects of these systems is the centralized alerting and monitoring system that displays information directly to the pilot. Typical

aircraft warning systemsmonitor specific environmental properties that are difficult to observe or not observable by the pilot or flight crew. These
systems generatewarnings to alert the pilot about hazardous situationswhile keeping track of a number of parameters.Whenwarnings occur in the
cockpit, a pilot has procedures and actions to perform to mitigate the problem. During airborne emergencies, this requires a great deal of attention
directed toward resolving the detected hazard that degrades the flight safety by increasing the pilot workload significantly. Research studies [1–4]
address the consequences of multitasking on human brain and the ability to simultaneously deal with several parameters [5] as needed for cockpit
monitoring by the human pilot.

TheNational Transportation Safety Board (NTSB) has long identified ineffective pilot monitoring of flight data to be problematic and therefore
leading to crashes [6]. A safety study of crew-involved air carrier accidents between 1978 and 1990 [7] indicated that 31 out of 37 (i.e., 84%)
reviewed accidents were caused by ineffective monitoring of the cockpit instruments. A detailed study is presented by Iwadare and Oyama [8]
about recent plane crashes that constituted a huge number of fatal disasters in the aviation history. Seventy-five percent of these recent crasheswere
caused by pilot errors such as complacency, loss of control, lack of knowledge, distraction, lack of situational awareness, and lack of assertiveness
[8]. These errors havemarked someof themost fatal aviation disasters in history and have served as great learning examples onwhat to avoid in the
future [9]. Likewise, statistics of aircraft crashes with respect to type of service, airlines, and number of fatalities per flight presented byOster et al.
[10] indicate a high number of accidents and fatalities caused by pilot error. Following the recent breakdown investigation reports, theNTSBmade
a number of recommendations to the Federal Aviation Administration forflight safety improvement [11] that can be achieved by facilitating the
pilots with automated operational and safety-related information [12]. The NTSB also reported that the effect of technology and safety of general
aviation operations can be improved by involving aircraft with a glass cockpit display [13]. The aforementioned statistics and reportsmanifest that
a reliable automated monitoring of the cockpit instrument will improve the flight safety and would also decrease the pilot workload to recognize
the nature of problem and eye scanning during emergencies.

In general, a cockpit warning system performs tasks of hazard detection, attention getting, display of resolution status and commands, and
resolution guidance [14]. Current cockpit warning indicators give indications in hazardous situations but require a considerable amount of
attention from the pilot. In addition, it takes significant amount of time to recognize the nature of problems and choose the right procedure [15]. To
the best of our knowledge, there are no third-party systems in use to enable the external monitoring of cockpit instruments. The most commonly
used existing warning systems are ground proximity warning system (GPWS) and traffic alert and collision avoidance system (TCAS), which are
standalone applications that have improved aircraft safety [16]. Recent improvements in cockpit warning systems include enhanced GPWS,
predictivewind-shear warning systems, and the anticipated future airborne separation assurance system. An agent-based cockpit safety system is
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presented by Thatcher [17] by using three autonomous agents for aircraft path monitoring and cockpit behavior. The first agent is situated on the
ground in the air traffic controller center of each airport. This agent uses an artificial neural network for training on a data set of successful landings
at this airport. The data set consists of beliefs centered on the current landing, the aircraft’s altitude, horizontal and lateral distance from the landing
strip, speed, heading, type of aircraft, and weather conditions that affect the landing performance. In case of unusual events during the landing, a
warning alarm is generated to the air traffic controller. The second and third agents are situated onboard the aircraft to monitor parameters such as
aircraft position, heading, speed, and the pilot’s behavior. These agents use harmonic topographicmap and topographic products of experts for the
prediction of hazardous situations.

