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The network operators are forced to find cost and energy efficient solutions for networks supporting new and 
emerging services with strict latency and ultra-high-capacity requirements. A disruptive approach for delivering 
network agility in a cost and energy efficient manner is employing filterless optical networking based on broadcast-
and-select nodes and coherent transceivers. The filterless network concept has been widely studied for terrestrial 
and submarine applications. In this paper, we investigate performance of filterless optical networks in metropolitan 
core and aggregation networks where agility is required due to service dynamics, customer changes and service 
flexibility requirements. We compare our results with a conventional metro network based on active switching. The 
results show that filterless metro network based on a hierarchical structure similar to its active switching 
counterpart has comparable installed first cost and spectrum usage at 11 Tb/s of total traffic, as well as a cost and 
wavelength consumption advantage of 19.5% and 16%, respectively, at 107 Tb/s of total traffic. These results 
confirm that the filterless architecture is an attractive alternative for metro network deployments. © 2023 Optica 
Publishing Group

http://dx.doi.org/10.1364/JOCN.99.099999

1. INTRODUCTION

The ceaseless traffic growth and the competitive 
telecommunications market necessitate re-thinking network 
architectures for profitable operation. To reduce the network 
cost while efficiently maintaining capacity growth, network 
operators are examining novel solutions that also ensure flexible 
service support. Today’s networks support flexibility at all levels 

including agile wavelengths, which brings significant 
operational expenditure (OpEx) benefits. Agility at the 
wavelength level refers to the reconfigurable wavelength 
routing. In today’s optical networks, wavelength agility is 
provided by active switching elements such as reconfigurable 
optical add-drop multiplexers (ROADMs) [1]. In order to 
improve the profitability, one can eliminate or minimize the 

number of active photonic reconfigurable elements in optical 
line systems [2]. This can be realized thanks to the technological 
advancements in coherent transmission such as electronic 
impairment compensation, tunable transmitters and coherent 
receivers, which makes it possible to implement the filterless 

network concept. 
In our previous work, we have shown that agility can be 

realized by employing the filterless concept in terrestrial 
networks [3-5] and submarine networks [6-8] with some trade-
offs. A key benefit of this option is that it offers an intrinsically 
gridless passive architecture making it inherently suitable for 
elastic optical networking. Consequently, filterless solutions are 
being explored, with some deployments, by network operators, 
for application in regional and core networks. In fact, filterless 
optical networks have been trialed and deployed in Europe since 
2012 [9,10]. The previous studies indicate strong potential of 
filterless networks to support flexible and cost-efficient core and 
submarine networking solutions. However, their suitability in 
the rapidly evolving metro segment where agility is required due 
to service dynamics, customer changes and service flexibility 

requirements has not been analyzed thoroughly and requires 
further examination. Metro optical networks are currently under 
pressure as a consequence of the exponential traffic growth 
generated by residential, enterprise and data center (DC) 
services such as media streaming, Virtual Private Network 
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(VPN), Internet, as well as wireless 4G, 5G and beyond networks.  
In [11], we performed a preliminary investigation of the 

significance of filterless solutions in the metro environment by 
comparing a ROADM-based and an equivalent filterless solution 
based on the same 3-layer hierarchical structure. It was shown 
that the cost of this particular filterless metro solution was 
comparable to the cost of a conventional metro solution.  In [12], 
we proposed an additional single-layer filterless solution more 
suitable for broadcast transmission in passive fiber trees.  

In this paper, we extend the work presented in [12] by 
introducing a three-layer filterless solution and conducting a 
comparative analysis of the cost, wavelength usage and power 
consumption of both single-layer and 3-layer filterless network 
solutions and their ROADM-based counterparts in a multi-
period scenario. Based on the results, we discuss the benefits 

and trade-offs of filterless metro networks. 
The paper is organized as follows. Section II summarizes the 

concept and advantages of filterless networks in core 
applications. In Section III, we propose filterless architectures 
for a metropolitan network scenario. A comparative analysis of 
filterless and conventional active switching solutions in terms of 
cost, wavelength usage and power consumption is carried out in 

Section IV. Finally, Section V provides concluding remarks on the 
suitability of filterless architectures in metro applications. 

