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Abstract

This paper presents PROB-IRM, an approach that learns
robust reward machines (RMs) for reinforcement learning
(RL) agents from noisy execution traces. The key aspect
of RM-driven RL is the exploitation of a finite-state ma-
chine that decomposes the agent’s task into different sub-
tasks. PROB-IRM uses a state-of-the-art inductive logic pro-
gramming framework robust to noisy examples to learn RMs
from noisy traces using the Bayesian posterior degree of be-
liefs, thus ensuring robustness against inconsistencies. Piv-
otal for the results is the interleaving between RM learning
and policy learning: a new RM is learned whenever the RL
agent generates a trace that is believed not to be accepted by
the current RM. To speed up the training of the RL agent,
PROB-IRM employs a probabilistic formulation of reward
shaping that uses the posterior Bayesian beliefs derived from
the traces. Our experimental analysis shows that PROB-IRM
can learn (potentially imperfect) RMs from noisy traces and
exploit them to train an RL agent to solve its tasks success-
fully. Despite the complexity of learning the RM from noisy
traces, agents trained with PROB-IRM perform comparably
to agents provided with handcrafted RMs.

1 Introduction
Reinforcement learning (RL; Sutton and Barto 2018) is a
machine learning paradigm where agents learn to solve a
task by interacting with an environment to maximize their
cumulative reward. Significant advancements have demon-
strated its potential to perform tasks as well as, if not better
than, humans. A famous example is AlphaGo (Silver et al.
2016), the first AI system to beat a Go world champion. In
addition, RL plays a key role in the training of Large Lan-
guage Models, such as ChatGPT (OpenAI 2023).

Many open challenges still need to be addressed to make
RL more widely applicable to real-world problems. Among
these are the ability to generalise and transfer across tasks,
operate robustly in the presence of partial observability and
noise, and make the learned policies interpretable (Dulac-
Arnold et al. 2021).

Reward machines (RMs; Toro Icarte et al. 2018) are a re-
cent mechanism for addressing some of these challenges.
RMs are finite-state machines representing non-Markovian
reward functions in terms of high-level propositional events.
The RM structures the agent’s task into sequences of inter-
mediate abstract states that act as an external memory for

the agent. This makes the reward Markovian, thus enabling
the application of standard RL algorithms in non-Markovian
reward settings. The RM structure facilitates task decompo-
sition, making policy learning more efficient when rewards
are sparse. Recent work has extended the applicability of
RMs by learning them instead of handcrafting them (Toro
Icarte et al. 2019; Xu et al. 2020; Furelos-Blanco et al. 2021;
Hasanbeig et al. 2021), and hierarchically composing them,
for reusability (Furelos-Blanco et al. 2023). However, RM
learning approaches assume a perfect labelling function, a
construct that enables agents to accurately observe the high-
level events occurring in the environment. This assumption
is unrealistic; for instance, robot sensors, which resemble
the role of the labelling function, are seldom perfect, due
to environmental conditions, limitations in technology, and
inherent inaccuracies.

We propose PROB-IRM (Probabilisitic Induction of
Reward Machines), a method for learning and exploit-
ing RMs from noisy propositions perceived by an RL
agent through a noisy labelling function. PROB-IRM uses
ILASP (Law, Russo, and Broda 2015), a state-of-the-art in-
ductive logic programming system capable of learning from
noisy examples. The learned RM is exploited by an RL al-
gorithm that leverages the RM structure using a novel prob-
abilistic reward-shaping mechanism based on an RM state
belief. The PROB-IRM algorithm interleaves the RL and
RM learning processes, enabling the agent to immediately
exploit the newly learned (possibly sub-optimal) RMs. A
new RM is learned during the interleaving process when the
currently used one does not recognise noisy traces.

We evaluate PROB-IRM in several existing grid-world
problems with sparse non-Markovian rewards. We show
PROB-IRM learns RMs from noisy traces that are exploited
by an RL agent. Our results demonstrate that under a wide
array of noise configurations, PROB-IRM performs simi-
larly to approaches where RMs are handcrafted.

The paper is organised as follows. Section 2 intro-
duces the background of our work. Section 3 describes
PROB-IRM, including the problem formalization and the
learning and exploitation of RMs from noisy traces. Sec-
tion 4 presents our experimental results, Section 5 discusses
related work, and Section 6 concludes the paper with sug-
gestions for future directions.
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2 Background
In this section, we introduce the basic notions and terminol-
ogy. Given a finite set X , ∆(X ) is the probability simplex
over X , X ∗ denotes (possibly empty) sequences of elements
fromX ,X+ denotes non-empty sequences of elements from
X , and 2X is the power set of X .

2.1 Reinforcement Learning
We formalize RL tasks as labelled Markov decision pro-
cesses (MDPs; Fu and Topcu 2014; Furelos-Blanco et
al. 2023). A MDP is a tuple ⟨S,A, p, r, τ, γ,P,L⟩ where
S is a set of states, A is a set of actions, p : S ×A → ∆(S)
is a probability transition function, r : (S ×A)+ × S → R
is a reward function, τ : (S ×A)× S∗ → {⊥,⊤}×{⊥,⊤}
is a termination function, γ ∈ [0, 1) is a discount factor, P
is a finite set of propositions representing high-level events,
and L : S × A × S → 2P is a (perfect) labelling function
mapping state-action-state triplets into sets of propositions.
We refer to these sets as labels. The transition function p is
Markovian, whereas the reward function r and the termina-
tion function τ are not (i.e., they are history-dependent).