Despite the technological advancements that have made IWS very sensitive to hazardous situations, tracing the exact problem and resolving it
using a correct procedure is still a challenge that needs considerable attention [17]. Because of the increasing number of cockpit warning systems
in modern aircraft, the need to prioritize warning messages to avoid nuisance alerts and provide a more intuitive human interface becomes more
apparent [16]. As an example, one of the challenging factors in the development of an effective IWS is the potential for false alarms. Alarms could
be erroneously triggered during real-time operation due to dynamics such as air turbulence, sunlight reflections, nighttime camera performance,
and limitations of desired sensor/camera technology that couldmisidentify objects in the cockpit. These false alarms can result in a pilot’s general
distrust of the system. The problems associated with false and nuisance alarms were demonstrated in the design of the first generation of TCAS
system for commercial aircraft. These systems had such a high nuisance alarm rate that pilots failed to trust the system’s validity as an alerting
device. This situation could be analogous to what may happen in the automotive crash-warning domain [18].

The aforementioned studies indicate the significance of a reliable, intelligent, easy to expand, and supportive warning system for pilot
assistance. The Flight Guardian (FG) prototype presented in this paper provides such a platform using composite of techniques to improve the
flight safety and pilot support. Image processing techniques are employed for automated dial reading (ADR) to produce instantaneous state
information of the cockpit instruments. For the first time, domain knowledgewith respect to the appropriate range of cockpit instrument readings
is presented, which is gathered from domain experts to prove the proposed concept of FG system. The theory of evidence is used to build the
decision support system (DSS) that combines beliefs from two cockpit instruments for intelligent reasoning. In abnormal conditions, the FG
system generates spoken and visual alerts as well as resolution advice after diagnosing the problem, which helps the pilot to choose the
corresponding procedure for mitigating the hazardous situations.

II. Materials and Methods

A composite of techniques was sequentially combined to build an FG system as shown in Fig. 1. The inputs to the system consist of two video
streams of cockpit instruments (analog) acquired by the camera devices, which were then processed by a sequence of ADR, data representation,
transformation, and probabilistic modeling approaches to inform a final decision-making component to decide if flight parameters need to be
adjusted to return the aircraft to a safe state.

A. Data Acquisition and Automated Dial Reading

In the first step, two fixed-position camera devices are placed in front of the airspeed (ASp) and revolutions per minute (RPM) instruments to
acquire the corresponding video streams as shown in Fig. 1. Microsoft Lifecam Cinema devices are used that produce 30 frames per second. The
video streams are then processed to generate instantaneous snapshots (i.e., images) with a frequency of 0.5 Hz and forwarded to the ADR
component. The primary objective of theADR is to provide instantaneous state evidences (i.e., current readings) for the cockpit instruments to the
DSS. With regard to ADR, different approaches are explored that have been used in the literature. For instance, Feng and Zhao [19] presented a
background-subtraction-based approach that subtracts the current image frame from a reference frame to identify the target object’smovements in
the scene. Similarly, pattern matching [20] provides the object segmentation based on the features extracted from the input image. Likewise,
Gellaboina et al. [21] presented a polar representation of the dial gauge image to identify the needle. These approaches are generic and simple to
implement but exhibit poor performance in the presence of specular highlights [21] that may occur due to sunlight reflections on the cockpit
instruments during flight.

Fig. 1 Sequential processing8 of the deployed methods for the flight guardian system composition.
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To deal with this issue, a convolution-based ADR approach is used to detect the needle within the ASp and RPM dials, as presented in our
previous work [22]. Because of the circular shape and needle locations in both dials, the focus of the camera devices is fixed at the center
coordinates of the cockpit instruments as shown in Fig. 2. It can be observed that all pixels are black within a limited circular range (red circle in
Fig. 2) around the image center except the white pixels occupied by the needle. Therefore, only a subimage (within the red circle) is needed to
identify the needle position in the cockpit instruments. In the second step, a convolution function with a static one-dimensional kernel is used to
identify the needle and hence its position in the dial. Because the entire pixels occupied by the target needle are white, the entries of the kernel
vector are set to 1 such that it produces maximum convolution output for only white pixels within the cropped subimage. The entire convolution
process between selected subimage pixels x and a kernel h over a predefined interval is described as the following pseudocode.