2. FILTERLESS NETWORKING CONCEPTS  

Filterless and active switching network architectures are 
contrasted in Fig. 1. Currently, reconfigurable optical networks 

are built with ROADMs utilizing active wavelength selective 
switch (WSS) elements. The filterless network architecture, first 
introduced in [2], utilizes the characteristics of coherent optical 
transmission to deliver network agility at lower cost compared 
to the ROADM based approach. Unlike ROADM-based 
architectures, where reconfigurability is realized via active 
photonic switching elements at selected network nodes, 
filterless networks rely on tunable edge nodes equipped with 
coherent transponders to deliver reconfigurability, and deploy 

passive optical splitters and combiners at network nodes. The 
optical fiber links interconnected by passive splitters and 
couplers form a set of passive fiber trees. The absence of active 

switching and filtering components results in a broadcast-and-
select network. The edge terminals perform wavelength 
selection by adjusting the frequency of the local oscillator in 
tunable coherent transceivers and filtering the desired signal in 
baseband. 

The system benefits of filterless optical networks are many-
fold. The removal of WSSs translates into simplified optical line 
systems with lower cost, footprint, and power consumption, as 
demonstrated in [5,6,8]. This simplification also improves 
robustness to hardware and software malfunctions and 
improves the network reliability performance by increasing the 
mean time between failures (MTBF) [13]. In addition, the 
absence of filters makes filterless networks intrinsically gridless 
and thus inherently suitable for elastic optical networking and 
innovations such as dynamic spectrum allocation. Moreover, 

colourless node operation is possible since terminals can access 
all Dense Wavelength Division Multiplexing (DWDM) 
wavelengths and select the specified channels. The broadcast 
nature of filterless optical networks implies the innate support 
of multicast traffic. Other benefits include easy network 
planning, and fast connection establishment [14]. By allowing 
the traffic from higher protocol layers to be handled more easily 

and cost-effectively in bulk at the wavelength layer compared to 
active switching nodes, the passive channel bypass and add-drop 
functionality at filterless nodes is a key enabler for multilayer 
networking. Moreover, simpler impairment-aware routing in 
filterless networks makes software-defined networking (SDN) 
control more straightforward [15]. 

Filterless network solutions have been proposed initially for 
terrestrial and submarine applications [4,5,16-20]. As expected, 
it was shown that the replacement of switching and filters in core 
network nodes by simple passive fiber couplers leads into 
significant cost savings. Similar cost studies carried out on 
undersea network topologies have shown reductions of 30-44% 
in terminal costs and 11-12% in line equipment costs when 
compared to conventional submarine network solutions based 
on ROADMs deployed at the cable landing stations only [6-8,19]. 
Application of filterless architecture in metropolitan networks 
has also been proposed first in [11] and studied further in 
[12,22-25,26]. A tutorial on filterless optical networks can be 
found in [27]. 

 
 

Fig. 1. Contrasting ROADM-based and filterless network architectures. 

 



Spectrum consumption in filterless networks has been 
studied extensively [4-8,16-21,28]. The results show that fixed-
grid filterless network approaches can consume 10-50% more 
spectrum than ROADM-based solutions, depending on the 
physical topology and traffic load. The higher spectrum 
consumption is mainly due to the signal splitting mechanism into 
the passive filterless branches of a fiber tree, and the broadcast 

transmission from the source to the destination nodes where 
unfiltered signals are not terminated and propagate beyond the 
destination nodes.  Additional 20-30% savings in spectrum 
consumption are possible through flex-grid operation which can 
be achieved at minimal upgrade cost in filterless networks 
[5,18]. Multi-band transmission using an unamplified L-band 
system has also been proposed to increase the capacity of metro 
filterless networks [29]. 

The presence of these unfiltered signals magnifies wavelength 
or spectrum consumption, as the spectral resources occupied by 
these channels cannot be reused for other connections. The extra 
wavelength consumption issue can be alleviated by adding 
wavelength blockers (or colored fixed passive filters) in optimal 
locations between fiber trees. This hybrid approach, referred to 
as semi-filterless networks [30,31], offers reduced propagation 

of unfiltered channels between the nodes. 
In addition, a programmable filterless network architecture 

can be realized by combining filterless transmission with 
programmable optical switches, thus making filterless networks 
more flexible 19. By adapting the node architecture to the 
network traffic, the programmable filterless networks can 
reduce splitting ratios and the resulting optical losses, as well as 

reduce the spectrum waste.  
As shown in previous studies, filterless solutions are most 

suitable for networks with a small number of nodes ( 10-12) 
and size (with respect to system transmission reach), as well as 

relatively high average connectivity ( 0.8) and high average 

nodal degree ( 3.0) [3-8,16].  
Encouraged by these properties and by the evolution of 

metropolitan networks we are investigating application of 
filterless networks in metropolitan areas. A preliminary 
comparison in terms of wavelength and power consumption of a 
single-layer filterless and ROADM-based network solutions was 
presented at IEEE FNWF 2022 [12]. In the following sections we 

extend the preliminary work by considering a three-layer 
filterless solution and performing a comparative performance 
analysis with their ROADM-based counterparts in terms of cost, 
wavelength and power consumption.  