Given a state-action history ht = ⟨s0, a0, . . . ,
st⟩ ∈ (S ×A)∗ × S , a trace λt = ⟨L(∅, ∅, s0), . . . ,
L(st−1, at−1, st)⟩ ∈ (2P)

+ assigns a label to all triplets in
ht. The goal is to find a policy π : (2P)

+ × S → ∆(A)
that maps traces-states to a probability distribution over ac-
tions that maximizes the expected cumulative discounted re-
ward (or return) Rt = Eπ[

∑n
k=t γ

k−tr(ht)], where n is the
episode’s last step. Traces must be faithful representations
of history to find such a policy, i.e., reward and termination
functions could depend on traces instead of history.

The agent-environment interaction is as follows. At time
t, the (label) trace is λt ∈ (2P)

+ and the agent observes a
tuple ⟨st, sTt , sGt ⟩, where st ∈ S is the state, sTt ∈ {⊥,⊤}
indicates whether the history is terminal, and sGt ∈ {⊥,⊤}
indicates whether the history accomplishes the task’s goal.
Both sTt and sGt are determined by the termination function
τ . The agent also observes a label Lt = L(st−1, at−1, st). If
the history is non-terminal, the agent runs an action at ∈ A,
and the environment transitions to state st+1 ∼ p(· | st, at).
The agent then observes a new tuple ⟨st+1, s

T
t+1, s

G
t+1⟩ and

label Lt+1, extends the trace as λt+1 = λt ⊕ Lt+1, and re-
ceives reward rt+1. A trace λt is a goal trace if ⟨sTt , sGt ⟩ =
⟨⊤,⊤⟩, a dead-end trace if ⟨sTt , sGt ⟩ = ⟨⊤,⊥⟩, and an in-
complete trace if sTt = ⊥.

Example 1. The OFFICEWORLD (Toro Icarte et al. 2018),
illustrated in Figure 1 (left), is a 12 × 9 grid labeled with
some special locations. At each step, the agent observes
its current position in the grid and moves in one of the four
cardinal directions; that is, S = {0, . . . , 11} × {0, . . . , 8}
and A = {up, down, left, right}. The agent always moves
in the intended direction and stays put if it moves towards a
wall. The set of propositions P = {K,B, o, A,B,C,D, ∗}
is constituted of the special locations. The labelling function
maps a ⟨s, a, s′⟩ ∈ S×A×S triplet to the set of propositions
observed in s′, e.g. L((4, 6), left, (3, 6)) = {K}. In this
paper, we consider different tasks that consist of visiting a

sequence of special locations while avoiding the decorations
(∗):
• COFFEE: go to the coffee machine (K) then go to the of-

fice (o).
• COFFEEMAIL: go to the coffee machine (K) and the mail

location (B), in any order, then go to the office (o).
• VISITABCD: go to locations A, B, C and D in order.

A reward of 1 is obtained for completing the task; other-
wise, the reward is 0. Rewards are non-Markovian since the
current state (i.e., position on the grid) alone cannot deter-
mine the reward. The history h = ⟨⟨4, 6⟩, left, ⟨3, 6⟩, right,
⟨4, 6⟩, down, ⟨4, 5⟩, down, ⟨4, 4⟩⟩ yields a reward of 1 and is
mapped to the goal trace λ = ⟨{}, {K}, {}, {}, {o}⟩.

Learning policies over histories or traces is impractical
since they can grow arbitrarily. In this paper, we employ
reward machines to compactly encode traces, enabling effi-
cient policy learning.

2.2 Reward Machines
A reward machine (RM; Toro Icarte et al. 2018; 2022) is
a finite-state machine representation of a reward function.
Formally, an RM is a tuple M = ⟨U,P, δu, δr, u0, uA, uR⟩,
where U is a set of states, P is a set of propositions constitut-
ing the RM’s alphabet, δu : U×2P → U is a state-transition
function, δr : U × U → R is a reward-transition function,
u0 ∈ U is the initial state, uA ∈ U is the accepting state,
and uR ∈ U is the rejecting state.

Example 2. Figure 1 (right) illustrates the RM for the OF-
FICEWORLD’s COFFEE. The edges are labelled by propo-
sitional logic formulas over P = {K,B, o, A,B,C,D, ∗}
and rewards for transitioning between states. To verify
whether a formula is satisfied by a label L ∈ 2P , L is
used as a truth assignment: propositions contained in the
label are true, and false otherwise. For example, {K} |=
K ∧ ¬o ∧ ¬∗.

Reward machines are revealed to the agent during agent-
environment interactions. Starting from the RM’s initial
state, the agent moves in the RM according to the state-
transition function and obtains rewards through the reward-
transition function. Given an RM M and a trace λ =
⟨L0, . . . , Ln⟩, a traversal M(λ) = ⟨v0, v1, . . . , vn+1⟩ is a
unique sequence of RM states such that (i) v0 = u0, and
(ii) δu(vi, Li) = vi+1 for i = 0, . . . , n. Traversals for goal
and dead-end traces should terminate in the accepting and
rejecting states, respectively; in contrast, traversals for in-
complete traces should terminate somewhere different from
the accepting and rejecting states.

Example 3. Given the RM in Figure 1 (right) and the
goal trace λ = ⟨{}, {K}, {}, {}, {o}⟩, the traversal is
⟨u0, u0, u1, u1, u1, uA⟩. As expected, the traversal ends with
the accepting state.

Reward machines constitute compact trace representa-
tions: each RM state encodes a different completion de-
gree of the task. Consequently, rewards become Markovian
when defined over S × U . In line with this observation,
Toro Icarte et al. (2022) propose an algorithm that learns an
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Figure 1: An OFFICEWORLD instance (left) and a reward machine for the COFFEE task (right), where o.w. stands for otherwise.

action-value function (or Q-function)—an estimation of the
expected return following the execution of an action from a
given state—over S×U . Given a transition from state s to s′

with an action a and its label L = L(s, a, s′), the Q-function
q : S × U ×A → R is updated as follows:

q(s, u, a)
α←− δr(u, u

′) + γmax
a′∈A

q(s′, u′, a′), (1)

where u′ = δu(u, L), and x
α←− y is shorthand for x← x+

α(y− x). In the tabular case, where estimates are stored for
each state-action pair, the algorithm converges to an optimal
policy in the limit (Toro Icarte et al. 2022, Theorem 4.1).