Inputs:
One-dimensional vector 0x 0 for target subimage pixels
One-dimensional kernel vector h � f1; 1; 1; : : : ; length�x�g
Output:
Angle θ; maximum convolution index in output vector v
for all indexes i in x, do

v�i� � 0;

for all indexes j in h do

v�i� � v�i� � x�i − j��h�j�;

end for
end for
max index � index of maximum value in the output vector v

θ � 360∕�length − of − x��max index

B. Knowledge Representation

In the next step, expert knowledge is acquired from domain experts at the Great Circle** and related information booklets [23,24] that
demonstrate the ideal ranges for cockpit instruments (i.e., airspeed and engine revolutions per minute) of Cessna C172SP aircraft for different
flight phases as presented in Table 1. Based on the selectedmodel for evidence combination and situation assessment, the numeric data in the form
of cockpit instruments ranges and ADRmeasurements are transformed into the categorical form (i.e., low, normal, high). The Gaussian, Z, and S
membership functions (MFs) are used to interpret the numeric data into a categorical form with a degree of belief. Table 1 presents detailed
information about the instrument ranges and the parameter values for theseMFs with respect to different flight phases. These parameters describe
the MFs in terms of their ranges within the data.

The parameters a and b locate the lower and upper bounds within the input numerical data respectively, for Z and SMFs. Similarly, c and σ
represent the center and width parameters, respectively, for the Gaussian MF. A detailed discussion about these member functions and their
representation is presented in [25]. These functions take the ASp and RPM reading estimates along with the expert knowledge and transform the

Fig. 2 Estimation of the gauge angular position within the airspeed dial using convolution.

**The Great Circle Ltd. and the University of Central Lancashire are working in partnership on the Flight Guardian Project. Data available online at http://www.
thegreatcircle.co.uk [retrieved ____________].
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data into the degree of beliefs for multiple evaluation grades corresponding to each flight phase. These degrees of beliefs are then forwarded to an

evidence combination stage for the flight situation assessment. Figure 3 demonstrates the categorical form of data representation for the ASp

ranges in a cruise flight phase presented in Table 1 using the aforementioned member functions and the corresponding parameters.

C. Evidence Combination

The categorical state information from the previous step is then forwarded to the evidence combination process that uses the Dempster–Shafer

(DS) theory of evidence also considered as a generalization to the Bayesian theory in such a way that it can handle the degree of ignorance [26].

The DS provides the best state estimate by combination of evidences from multiple information resources while taking into account the

corresponding weights. One of the interesting advantages of the DS is the model simplicity for the complex multilayered situations where the

system can be decomposed intomany layers of simpler states and then the beliefs can be propagated upward, combinedwith sibling layer states to

get overall belief [27]. A detailed study on DS advantages, disadvantages, and its application areas is presented in [26,27]. In the proposed study,

the DS performs the flight situation assessment task using beliefs from two cockpit instruments (i.e., ASp and RPM) in different flight phases.

Mathematical formulation of the DS for the FG system is presented in the following steps.
Let E � fASp;RPMg represent the set of basic attributes representing the evidences produced by ASp and engine revolution speed,

respectively. The relative weights for the basic attributes are equally distributed according to the pilot instructions such that 0 ≤ ωi ≤ 1 and the
weights sum to 1. The distinctive evaluation grades for each attribute are defined as a set of three entities, i.e.,

H � flow; normal; highg (1)

For each attribute in E and evaluation gradeH, a degree of belief βn is assigned by the member functions described earlier, which denotes the

source’s level of confidence when assessing the level of fulfillment of a certain property.