3. CONSIDERED METRO AND AGGREGATION 
NETWORKS ARCHITECTURES 

A. ROADM-based metropolitan network 

An example of ROADM-based metropolitan optical network for 
the transport business of an incumbent service provider is 
shown in Fig. 2. The network topology (based on a North 
American city of about 5 million population such as Atlanta, GA) 
consists of 60 Tier 3 end office nodes (EOs) which are connected 
directly to adjacent pairs of 25 Tier 2 collector nodes (CollNs), 
then to 15 Tier 1 core nodes (CNs) and 4 gateway nodes (GNs) 
using diverse paths [12]. The 60 EOs (not shown in Fig. 2 for the 

sake of simplicity) are located at the suburban edge where the 
access systems and wireless sites collect and distribute services 

to the clients. For traffic replication and protection 
considerations, each CollN is connected to 2 CNs, each CN is 
connected to 4 other CNs as well as to the 4 GNs, either directly 
or via another node. The traffic leaving the metro network and 
destined to the core network pass by the GNs. Two video hub 
offices (VHO), as well as two edge data centers (DCs) and mobile 
telephone switching offices (MTSOs) are co-located at GNs.  

The ROADM-based solution is composed of three layers for 
CollN-CN, CN-CN and CN-GN interconnection, respectively. The 
layers are interconnected through electronic multiplexers at 
inter-layer nodes. Coloured channel mux/demux (fixed filters) 
and WSS-based ROADMs are commonly deployed at all nodes. 
Optical amplifiers are used at the terminal sites for intranode 
loss compensation but, given the short distances at play, no line 
amplifier is used. The total lit distance is 1813.3 km (i.e., 237.6 
km for the CollN-CN layer, 692.7 km for the CN-CN layer and 21.6 
km for the CN-GN layer). Within each layer, traffic between node 
pairs is interconnected using a ROADM.  

Fig. 3 shows the network traffic scenario considered in this 

 

 
 

Fig. 2. Metropolitan optical network topology composed of 25 
collector nodes, 15 core nodes and 4 gateway nodes. [12,32] 

 
 
  

 
 
Fig. 3. Network traffic scenario considered in this study. [12] 

 



study. The network traffic originates from services delivered to 
residential, business, and wireless 4G and 5G clients. Traffic 
volumes are derived from an end user consumption perspective 
considering the following:  

- Residential: busy hour loading, linear and on-demand 
entertainment video dominant services (VHO);  

- Small, medium and large enterprise: virtual private 
network (VPN) and Internet services (Wired Internet);  

- Very large enterprise: DC traffic (Edge DC);  
- Wireless voice and data (4G and 5G).  
The total volumes of traffic in Fig. 3 are obtained by summing 

the different traffic types at the EOs. A uniform yearly growth of 
25% is assumed for all services over the 10 growth periods 
considered in this study [33]. Note that the same growth factor 
has been applied to VHO traffic although growth is likely to be 
much slower due to service substitution by streaming 
entertainment. The overall impact on traffic volumes is 
inconsequential to the study. 

B. Three-layer filterless solution 

A 3-layer filterless solution for the metro network example is 
shown in Fig. 4. The solution is composed of three layers, each 
comprising a set of passive edge-disjoint fiber trees 
(represented in different colors). Based on capacity demand and 
fiber topology, the fiber trees are created using passive optical 
splitters and combiners by taking into account the network 
connectivity, laser loop and 20 spans x 20 km system reach 

constraints 3. As for the ROADM-based solution, the layers are 
interconnected via electronic multiplexers at the inter-layer 

nodes. The first layer, shown in the bottom of Fig. 4a and Fig. 4b, 
interconnects the 25 collector nodes to the 15 core nodes. The 
second layer (Fig. 4c) interconnects the core nodes for traffic 
replication purposes. Finally, the five fiber trees shown in the top 
layer of Fig. 4a and Fig. 4d connect the core nodes to the gateway 

nodes. The ingress/egress nodes in the filterless solution are 
equipped with passive colorless power combiners/splitters for 
channel add/drop as well as optical amplifiers for compensation 
of power loss in splitters and fibers.  

This filterless solution was obtained in a non-optimized 
manner by re-using the same network segmentation (layering 
strata) and connectivity constraints as in the ROADM-based 
solution. This approach, although not the best suited for the 
filterless case, was used to compare two network architectures 
delivering similar traffic connectivity.  