2.3 Learning from Noisy Examples
Previous work shows that RMs can be learned from traces
during the RL agent’s training (Toro Icarte et al. 2019; Xu et
al. 2020; Furelos-Blanco et al. 2021; Hasanbeig et al. 2021).
We adopt a methodology similar to that by Furelos-Blanco et
al. (2020; 2021), who used a state-of-the-art inductive logic
programming system to induce RMs represented as answer
set programs (ASP; Gelfond and Kahl 2014) that represent
the RMs. In what follows, we describe the fundamentals of
the learning system we use. We refer the reader to the work
by Law (2018) for details.

Learning from Answer Sets (LAS; Law, Russo, and
Broda 2020) is a paradigm for learning answer set programs.
A LAS task is a tuple ⟨B,SM , E⟩ where B is an ASP pro-
gram called background knowledge, SM is a set of rules
known as the hypothesis space, and E is a set of examples.
The hypothesis space is specified through a set of mode dec-
larations M , describing which predicates can appear in the
head or body of a rule.

ILASP (Law, Russo, and Broda 2015) is a state-of-the-art
system for solving LAS tasks robust to noisy examples (Law,
Russo, and Broda 2018). Noisy examples in ILASP are re-
ferred to as weighted context-dependent partial interpreta-
tions (WCDPIs), each a tuple ⟨eid, epen, ⟨einc, eexc⟩, ectx⟩,
where eid is an identifier, epen is a penalty denoting the level
of certainty of an example which can be either a positive in-
teger or infinite, ⟨einc, eexc⟩ is a pair of atom sets known as
partial interpretation, and ectx is an ASP program known
as context that expresses example-specific information. A

hypothesis H ⊆ SM covers (or accepts) a WCDPI if there
exists an answer set of B ∪ ectx ∪ H that contains every
atom in einc and no atom in eexc.1 Informally, the cost of
a hypothesis H is the sum of the hypothesis length plus the
penalties of the examples not accepted by H . Examples with
an infinite penalty are not noisy and must be covered by the
induced hypothesis. The goal of a LAS task with noisy ex-
amples is to find a hypothesis that minimises the cost over a
given hypothesis space for a given set of WCDPIs. This is
formally defined as follows.

Definition 1. A LAS task T is a tuple of the form
⟨B,SM , E⟩, where B is an ASP program, SM is a hypoth-
esis space and E is a set of WCDPIs. Given a hypothesis
H ⊆ SM :

1. uncov(H,T ) is the set of all examples e ∈ E such that H
does not accept e.

2. the penalty of H , denoted as pen(H,T ), is the sum∑
e∈uncov(H,T ) epen.

3. the length of H , denoted as length(H), is the sum∑
r∈H length(r), where length(r) ∈ N>0.

4. the score of H , denoted as S(H,T ), is the sum
length(H) + pen(H,T ).

5. H is an inductive solution of T iff S(H,T ) is finite.
6. H is an optimal inductive solution of T iff S(H,T ) is

finite and ∄H ′ ⊆ SM such that S(H,T ) > S(H ′, T ).

The length of a hypothesis H is often defined as the
number of literals that appear in H , thus considering
length(r) = |r|. However, this aspect can be customised
to the specific task in hand, particularly when the task does
not require the shortest hypotheses to be learned.

3 Methodology
In this section, we present PROB-IRM, an approach for in-
terleaving the learning of RMs from noisy traces with the
learning of policies to solve a given task. We consider
episodic labelled MDP tasks where the reward is 1 if the
agent observes a goal trace and 0 otherwise. The noisy traces

1We later show a WCDPI construction for our method (see Ex-
ample 4).



are caused by a noisy labelling function, which plays the role
of an imperfect set of sensors. To cater for this uncertainty,
RM traversals must account for the agent’s belief of being
at a certain RM state.

3.1 Noisy Traces
We assume the agent has a binary sensor for each proposi-
tion l ∈ P with a given sensitivity and specificity of detec-
tion. We denote with l = ⊤ (resp. l = ⊥) the actual oc-
currence (resp. absence) of l in the environment. We denote
with l̃ = ⊤ (resp. l̃ = ⊥) the detection (resp. non-detection)
of l with the agent’s sensors. The sensitivity of the sensor
is the probability of the sensor detecting a proposition given
that it occurred; formally, P (l̃ = ⊤ | l = ⊤). The specificity
of the sensor is the probability of not detecting a proposition
given that it did not occur; formally, P (l̃ = ⊥ | l = ⊥).

As the sensor’s prediction may differ from the actual
occurrence of a proposition, the agent’s belief of the
(non)occurrence of a proposition is a posterior probability
conditional to its sensor’s value. We define the posterior
probability of a proposition l using Bayes’ rule:

P (l = ⊤ | l̃ = y) =
P (l̃ = y | l = ⊤)P (l = ⊤)∑

x∈{⊤,⊥} P (l̃ = y | l = x)P (l = x)

where:
• y ∈ {⊤,⊥} is the sensor detection outcome.

• P (l̃ = ⊤ | l = ⊥) = 1 − P (l̃ = ⊥ | l = ⊥), and rep-
resents the probability of an unexpected detection. Simi-
larly, P (l̃ = ⊥ | l = ⊤) = 1− P (l̃ = ⊤ | l = ⊤).