1. Basic Probability Assignments for Each Basic Attribute

Letmn;i be a basic probability mass representing the degree towhich the ith basic attribute is assessed. A hypothesis that the general attribute is

assessed to the nth evaluation grade Hn can be presented as

mn;i � ωiβn;i (2)

where n � 3 is the number of evaluation grades (i.e., low, normal, high). The remaining probabilitymassmH;i unassigned to each basic attribute is

calculated as

Table 1 Cockpit instruments11 ranges for12 different flight phases and parameter setting for Gaussian, Z, and S member functions

MF parameters for airspeed
representation

MF parameters for RPM representation

Z Gaussian S Z Gaussian S

Flight phases Engine noise ranges Airspeed ranges, kt a b c σ a b a b c σ a B

Takeoff Low: RPM < 2000;
normal: 2000 < RPM < 2600;

high: RPM > 2600

Low: Asp < 5;
normal: 5 < ASp < 60;

high: Asp > 65

0 3 30 30 60 70 1800 2000 2200 400 2400 2800

Climb Low: RPM < 2000;
normal: 2000 < RPM < 2600;

high: RPM > 2600

Low: Asp < 55;
normal: 60 < Asp < 80;

high: Asp > 90

45 60 72 20 75 95 1800 2000 2200 400 2400 2800

Cruise Low: RPM < 1750;
normal: 1800 < RPM < 2500;

high: RPM > 2600

Low: Asp < 60;
normal: 70 < Asp < 100;

high: Asp > 110

50 85 85 25 85 115 1700 1900 2150 450 2350 2700

Cruise Low: RPM < 1600;
normal: 1800 < RPM < 2000;

high: RPM > 2300

Low: Asp < 60;
normal: 70 < Asp < 90;

high: Asp > 100

50 70 80 20 75 115 1500 1900 2000 350 2150 2350

Fig. 3 Categorical representation for the airspeed ranges in cruise phase using Gaussian, S, and Z membership functions.
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mH;i � 1 −
XN
n�1

mn;i � 1 − ωi

X3
n�1

βn;i (3)

The remaining probability mass is further decomposed into �mH;i and ~mH;i as

�mH;i � 1 − ωi (4)

~mH;i � ωi

 
1 −

X3
n�1

βn;i

!
(5)

Equation (4)measures the degree towhich final attributes have not yet been assessed to individual grades due to the relative importance of basic

attributes after their aggregation. Equation (5) measures the degree to which final attributes cannot be assessed to individual grades due to the

incomplete assessments for basic attributes.

2. Combined Probability Assignments

In next step, the probability masses of the basic attributes are aggregated to form a single assessment for the low/normal/high grades.

The combined probability masses can be generated using the following set of recursive evidence reasoning equations:

fHng∶
mn;i�1 � Ki�1�mn;i ⋅mn;i�1 �mH;i ⋅mn;i�1 �mn;i ⋅mH;i�1�
n � 1; : : : ; N (6)

where i � f1; 2g represents the number of basic attributes. In the preceding equation, mn;1 ⋅mn;2 measures the degree of both attributes

fASp;RPMg supporting the general attribute of decision to be assessed toHn. The termmn;1 ⋅mH;2 measures the degree of only the first attribute

fASpg supporting decision to be assessed toHn. The termmH;1 ⋅mn;2 measures the degree of only the second attribute fRPMg supporting final
belief to be assessed to Hn:

mH;i � �mH;i � ~mH;i (7)

~mH;i�1 � Ki�1� ~mH;i ⋅ ~mH;i�1 � �mH;i ⋅ ~mH;i�1 � �mH;i�1 ⋅ ~mH;i� (8)

�mH;i�1 � Ki�1� �mH;i ⋅ �mH;i�1� (9)

Ki�1 �

2
6641 −X

N�3

t�1

XN�3

j�1

j≠t

mt;i ⋅mj;i�1

3
775

−1

(10)