C. Single-layer filterless solution 

In this section, we consider the filterless solution based on lower 
network connectivity proposed in [12], which is more suitable 

for the passive broadcast transmission than the previously 
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Fig. 4. Three-layer filterless network solution example (a) for interconnecting the collector nodes to the core nodes, layer 1 (b), the core 
nodes, layer 2 (c), and the core nodes to the gateway nodes, layer 3 (d). 

 

 
 

Fig. 5. Single-layer filterless network solution based on lower 
connectivity constraints, compared to the ROADM-based and 3-
layer filterless solution. Each CN and each CollN is connected to 4 
GNs, and the 4 GNs are interconnected [12]. 

 



described three-layer case. Fig. 5 shows the single-layer filterless 
solution in which each CN and each CollN is connected directly 
to the 4 GNs at the wavelength level, and the 4 GNs are 

interconnected. The solution comprises 5 bi-directional fiber 
trees, created by considering the same laser loop and fiber tree 
length constraints as for the three-layer case. 

4. COMPARATIVE PERFORMANCE ANALYSIS 

In this section, a comparative performance analysis of the two 
filterless solutions and the ROADM-based solution, in terms of 
cost, wavelength consumption and power consumption, is 
performed in order to evaluate the potential benefits and trade-
offs of filterless metro network architectures. A 60-channel 
fixed-grid transmission system at 200 Gb/s per wavelength and 
a link budget enabling 20 spans of 20 km is considered in this 
study. High-capacity interfaces used in metro applications are 
evolving from 100 Gb/s and 200 Gb/s to 400 Gb/s, 800 Gb/s and 
1.2 Tb/s in the future. 200 Gb/s is a common speed offering; for 
example, high performance server network interface cards 
(NICs) are 200G. 200G per channel was selected as a 
representative capacity in this study.  The total client metro 
traffic is considered over 10 growth periods, as shown in Fig. 2. 
The unit cost and power consumption values for each 
component are shown in Table 1. The costs and power 
consumption values of the network elements are normalized to 
those of a 200G transceiver.  

A . Cost 

In this section, the costs of the filterless and ROADM-based 
metro solutions are evaluated over 10 growth period using the 
cost data in Table 1. In both the filterless and the filtered 

solutions, the terminal/ROADM common equipment includes 
the cost of an electronic switch.  

As shown in Fig. 5, the 3-layer filterless solution has lower cost 
than the ROADM-based solution over all the traffic periods, with 

a slightly lower installed first cost and a 19.5% cost benefit at 
period 10. These results contrast with those obtained in our 
previous studies for regional and core networks in which the 
cost of the filterless solution was significantly lower than that of 
a conventional ROADM solution. The origin of the difference in 
regional and core applications is due to replacement of switching 

and filtering elements by fiber couplers, as explained in [12]. The 
cost advantage of the single-layer filterless solution is greater 
and goes from 21.7% to 45.4% during the growth periods. The 
key mechanisms behind these savings are the lower number of 
transceivers and electrical multiplexers, as well as the absence 
of ROADMs. The cost advantage is obtained in this case at the 
expense of lower connectivity. Fig. 7 shows the combined cost 

evolution of all three architectures, where the cost of the single-
layer filterless network exhibits the lowest growth rate.   

Beside the cost advantages of the filterless (particularly the 
single-layer) solutions compared to the ROADM-based solution, 
there are several intrinsic positive features of the filterless 
solution that need to be considered. For example, the inherent 
gridless architecture making it ready for flexi-grid operation. 
Cost benefit can also be expected in the long run due to cost 

Table 1. Component cost and power consumption. [12,32] 

Component 
Unit 
cost 

Unit 
power 

Unit 
power/λ 

200G transceiver 1.000 1.00 1.0000 

Electrical mux and client 2.000 1.44 0.0240 

ROADM (1×9 WSS) 1.500 1.44 0.0240 

EDFA (ingress/egress) 0.800 1.15 0.0192 

Mux/demux 0.050 0 0 

Splitter/combiner 0.015 0 0 

 

 
  

(a) (b) (c) 

Fig. 6. Cost comparison: (a) ROADM-based solution; (b) three-layer filterless solution; (c) single-layer filterless solution. 

 

 
Fig. 7. Evolution of  the network costs. 

 
 



efficient support of traffic growth and network upgrades over 
the years, which can be observed in the results. Further savings 
on operational costs can arise from the lower power 
consumption and the lower failure rates of the passive 
components [12,13]. 