• P (l = ⊤) is the prior probability of l occurring, and
P (l = ⊥) = 1 − P (l = ⊤). We refer the reader to
Section 4 for further details on defining the prior.
The labelling function must report the sensors’ degree of

uncertainty on the detected propositions. We introduce the
notion of noisy labelling function, which defines (for a given
transition) the probability of every proposition conditioned
to detecting their respective sensor readings. First, we define
the probability of a proposition at a given transition. Given
a transition triplet (st, at, st+1), we denote with P̃t+1 ∈ 2P

all sensors’ detections (i.e. all detected propositions) at that
transition. We assume that the probability of a proposition l
at a given transition is conditional only to its related sensor
detection at that transition (l̃t+1). The value l̃t+1 is ⊤ if the
proposition l ∈ P̃t+1 (detected); otherwise l̃t+1 is ⊥. So
we define P (l = ⊤ | st, at, st+1) = P (l = ⊤ | P̃t+1) =

P (l = ⊤ | l̃t+1).
The noisy labelling function defines the probability of

each proposition at a given transition.
Definition 2 (Noisy labelling function). Let S be the set of
states, A the set of actions, and P be the set of proposi-
tions. Given a transition (st, at, st+1) ∈ S × A × S, the
noisy labelling function L̃ maps the transition to the set of
all possible propositions with their respective probabilities
at that transition. Formally, L̃(st, at, st+1) = {(l, P (l =
⊤ | st, at, st+1)) | l ∈ P}).

We can then define the probability of a set of propositions
at a given transition in terms of the noisy labelling func-
tion. Propositions are assumed to be conditionally indepen-
dent. We use [L̃(st, at, st+1)]l to denote the probability of
a proposition l at the transition (st, at, st+1) given by our
noisy labelling function. So, given a label L ∈ 2P , we have:

P (L|st, at, st+1) =
∏
l∈P

pl, (2)

where

pl =

{
1− [L̃(st, at, st+1)]l if l /∈ L;

[L̃(st, at, st+1)]l if l ∈ L.

Definition 3 (Noisy trace). Given a state-action history
ht = ⟨s0, a0, s1, a1, ..., st⟩, the noisy trace λ̃t is given by:

λ̃t = ⟨L̃(s0, a0, s1), L̃(s1, a1, s2), ..., L̃(st−1, at−1, st)⟩.
Our RL task can be formalised as a noisy labelled MDP;

that is, a labelled MDP (see Section 2.1) but with a noisy
labelling function. Despite the labelling function now being
noisy, we assume the termination function τ remains deter-
ministic; hence, the termination of a noisy trace is deter-
mined with certainty throughout the agent-environment in-
teraction.

3.2 Learning RMs from Noisy Traces
We learn candidate RMs using ILASP. Recall that a LAS
task is a tuple ⟨B,SM , E⟩, where B is the background
knowledge, SM is the hypothesis space, and E is a set
of WCDPI examples (see Section 2.3). The background
knowledge B and the hypothesis space SM are similar to the
ones proposed by Furelos-Blanco et al. (2021). The former
is a set of ASP rules that describes the general behaviour
of any RM (i.e., how an RM is traversed). The latter con-
tains all possible rules that can constitute the state-transition
function of the RM.

We now focus on representing the WCDPI examples in E
from a given set of noisy traces.

Generating Examples from Noisy Traces. One of the
key aspects of learning RMs from noisy traces is how to map
these traces into WCDPIs. A direct approach involves ag-
gregating the probabilities generated by the noisy labelling
function, for a given noisy trace, into a single trace-level
probability. This aggregated probability can then be used as
the weight for the WCDPI generated from that trace. Ap-
proaches along this line have been proposed in the literature
for other domains (Cunnington et al. 2023). They define the
aggregation function as a t-norm over the collection of prob-
abilistic predictions. This value is used as the penalty for
the examples, while the predictions are converted into their
most likely outcome and stored within the WCDPI context.
Such a solution proved too restrictive since such WCDPIs
could only represent the most likely trace. Instead, we adopt
a sampling-based method: the probabilities in a noisy trace
are used to define proposition-specific Bernoulli distribu-
tions, which are then sampled to determine the propositions
that would be part of the context of the associated WCDPI.



Let λ̃ be a noisy trace. We denote with λ̃i,l =

[L̃(si−1, ai−1, si)]l the probability of proposition l occur-
ring at step i of λ̃. We generate a sample trace λ′ from λ̃
by determining the occurrence of each proposition l ∈ P at
each step i using the corresponding Bernoulli distribution;
that is, λ′

i,l ∼ Ber(λ̃i,l). For each sampled trace λ′, an
ASP trace λASP = {prop(l, i) | λ′

i,l = 1} is built by map-
ping each occurring proposition into a prop(l, i) fact indi-
cating that proposition l occurs at time i. As proposed by
Furelos-Blanco et al. (2021), we compress sampled traces
by removing consecutive occurrences of the same sampled
proposition set.