Airspeed Evidence
for

{low, normal, high}

RPM Evidence
for

{low, normal, high}

Basic Probability Assignment

Combined Probability Assignment

Combined/Fused Degree of Belief

{low,normal,high},H

Fig. 4 Combining the beliefs from multiple cockpit instruments for being in low, medium, and high states.
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In Eq. (8), ~mH;1 ⋅ ~mH;2 measures the degree towhich the final attribute cannot be assessed to any individual grades low, normal, and high due to

the incomplete assessments for both attributes fASp;RPMg. The term �mH;1 ⋅ ~mH;2measures the degree towhich final attributes cannot be assessed

due to the incomplete assessments for fASpg only. In Eq. (9), �mH;1 ⋅ �mH;2 measures the degree towhich final attributes have not been assessed yet

to individual grades due to the relative importance of fASpg and fRPMg after fASpg and fRPMg have been aggregated. The normalization factor

K is used to normalize mn, mH such that

X2
n�1

mn �mH � 1

3. Calculation of the Combined Degrees of Belief

Finally, let cβn denote the combined degree of belief that the situation is assessed to the grade Hn, which is generated by combining the

assessments for all the associated basic attributes E � fASp;RPMg; then, cβn is calculated by

Fig. 5 Diagnosis of hazard cause by backtracking the individual beliefs from RPM and airspeed, corresponding ADR measurements, and domain

knowledge in case of abnormal situation.

Fig. 6 Experimental setup for the flight guardian system in simulated and real flight environments.

Fig. 7 ROC curve for the optimal decision boundary selection using true hazard detection and false alarms rate.
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fHng: cβn � mn;i

1 − �mH;i

n � 1; : : : ; N (11)

fHg: cβH � ~mH;i

1 − �mH;i

(12)

Equation (12) for cβH measures the belief that is left unassigned during the assessments. The set of Eqs. (1–12) provides the combined degree of
beliefs for the low, normal, and high grades that are further used for the decision making about a normal or abnormal flight situation.

A flight state is considered as “abnormal” if the combined belief for “normal” state is less than a predefined decision threshold as shown in
Fig. 5. In the case of an abnormal situation, the problem is identified by automated analysis of the corresponding instrument state information (i.e.,
backtracking individual beliefs) and corresponding measurements retrieved from the ADR to identify the required adjustments with regard to the
domain knowledge presented inTable 1. Finally, awarningmessage is generated to the pilot that provides precise information about the diagnosed
problem and instructions to return the aircraft to a safe state.

D. Experimental Setup and System Evaluation

Performance of the proposed system is evaluated using different experimental setup that includes the following.

1. Laboratory Environment Using a Flight Simulator

In a laboratory environment, experiments are conducted in a simulated flight using the Flight Simulator X (FSX) platform. Two fixed-position
camera devices are placed directly in front of the ASp and RPM instruments that export continuous video streams to the processing device. The
video streams are processed and converted into instantaneous snapshots (i.e., images) with a frequency of 0.5 Hz and forwarded for further
processing. Microsoft Lifecam Cinema devices are used, which produce 30 fps. In addition, a virtual software camera (i.e., manyCam) is used to
provide the zoom function to physical camera devices. The domain knowledge along with the simulated flight data are used to know the ground
truth (i.e., true state) of whether the system was in a normal or abnormal situation, which is then compared to the DSS output for that particular
instance to evaluate the performance. Because the output warnings generated by the FG system are in the binary form of normal and abnormal
situations, the statistical metrics for a binary classifier are used for the DSS performance evaluation that includes 1) sensitivity, 2) specificity, and
3) accuracy.

The sensitivity indicates the probability that an instance is classified as a warning with high confidence in the case of an actual hazard.
Specificity shows the probability that an instance is classified as a normal situation with high confidence when it is indeed a normal situation and
therefore nowarning is generated by theDSS.Accuracy is a percentage of all the instances that were correctly classified. Detailed experiments are
conducted for various conditions in terms of different flight phases (i.e., takeoff, climb, cruise, and descent), decision boundaries, varying light
intensity, and environmental dynamics to evaluate the ADR performance. Figure 6a shows the experimental setup in the lab environment for a
simulated flight.