B. Wavelength consumption 

In this section, the wavelength consumption for the ROADM- 
based and filterless solutions over the 10 growth periods is 
evaluated. Shortest-path routing over the fiber trees and first-fit 
wavelength assignment was used for all the demands. As shown 
in Fig. 8, the wavelength consumption of the 3-layer filterless 
network and the ROADM-based solutions is similar during the 
first four traffic periods. In both cases, CN1-CN4 is the highest 
load link and the average demand length is similar (54.7 km in 
the filterless case and 46 km in the ROADM-based case). At 
period 3 (21 Tb/s), the 3-layer filterless solution utilizes only 4% 
more wavelengths than its active switching counterpart. As the 
total traffic increases, the 3-layer filterless solution outperforms 
the ROADM-based approach by 16% at period 10. This can be 
seen as counterintuitive, but note that the shortest path in the 

filterless case corresponds to the shortest path along a given 
fiber tree, resulting in a number of wavelengths which depends 
on the architecture of the fiber trees. As it can be seen on Fig. 8, 
the 3-layer filterless solution benefits from a narrower 
distribution of demand lengths around 20-30 km compared to 
its ROADM-based counterpart. The majority of short demand 
length s, compared to the ROADM-based case, explains the 
advantage of 3-layer filterless approach in terms of wavelength 
consumption.   

On the other hand, the single-layer filterless solution 
consumes 19% more wavelengths compared to the ROADM-
based case at period 0. In this case, CN4-CN3 is the highest load 
link and the average demand length is 127.6 km. A histogram of 
the established path lengths for all three analyzed architectures 
is shown in Fig. 9. The longer path length in the single-layer 
filterless case leads to a higher total wavelength usage for this 
solution. Furthermore, the rate of increase of the wavelength 
consumption for the single-layer filterless solution is higher than 
for the two other solutions, which makes the single-layer 
filterless option perform worse at very high traffic levels. The 
43% extra wavelength consumption observed for the single-
layer filterless solution at year 10 matches with the results of our 

previous long distance core network studies 3-8,16.  

 
Fig. 8. Evolution of  the wavelength consumption. 

 
 

 
Fig. 9. Histogram of the demand lengths. 
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Fig. 10. Comparative power consumption: (a) conventional ROADM-based solution; (b) three-layer filterless solution; (c) single-layer 
filterless solution. 

 



C. Power consumption 

The power consumption of the filterless and ROADM-based 
solutions is studied in this section.  Fig. 10 presents results for 
the power consumed by each sub-system in each of the 
considered architectures. In all cases, the colored line interfaces 
consume the dominant amount of power, whose growth exhibits 
similar trends as the traffic increases. The three-layer filterless 
solution exhibits less power consumption to the ROADM-based 
solution, thanks to the removal of the active switching ROADM 
elements. The single-layer filterless solution brings additional 
savings on the power consumed by electrical mux and clients 
due to the absence of inter-layer nodes and, hence, a lower 
extent of electronic multiplexing.  

Fig. 11 shows the evolution of the power consumption for the 
three considered network architectures. The power 
consumption of the 3-layer filterless and ROADM-based 
solutions is very similar for all the traffic periods, with 6% 
savings for the filterless case. As expected, the power savings are 
greater for the simplest (single strata) solution, increasing from 

14% to 36% as traffic increases. 

5. CONCLUSIONS 
In this paper, the feasibility of applying filterless architectures in 
metropolitan networks has been evaluated.  

A case study comparing cost, wavelength and power 
consumption in a multi-period traffic growth scenario has been 
carried out. The results show that filterless metro network based 
on a hierarchical structure and network connectivity similar to 
its active switching counterpart has comparable installed first 
cost and spectrum usage (i.e., at 11 Tb/s total traffic in the 
beginning of the considered time period), while the cost and 
wavelength consumption advantage of 19.5% and 16%, 
respectively, can be observed over the 10-year growth period 
(with maximum of 107 Tb/s of total traffic).  

The novelty in this work is more than comparing a ROADM-
based nodal implementation with a filterless approach where 
the simpler implementation comes from exploiting coherent 
technologies. The paper compares similar (three-layer) ROADM-
based and filterless network architectures and also an alternate 
single-layer implementation well suited to a filterless approach 
which simplifies implementation.  

It is shown that filterless solutions offer an attractive 
alternative to conventional metro network implementations 
supporting increasing traffic flows. In large metropolitan cities 
filterless solutions achieve power and cost savings. While the 
single layer filterless alternative experiences higher spectrum 
consumption, the three-layer filterless option has a potential for 

spectrum savings compared to the ROADM-based option. 
In our future work, we will study the impact of revised traffic 

patterns due to the increasing deployment of edge DCs, which 
will increase the number of GNs and, consequently, require more 
meshed connectivity, which effectively increase the number of 
GNs and are likely to require more meshed connectivity. 
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