The WCDPI example generated from λ̃ is given by
⟨eid, epen, ⟨einc, eexc⟩, ectx⟩, where eid is a unique exam-
ple identifier, and the penalty is epen = 1. The par-
tial interpretation ⟨einc, eexc⟩ is ⟨{accept}, {reject}⟩ for
goal traces, ⟨{reject}, {accept}⟩ for dead-end traces, and
⟨∅, {accept, reject}⟩ for incomplete traces. The atom
accept (resp. reject) indicates that the accepting (resp. re-
jecting) state of the RM is reached; therefore, for instance,
the partial interpretation for goal traces indicates that the ac-
cepting state must be reached, whereas the rejecting state
must not. Finally, the context ectx is given by the ASP rep-
resentation λASP of the sample trace λ′.
Example 4 (Generation of WCDPI from a noisy trace).
Let us consider the proposition set P = {K, o} and
the noisy goal trace λ̃ = ⟨{K : 0.01, o : 0.01}, {K :
0.9, o : 0.01}, {K : 0.9, o : 0.01}, {K : 0.01, o : 0.01},
{K : 0.01, o : 0.9}⟩. A WCDPI generated from λ̃ will
be ⟨id, 1, ⟨{accept}, {reject}⟩, ectx⟩, where ectx is con-
structed as follows:
1. Produce a sample trace, e.g. λ′ = ⟨{K : 0, o : 0}, {K :

1, o : 0}, {K : 1, o : 0}, {K : 0, o : 0}, {K : 0, o : 1}⟩.
2. Compress the trace: λ′ = ⟨{K : 0, o : 0}, {K : 1, o :

0}, {K : 0, o : 0}, {K : 0, o : 1}⟩.
3. Construct the ASP representation λASP = {prop(K, 1),

prop(o, 3)} of the compressed sample trace λ′.

Once all the WCDPI for all the noisy traces are sampled,
we make the following adjustments to their penalties. First,
we reweigh the penalties to balance the classes (goal, dead-
end, incomplete). Second, since the sampling process may
produce x identical WCDPIs ⟨eidi

, epen, ⟨einc, eexc⟩, ectx⟩,
we replace them (without loss of generality) with one
WCDPI of the form ⟨eidnew , x · epen, ⟨einc, eexc⟩, ectx⟩.

To ensure the RM is well-formed and to make the RM
learning more efficient, we enforce the determinism and the
symmetry-breaking constraints proposed by Furelos-Blanco
et al. (2021).

3.3 Exploitation of Reward Machines
In this section, we describe how an RM is exploited to learn
policies.

Reward Machine State Belief. Because of the noisy la-
belling function, the current RM state cannot be known:
we can only determine the RM state belief (Li et al. 2022;
2024).

Definition 4 (RM state belief ũt). The RM state belief ũt ∈
∆(U) is a categorical probability distribution expressing the
RL agent’s belief of being in an RM state u at timestep t.
Formally,

ũ0(u) =

{
1 if u = u0;

0 otherwise,

ũt+1(u) =
∑
ut∈U,

Lt∈2P

P (Lt|st, at, st+1)ũt(ut)1[δu(ut, Lt) = u],

where δu is the RM state-transition function, and 1 is the
indicator function.

Probabilistic Reward Shaping. Reward shaping aims to
provide additional rewards to guide the agent towards com-
pleting a task. Previous works use the potential-based re-
ward shaping (Ng, Harada, and Russell 1999), which gener-
ates intermediate rewards from the difference in values of a
potential function Φ(s) over consecutive MDP states. Under
this formulation, reward shaping does not shrink the set of
optimal policies.

In the context of RM-based RL, Camacho et al. (2019)
and Furelos-Blanco et al. (2021) define the potential func-
tion Φ : U → R in terms of RM states. Formally,

rs(u, u
′) = γΦ(u′)− Φ(u),

where γ is the MDP’s discount factor.
Given that the agent has access to the belief vector ũt ∈

∆(U), we propose the potential function on RM state beliefs
Φ̃ : ∆(U) → R, which is defined as the sum of every plau-
sible RM state’s potential weighted by its belief. Formally,

Φ̃(ũt) =
∑
u∈U

ũt(u)Φ(u),

where Φ : U → R is a potential function on RM states. The
resulting reward-shaping function can thus be expressed as:

rs(ũt, ũt+1) = γΦ̃(ũt+1)− Φ̃(ũt)

=
∑
u∈U

γũt+1(u)Φ(u)− ũt(u)Φ(u)

=
∑
u∈U

(γũt+1(u)− ũt(u))Φ(u).

Eck et al. (2013) introduced a similar formulation in the con-
text of state beliefs in partially observable MDPs.

Akin to Furelos-Blanco et al. (2021), we define the po-
tential function on RM states following the intuition that the
agent should be rewarded for getting closer to uA. Formally,

Φ(u) = |U | − dmin (u, uA),

where dmin (u, uA) is the minimum distance between u and
uA. If uA is unreachable from u, then dmin (u, uA) =∞.
Example 5 (Reward shaping in the OFFICEWORLD’s COF-
FEE task). From the reward machine in Figure 1, we obtain
the following potential function Φ:

Φ(u0) = 4− 1 = 3,

Φ(uA) = 4− 0 = 4,

Φ(u1) = 4− 1 = 3,

Φ(uR) = 4−∞ = −∞.



Given γ = 0.9 and the RM state beliefs ũt = [1, 0, 0, 0]⊤

and ũt+1 = [0, 0.5, 0.5, 0]⊤, the shaped reward is:

rs(ũt, ũt+1) =
∑
u∈U

(γũt+1(u)− ũt(u))Φ(u)

= (0.9 · 0− 1) · 3 + (0.9 · 0.5− 0) · 3
+ (0.9 · 0.5− 0) · 4 + (0.9 · 0− 0) · −∞
= 0.15.

3.4 Interleaved Learning Algorithm
We now describe PROB-IRM, our method for interleaving
the learning of RMs from noisy traces with RL. The pseu-
docode is shown in Algorithm 1.