2. Real Aircraft Flight Environment Under the Guidance of Experienced Pilots

Despite the high expenses associated with the real flight experimental setup, the proposed FG prototype is tested twice using Cessna C172SP
aircraft in the presence of two expert pilots (one pilot in each flight). The selectedmethod is evolved according to the test outcomes fromeach flight
test to mitigate the real flight challenges. There is no significant change in the experimental setup for the real flight environment, except that the

Table 2 FG performance for different automated14 dial reading approaches in a real and simulated flight environments

Instances/scenarios

ADR approach Total TP TN FP FN
True positive

rate, %
True negative

rate, % Accuracy, %
Execution
time, S Frequency, Hz

Live flight test for takeoff, climb, cruise, and descent phases

Convolution 1350 450 863 37 0 100 95.9 97.20 0.52 0.5
Background subtraction 1350 200 600 300 250 44.40 66.66 59.25 0.41 0.5
Pattern matching 675 160 355 95 65 71.11 78.80 76.29 2.12 0.25

Lab test for takeoff, climb, cruise, and descent phases

Convolution 1805 400 1405 0 0 100 100 100 0.52 0.5
Background Subtraction 1805 300 1004 401 100 75.00 71.42 72.02 0.41 0.5
Pattern matching 902 177 650 52 23 88.75 92.52 91.68 2.12 0.25

Fig. 8 Comparison between simulated uniform data stream vs ADR measurements.
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camera position is placed such that it does not interfere with the pilot’s internal or external view, as shown in Fig. 6b. However, the automated
ground truth data extraction from the cockpit instruments in a real flight environment is not possible, specifically in older aircraft. In this scene,
video data are recorded while testing the FG system in real flight by creating different hazardous scenarios by the pilot. The recorded video is then
converted into image instances with a frequency of 0.5 Hz (i.e., execution time), and the ground truth (i.e., true states) is generated manually to
retrieve the statistical results using the aforementioned binary classification metrics. In addition, the overall system performance is evaluated for
multipleADRapproaches to identify the best one in terms of accuracy. Finally, a combined statement is given by the pilots at the end of flight tests,
which empowers the significance of the proposed system for the flight safety and pilot assistance.

III. Results and Discussions

The experimental results are achieved to evaluate the FG system performance under the experimental setup described earlier. These statistical
results are highly dependent upon the weight assigned to ASp and RPM measurements. However, both instruments are weighted equally

Table 3 Performance evaluation15 with varying lighting conditions using different automated dial reading approaches in the simulated

flight environment

Convolution-based ADR Pattern-matching-based ADR Background-subtraction-based ADR

Lighting conditions α β
False

alarm, % p-value RMSE
False

alarm, % p-value RMSE
False

alarm, % p-value RMSE

Room light 0 1 0 0.01 0.25 5.80 0.09 4.50 22.40 0.29 13.84
Lower ambient light 0 0.5 0 0.01 0.31 6.89 0.09 5.81 27.01 0.31 15.32
Dark ambient light 0 0.3 0 0.01 0.35 8.09 0.11 5.95 29.20 0.33 17.44
Higher ambient light 0.5 1 0 0.01 0.14 7.91 0.10 5.71 27.33 0.32 14.88
Bright ambient light 0.7 1 0 0.01 0.22 8.87 0.12 6.23 28.15 0.34 16.01
Direct specular light — — —— 1.7 0.02 0.64 17.03 0.19 8.13 42.00 0.49 31.15
Indirect specular light — — —— 0 0.01 0.17 6.23 0.09 4.81 34.92 0.43 24.92

Fig. 9 Convolution based automated dial reading for varying light intensities and existence of specular highlights.
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according to the pilot instructions. In addition, the threshold value for the decision boundary for an instance to be considered as normal or hazard is

defined using the receiver of characteristics (ROC) curve analysis as shown in Fig. 7.

The threshold value is varied from 0 to 100with a lag of one unit, and the DSS performance is evaluated in terms of true positive rate (TPR) and

false positive rate (FPR). An ROC curve for the decision boundary selection is achieved, which indicated the optimal compromise between TPR

and FPR for the overall flight at 0.72 (i.e., 72%) decision threshold value. Except the takeoff flight phase, where the decision threshold slightly

decreases (i.e., 70%), it remains almost stable for the rest of flight phases. This is because, in the takeoff phase, an additional turbulence is

generated in the aircraft, resulting in the small vibration in the fixed-position camera devices. Statistical results in Table 2 demonstrate the impacts

of different ADR approaches on the performance of the FG system. It can be observed that the best performance in terms of TPR, TNR, and

accuracy is obtained using the convolution-based ADR that was introduced in our previous work [22]. Because of the rapid state variations in real

flight, the computation time is also an important factor to be considered. Table 2 indicates that the optimal computation time of 0.41 s is achieved

for the background-subtraction-based ADR approach [19]; however, it sacrifices the main aim by producing a 59.25% accuracy rate.

Comparatively, the convolution-based ADR produces the best accuracy rate of 96 and 100% in real flight and lab environments, respectively,

along with an efficient computation time (i.e., 0.5 s).

Existing cockpit warning indicators give indications in hazardous situations but need a considerable amount of attention from the pilot. In

addition, it takes a lot of time to recognize the nature of problem and choose the right procedure [15,28], which consequently influences the flight

safety in emergency situations. The proposed FG system resolves these issues by providing robust hazard detection in emergency situations,

which reduces the pilot workload in terms of recognizing the nature of problem. For instance, providing direct information related to hazard type,

its cause, and instructions to mitigate the abnormal situation will significantly reduce the time spent by the pilot to identify the hazard cause and

eye scanning for subtasks. In comparison to the lab environment, the system generated 4% extra false alarms in real flight, hence reducing the

system accuracy by 2.8%. This reduction occurs due to the dynamics associated with the real flight environment such as light reflections and

vibrations in the cameras due to air turbulence producing blurry images. Consequently, identification of the needle/gauge (i.e., ADR) becomes

Fig. 10 Test cases for real flight evaluation of FG prototype in various hazardous situations in different flight phases.
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more challenging, resulting in 3.9% false alarms. Despite these challenges in real flight, the 100% rate of hazardous situation detection proves the

FG system significance in terms of flight safety improvements and pilot assistance as discussed in [11,12].

In addition to the aforementioned statistical results, the dial reading functionality is tested in the presence of specular highlights and varying

light intensity while acquiring a uniform data stream using a flight simulator (FSX). A comparison between the uniform simulated data stream for

ASp measurements (i.e., ground truth) acquired from FSX and predicted measurements by the convolution-based ADR system in the lab

environment is presented in Fig. 8. It can be analyzed that the proposed ADR approach performed robustly in terms of precise overlapping of the

ground-truth stream that produces a negligible rms error (1.63 kt). Because the needle color inASp andRPM instruments iswhite, it is challenging

to differentiate the light reflections from the actual needle, as discussed by Vega et al. [20] and Gellaboina et al. [21]. However, the proposed

convolution-based ADR along with the circular constraints makes it more accurate by minimizing the probability of the existence of light

reflections in such a tiny area of the cockpit.

Statistical results achieved for varying lighting conditions in a lab simulated environment are presented in Table 3. The intensity threshold for

output images is adjusted by varying the contrast limits between 0 and 1 for twoparameters (α,β). The first parameter increases the brightness level

from the default (0) to a completely bright image by increasing its values, whereas the second parameter reduces the brightness level from the

default (1) to a completely dark image by decreasing its values. The p-values are calculated using the t-test for the ground truth (GT) stream and