Algorithm 1 PROB-IRM algorithm

1: M ← INITRM({u0, uA, uR})
2: E ← {} ▷ Set of noisy examples
3: step cnt← 0 ▷ Steps since last RM learning
4: ce sum← 0 ▷ Cross entropy sum
5: INITQFUNCTION(M )
6: for ep ∈ {1, . . . , num episodes}
7: s, ũp ← ENVINITIALSTATE()

8: λ̃← ⟨⟩ ; t← 0 ; done← ⊥
9: while done = ⊥

10: a← GETACTION(s, ũp)
11: s′, done← ENVSTEP(s, a)
12: ũq ← GETRMBELIEF(L̃(s, a, s′), ũp)
13: UPDATETRACE(L̃(s, a, s′), λ̃)
14: UPDATEQFUNCTION(s, a, s′, δr(ũp, ũq), ũq)
15: s← s′ ; ũp ← ũq ; t← t+ 1
16: if ISTERMINAL(M , ũp) or t > max ep len
17: done← ⊤
18: Enew ← GENERATEEXAMPLES(λ̃)
19: Enew inc ← GENERATEINCEXAMPLES(λ̃)
20: E ← E ∪ Enew ∪ Enew inc

21: step cnt← step cnt+ 1

22: ce← RECOGNIZEBELIEF(M, λ̃, ũp)
23: ce sum← ce+ ce sum
24: if SHOULDRELEARN(ep, ce sum, step cnt)
25: M ← RELEARNREWARDMACHINE(E)
26: step cnt← 0
27: ce sum← 0
28: INITQFUNCTION(M )
29: function RECOGNIZEBELIEF(M , λ̃, ũt+1)
30: expected belief← TRACEOUTCOME(λ̃)
31: return CROSSENTROPY(ũt+1, expected belief)

32: function SHOULDRELEARN(ep, ce sum, step cnt)
33: if step cnt < warmup steps
34: return ⊥
35: return ce sum/step cnt < β

Lines 1–5 initialise the candidate RM M , the set of noisy
ILASP examples E, variables tracking RM relearning, and
the Q-function. The algorithm is then executed for a fixed
number of episodes. For each episode step, the agent exe-
cutes an action in the environment (line 11), gets the new

RM state belief ũ (line 12), and updates the noisy trace
(line 13) and the Q-function (line 14). The episode termi-
nates if (i) the environment signals that the task has been
completed (line 11); (ii) the most likely state of the RM is
the accepting/rejecting state; or (iii) after a fixed number of
steps (lines 16–17). After the episode terminates, the ILASP
examples are updated (line 20). This process differs from
the original algorithm (Furelos-Blanco et al. 2021, see Sec-
tion 3.2). We generate incomplete examples (line 19) from
the newly seen traces similarly to Ardon, Furelos-Blanco,
and Russo (2023).

The belief that the RM is correct is updated using the ob-
served trace (lines 22–23). If the RM should be relearned
(line 24), then ILASP is called (line 25), variables tracking
the relearning condition are reset (lines 26–27), and the Q-
function is reinitialised (line 28).

The function RECOGNIZEBELIEF (lines 29–31) com-
putes how well the current trace conforms to the candi-
date RM. We assume that the ground-truth outcome of an
episode (goal, dead-end, incomplete) is known with cer-
tainty. This outcome is a one-hot vector obtained through
the TRACEOUTCOME function (line 30). On the other hand,
given that we know the belief of being in an accepting
([ũt+1]acc) and rejecting state ([ũt+1]rej), we can compute
the predicted outcome: ([ũt+1]acc, [ũt+1]rej , 1 - [ũt+1]acc
- [ũt+1]rej). The RECOGNIZEBELIEF returns the categor-
ical cross-entropy between the predicted and ground truth
outcome.

The function SHOULDRELEARN (lines 32–35) deter-
mines if the RM should be relearned. We use the average
cross-entropy between the expected state belief for the ob-
served trace and the current RM state as decision criteria to
trigger the relearning of the RM: if the cross-entropy falls
under the hyperparameter β, a new RM is learned. Intu-
itively, this metric can be seen as a way to evaluate how well
the RM captures the traces that have been seen. Also, the
RM should not be relearned too often to prevent relearning
with similar examples and allow the new RM to influence
the generation of new examples. Hence, the RM should not
be relearned if a number of warm-up steps have not passed
since the last relearning (lines 33–34).

4 Experimental Results
We evaluate PROB-IRM using the OFFICEWORLD (see
Section 2.1). We aim to answer three research questions:

RQ1: Does PROB-IRM successfully allow agents to be
trained to complete their tasks?

RQ2: In terms of agent performance, how do the RMs
learned with PROB-IRM compare with hand-crafted
ones?

RQ3: How sensitive is PROB-IRM to different noisy set-
tings?

After a brief overview of our experimental setup, we start
by comparing the performance of PROB-IRM agents with
a baseline composed of agents provided with handcrafted
RMs that perfectly expose the structure of each task. Then,
we focus our analysis on the impact of significantly higher



noise to highlight the robustness of PROB-IRM in such sce-
narios. Finally, we present the results of two ablation stud-
ies that evaluate (i) the effectiveness of our reward-shaping
scheme, and (ii) the performance difference between our
belief-based approach and thresholding for handling noisy
labels.

The source code is available at https://github.com/rparac/
Prob-IRM.

4.1 Experimental Setup
Environment Configurations. We focus our analysis on
the OFFICEWORLD domain presented in Section 2.1. On
the one hand, the COFFEE, COFFEEMAIL, and VISITABCD
tasks enable assessing PROB-IRM’s ability to learn good-
quality RMs and policies in progressively harder scenarios.
On the other hand, thanks to its adoption in other existing
RM-based work (Toro Icarte et al. 2018; Furelos-Blanco et
al. 2021; Dohmen et al. 2022), this choice allows our results
to be easily compared with similar research.

The complexity of solving any of the three tasks strongly
depends on the OFFICEWORLD layout. To account for this,
we conducted each experiment over 3 sets of 10 random
maps for COFFEE and COFFEEMAIL, and 3 sets of 50 ran-
dom maps for VISITABCD.