ADR measurements while varying the α and β parameters in the simulated environment. It can be observed that the convolution-based ADR

produced consistency in outputp-valuewith 0.01 (i.e., 1% significance level) in dynamic lighting conditions that indicated the strong confidence

in support of the hypothesis that there is no significance difference between the GT and ADR measurements data streams. A slightly higher

p-value (i.e., 0.02) is observed in the presence of direct specular light within the convolutional circular area around the needle that caused the

misidentification of the needle. On the other hand, p-value is significantly increased when calculated for pattern matching (p � 0.19) and
background subtraction (p � 0.49) based ADR approaches that indicate the significance difference between the GT data streams and the ADR

measurements for these approaches. Likewise the root-mean-square error (RMSE) and false alarm rate are negligible for the convolution-based

Fig. 10 Continued.
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method that is not the case for other approaches. The hypothetical test and statistical measures are the evidence of the proposed convolution-based
ADR approach over the existing background-subtraction and pattern-matching-based approaches.

Figure 9 showsmultiple scenarios for the FG performance in the presence of specular highlights in the cockpit instruments and varying lighting
conditions in the simulated flight environment. It is analyzed that the proposed ADR performed robustly in dynamic light intensity conditions by
differentiating the pixels occupied by specular highlights and target object (needle) efficiently that consequently increases the performance of
correct hazard identification and situation assessment.

In addition to the previously described statistical analysis of the results, multiple hazardous scenarios are created in a real flight environment
using ASp and RPM instruments control to evaluate the FG system responses in emergency situations. Figure 10 demonstrates the visual
snapshots taken for different hazardous situations created by the pilot during real flight while exceeding and dropping down the ASp and RPM
values in climb, cruise, and descent flight phases. Despite the real flight dynamics (e.g., air turbulence and sunlight reflections), the proposed
methodology produced a robust hazard diagnosis and provided corresponding visual and spoken instructions to the pilot to mitigate the abnormal
situation.

Finally, a summary of the real flight test produced by both pilots stated that “During the live flight test of Flight Guardian the benefits to pilots of
all abilities became clear. It is like having a second pilot issue timely observations andwarnings about potentially hazardous situations – it has real
potential to reduce pilot error in the cockpit and ultimately save lives”. The pilot’s report and the aforementioned detailed statistical results prove
the proposed system efficiency and significance in terms of flight safety improvements and pilot assistance. These outcomes also serve as an
enabler for the extension of this research in terms of its applicability to the variety of aircraft, fighting jets, commercial aircraft, and helicopters.
Despite the future open-ended research interests, the collection of expert knowledge for each application domain, multiple flight phases, and
additional cockpit instruments would be a challenging task that is needed to be considered in relation to FG system applicability to further
domains.

IV. Conclusions

The hypothesis underlying the principle objective as motivated for this research project was based on the development a regular monitoring
platform for an aircraft that provides robust flight-deck awareness. The proposed system is able to intelligently generate voice-activated warnings
and visual indications in hazardous situations. An experimental setup was built up comprising data acquisition, automated dial reading using
video analysis, expert knowledge representation, belief combination, and decision making. Detailed statistical results were achieved that
validated the proposed methodology in terms of flight safety improvements and its significance for the pilot assistance. For the first time, domain
knowledge is presented for the cockpit instrument ranges with respect to different flight phases that might be of great interest for the related
research. In spite of the robust outputs, there are some limitations associatedwith the selectedmethodology. For instance, theADR taskworkswell
only for fixed-position camera devices focusing at the center position of the cockpit instrument. Similarly, the proposed system uses expert
knowledge for two cockpit instruments for specific aircraft (i.e., CessnaC1772SP) thatmay be extended for the additional cockpit instruments and
a variety of aircraft including commercial aircraft, helicopters, and fighting jets. These outcomes also serve as an enabler for future research on
different aspects. A generic dial-reading approach may be developed that would automatically identify the desired cockpit instrument and rotate
its image with respect to a fixed reference point (e.g., deep learning approaches). Likewise, the object detection can be further improved in a way
that it handles the light reflections and vibrationsmore efficiently. In addition, the domain knowledge (i.e., data set for instrument ranges)might be
extended to include more cockpit instruments to make the proposed system more generic in terms of automated flight phase detection and
applicability to a wider range of civil and military aircraft.
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