Sensor Configurations. We experiment with multiple
sensor configurations, each with a specific choice of:

• noise targets: the set of sensors subject to noise. Either
only the one associated with the first event needed to solve
the task (noise-first),2 or all of them (noise-all);

• noise level: the sensor detection specificity and sensitiv-
ity. To reduce the number of possible configurations, we
only consider scenarios where both parameters are set to
the same value, and we will thus refer to them jointly as
sensor confidence.

While sensor confidence is the parameter we have direct
control over in our experiments, its value is not very infor-
mative to a human reader, as its impact on the accuracy of
an agent’s sensor strongly depends on the prior probabilities
of each label being detected. Therefore, we pick the values
for this parameter in such a way as to determine specific val-
ues for the posterior probability of detecting any noisy label
correctly. In particular, we experiment with three posterior
values, each representing increasing noise levels: 0.9, 0.8
and 0.5. We also consider the absence of noise (the poste-
rior equal to 1) as a baseline.

Policy Learning. The agent policies are learned via the
RL algorithm for RMs outlined in Section 2.2. The Q-
functions are stored as tables. To index a reasonably sized
Q-function using an RM belief vector, we resort to binning:
beliefs are truncated to a fixed number of decimals, effec-
tively resulting in close values being considered identical.

In terms of exploration, we rely on an ϵ-greedy strategy.
For all the experiments, we start from ϵ = 1 and decay its

2In COFFEEMAIL, there is not a single event that satisfies this
criterion; thus, we apply the noise on both the K and B sensors.

value to ϵ = 0.1 over 2000 agent steps. We then keep the
parameter fixed for the rest of the training process.

We employ our proposed formulation of probabilistic re-
ward shaping in all experiments (both with fixed and learnt
RMs) using γ = 0.99.

Performance Metrics. We record the undiscounted return
collected by each agent at the end of every episode. Then,
we aggregate their values over the set of all agents trained
in the context of a single experiment to compute their asso-
ciated mean and standard deviation, and the various met-
rics needed to answer our research questions. The aver-
age results are represented through learning curves, each
smoothed using a moving average with a window size of
100. The shaded areas reflect the standard deviation of the
values computed using an identical sliding window.

4.2 Baseline Results
We compare the performance of PROB-IRM against a base-
line composed of agents provided with handcrafted RMs.
We focus on the noise-first scenario, as it represents an eas-
ier learning setting for agents.

The learning curves of both approaches are shown in Fig-
ure 2. The baseline agents (upper row) consistently converge
to a high level of proficiency. As expected, the more noise,
the more episodes are required to converge.

We make two observations in the case of PROB-IRM
(lower row). First, most learning curves display one or more
sudden changes: when a new RM is learnt, the agent’s pol-
icy is discarded and a new one starts being trained, thus
leading to a temporary decrease in performance. The fre-
quency of RM relearning increases with the level of noise.
Second, we observe that PROB-IRM often reaches the base-
line performance in a comparable number of episodes, thus
providing a positive answer to research questions RQ1 and
RQ2. We highlight three exceptions: the first is found in
the noisiest configuration for COFFEEMAIL, where many
agents triggered RM relearning near the end of their train-
ing, thus ending with subpar performance. The second and
third exceptions are represented by the two most noisy con-
figurations for VISITABCD, which is the hardest task.

4.3 Multiple Noise Sources
We here assess PROB-IRM’s ability to deal with multiple in-
dependent sources of noise; hence, we consider the noise-all
setting for the COFFEE task to answer RQ3. In this setting,
the number of noise sources is effectively tripled as com-
pared to our baseline experiments: in addition to the noisy
K sensor, the ∗ and o sensors are also noisy.

We initially considered the set of posterior values used in
the previous experiments; however, our experiments do not
terminate within a 24-hour timeout period using a posterior
of 0.5. This is unsurprising, as the learning task associated
with this configuration is extremely complex. After exper-
imenting with different posteriors ranging from 0.5 to 0.8,
we find 0.75 to be a soft limit for the reliable applicability of
PROB-IRM. Although more noise can be handled correctly,
the training time increases rapidly.

https://github.com/rparac/Prob-IRM
https://github.com/rparac/Prob-IRM
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Figure 2: Learning curves for the three OFFICEWORLD tasks, where the upper row corresponds to the baseline agents provided with hand-
crafted RMs, and the lower row corresponds to the agents trained with PROB-IRM.

Figure 3 presents the results. We observe that PROB-IRM
agents consistently achieve a high performance despite the
notable increase in noise. When comparing these results
with the noise-first scenario considered in the previous sec-
tion, we notice a slight decrease in the average undiscounted
return and a larger number of episodes required to converge.
The magnitude of these effects appears to be directly propor-
tional to the amount of noise on each sensor, as corroborated
by the learning curve for a posterior of 0.75.

4.4 Ablation Studies
Reward Shaping. To confirm the effectiveness of our re-
ward shaping method, we replicate the setup in Section 4.3
but train the agents without reward shaping. Figure 4
presents the resulting learning curves. When comparing
them with those in Figure 3, the positive impact of reward
shaping is immediately apparent: for each level of noise, its
use leads to a substantial decrease in the number of train-
ing episodes required to reach high performance, in addition
to an actual increase in the agents’ proficiency at the end
of training. Moreover, its effectiveness grows higher as the
amount of noise in the environment increases, thus proving
it to be a very useful tool for dealing with such scenarios.

The reason behind its effectiveness lies in how reward
shaping influences both policy training and RM learning.

On the one hand, the intermediate rewards it provides help
the agents improve their Q-value estimates faster, especially
when rewards are sparse, thus leading to better policies
sooner. On the other hand, they allow for incorrect RMs
to be identified and discarded earlier in the learning process.
When a candidate RM does not correctly reflect the task’s
structure, reward shaping nevertheless encourages the agents
to act consequently. This, in turn, induces the agents to fol-
low trajectories that are more likely to provide inconsistent
examples for the RM learner.

Post-Hoc Analysis: Belief Updating vs Thresholding. In
the last set of experiments, we aim to provide an empirical
justification for our choice of a belief-updating paradigm,
presented in Section 3.3. A valid alternative is represented
by thresholding, which treats every proposition whose asso-
ciated belief exceeds a fixed value as true. The main advan-
tage of this strategy is not needing to maintain a belief over
the RM states; instead, the RM state is updated by following
the transitions triggered by the propositions deemed to be
true after thresholding. Unfortunately, this upside is over-
shadowed by the fact that, under our sensor model, thresh-
olding either works perfectly or does not work at all.

To support this claim, we train two sets of PROB-IRM
agents to solve the COFFEE task under the noisy-all setting
with a posterior of 0.8. The first set operates with a thresh-



Figure 3: Learning curves for PROB-IRM agents trained to solve
the COFFEE task in the noise-all scenario.

Figure 4: Learning curves for PROB-IRM agents trained to solve
the COFFEE task in the noise-all scenario without reward shaping.

old of 0.7 (lower than the noise posterior), whereas the sec-
ond uses a threshold of 0.9. Figure 5 presents the resulting
learning curves. We observe that thresholding achieves good
results when the threshold is lower than the posterior since
it recognizes the truth value of every proposition correctly;
however, when the threshold is too high, the agents incor-
rectly identify every proposition, thus making learning im-
possible. This highlights the issue of thresholding under our
sensor model: to be successful, thresholding requires either
precise knowledge of the noise posterior an agent is subject
to, or a careful tuning of the threshold parameter. Both re-
quirements can be restrictive in many practical use cases.

Unlike thresholding, the belief-updating approach we use
is applicable regardless of the availability of any informa-
tion, does not introduce an additional hyperparameter that
might require extensive tuning, and performs very well in
the same experimental setting we discuss in this section, as
shown in Figure 3.

5 Related Work
Since the introduction of reward machines by Toro Icarte
et al. (2018), there have been several approaches for
learning them from traces in non-noisy settings. These
approaches include discrete optimization (Toro Icarte et
al. 2019; 2023), inductive logic programming (ILP; Furelos-
Blanco et al. 2021; Ardon, Furelos-Blanco, and Russo 2023;
Furelos-Blanco et al. 2023), program synthesis (Hasanbeig
et al. 2021), or SAT solving (Xu et al. 2020; Corazza,
Gavran, and Neider 2022). Our method employs ILASP
(Law, Russo, and Broda 2015), a system also used in the
aforementioned ILP works, to learn the RMs. Given its
inherent robustness to noisy examples, ILASP-based ap-
proaches were the best positioned to be extended.

Existing RM learning methods focus on either accurately
predicting the next label from the previous one (Toro Icarte
et al. 2019; Hasanbeig et al. 2021; Toro Icarte et al. 2023),
or learning a minimal RM (i.e., with the fewest number of
states) that makes the reward signal Markovian (Xu et al.
2020; Furelos-Blanco et al. 2021; Hasanbeig et al. 2021;
Corazza, Gavran, and Neider 2022; Ardon, Furelos-Blanco,
and Russo 2023; Furelos-Blanco et al. 2023). Our method
falls into the latter category. We hypothesize that the ap-
pearance of erroneous labels in the noisy setting makes RMs
challenging to learn for methods in the former category.

The learning of RMs from noisy labels has only been pre-
viously considered by Verginis et al. (2024). Their work
focuses on optimizing the noisy labelling function to model
the perfect labelling function after thresholding, enabling the
use of existing algorithms for RM learning. In contrast, our
approach directly integrates noise into the RM learning pro-
cedure. Besides, PROB-IRM is orthogonal to the choice of
the sensor model, so we could integrate a similar mecha-
nism to achieve better results; however, their mechanism is
less general since it assumes that in state s, the perfect la-
belling function L(s) always returns the same label L, mak-
ing it unusable if the environment configuration (e.g., lay-
out) changes between episodes.

Considering RMs with uncertainty more broadly,
Corazza, Gavran, and Neider (2022) learn RMs that output
stochastic rewards. Dohmen et al. (2022) propose an algo-
rithm for learning probabilistic RMs, which are stochastic in
both the state-transition and the reward-transition functions.
The exploitation of RMs with a noisy labelling function
was previously studied by Li et al. (2022; 2024); indeed, we
employ their independent belief updating approach in the
RM exploitation and discuss the thresholding approach in
the evaluation.

6 Conclusions and Future Work
In this paper, we have introduced PROB-IRM, a method for
learning and exploiting RMs from noisy traces perceived by
a RL agent. We have shown that the method performs com-
parably to an algorithm where the RM is given in advance.
Being able to deal with noisy labelling functions enables
more realistic applications of RM-learning.

In future work, we plan to assess PROB-IRM’s
performance in continuous domains such as WATER-



Figure 5: Learning curves for PROB-IRM agents employing
thresholding to solve the COFFEE task under a noise-all setting
with a posterior of 0.8.

WORLD (Karpathy 2015) and with autonomous embodied
agents. Previous studies have demonstrated that incorpo-
rating an adversary into the RL training process enhances
policy robustness (Pinto et al. 2017); likewise, we aim to
investigate whether RM learning from noisy examples is re-
silient against attacks on RMs (Nodari 2023). Finally, we
strive to improve the system’s scalability to learn RM with
more than seven states. Learning hierarchies of RMs (Lauf-
fer et al. 2022; Furelos-Blanco et al. 2023) is a promising
possibility since they enable learning smaller yet equivalent
RMs.
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