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Abstract

We consider a model in which a trader aims to maximize expected risk-adjusted profit while

trading a single security. In our model, each price change is a linear combination of observed

factors, impact resulting from the trader’s current and prior activity, and unpredictable random

effects. The trader must learn coefficients of a price impact model while trading. We propose

a new method for simultaneous execution and learning – the confidence-triggered regularized

adaptive certainty equivalent (CTRACE) policy – and establish a poly-logarithmic finite-time

expected regret bound. This bound implies that CTRACE is efficient in the sense that the

(ǫ, δ)-convergence time is bounded by a polynomial function of 1/ǫ and log(1/δ) with high

probability. In addition, we demonstrate via Monte Carlo simulation that CTRACE outperforms

the certainty equivalent policy and a recently proposed reinforcement learning algorithm that

is designed to explore efficiently in linear-quadratic control problems.

Key words: adaptive execution, price impact, reinforcement learning, regret bound

1 Introduction

A large block trade tends to “move the market” considerably during its execution by either dis-

turbing the balance between supply and demand or adjusting other market participants’ valu-

ations. Such a trade is typically executed through a sequence of orders, each of which pushes

price in an adverse direction. This effect is called price impact. Because it is responsible for a

large fraction of transaction costs, it is important to design execution strategies that effectively

1

http://arxiv.org/abs/1207.6423v1
mailto:beomsoo@stanford.edu
mailto:bvr@stanford.edu


manage price impact. In light of this, academics and practitioners have devoted significant atten-

tion to the topic [Bertsimas and Lo [1998], Almgren and Chriss [2000], Kissell and Glantz [2003],

Obizhaeva and Wang [2005], Moallemi et al. [2008], Alfonsi et al. [2010]].

The learning of a price impact model poses a challenging problem. Price impact represents an

aggregation of numerous market participants’ interpretations of and reactions to executed trades.

As such, learning requires “excitation” of the market, which can be induced by regular trading

activity or trades deliberately designed to facilitate learning. The trader must balance the short

term costs of accelerated learning against the long term benefits of an accurate model. Further,

given the continual evolution of trading venues and population of market participants, price impact

models require retuning over time. In this paper, we develop an algorithm that learns a price

impact model while guiding trading decisions using the model being learned.

Our problem can be viewed as a special case of reinforcement learning. This topic more broadly

addresses sequential decision problems in which unknown properties of an environment must be

learned in the course of operation (see, e.g., Sutton and Barto). Research in this area has es-

tablished how judicious investments in decisions that explore the environment at the expense of

suboptimal short-term behavior can greatly improve longer-term performance. What we develop

in this paper can be viewed as a reinforcement learning algorithm; the workings of price impact are

unknown, and exploration facilitates learning.

In reinforcement learning, one seeks to optimize the balance between exploration and exploita-

tion – the use of what has already been learned to maximize rewards without regard to further

learning. Certainty equivalent control (CE) represents one extreme where at any time, current

point estimates are assumed to be correct and actions are made accordingly. This is an instance

of pure exploitation; though learning does progress with observations made as the system evolves,

decisions are not deliberately oriented to enhance learning.

An important question is how aggressively a trader should explore to learn a price impact model.

Unlike many other reinforcement learning problems, in ours a considerable degree of exploration

is naturally induced by exploitative decisions. This is because a trader excites the market through

regular trading activity regardless of whether or not she aims to learn a price impact model.

This activity could, for example, be triggered by return-predictive factors, and given sufficiently

large factor variability, the induced exploration might adequately resolve uncertainties about price
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impact. Results of this paper demonstrate that executing trades to explore beyond what would

naturally occur through exploitation can yield significant benefit.

Our work is constructive: we propose the confidence-triggered regularized adaptive certainty

equivant policy (CTRACE), pronounced “see-trace,” a new method that explores and learns a

price impact model alongside trading. CTRACE can be viewed as a generalization of CE, which at

each point in time estimates coefficients of a price impact model via least-squares regression using

available data and makes decisions that optimize trading under an assumption that the estimated

model is correct and will be used to guide all future decisions. CTRACE deviates in two ways: (1)

ℓ2 regularization is applied in least-squares regression and (2) coefficients are only updated when a

certain measure of confidence exceeds a pre-specified threshold and a minimum inter-update time

has elapsed. Note that CTRACE reduces to CE as the regularization penalty, the threshold, and

the minimum inter-update time vanish.

We demonstrate through Monte Carlo simulation that CTRACE outperforms CE. Further, we

establish a finite-time regret bound for CTRACE; no such bound is available for CE. Regret is

defined here to be the difference between realized risk-adjusted profit of a policy in question and

one that is optimal with respect to the true price impact model. Our bound exhibits a poly-

logarithmic dependence on time. Among other things, this regret bound implies that CTRACE is

efficient in the sense that the (ǫ, δ)-convergence time is bounded by a polynomial function of 1/ǫ

and log(1/δ) with high probability. We define the (ǫ, δ)-convergence time to be the first time when

an estimate and all the future estimates following it are within an ǫ-neighborhood of a true value

with probability at least 1− δ. Let us provide here some intuition for why CTRACE outperforms

CE. First, regularization enhances exploration in a critical manner. Without regularization, we

are more likely to obtain overestimates of price impact. Such an outcome abates trading and

thus exploration, making it difficult to escape from the predicament. Regularization reduces the

chances of obtaining overestimates, and further, tends to yield underestimates that encourage

active exploration. Second, requiring a high degree of confidence reduces the chances of occasionally

producing erratic estimates, which regularly arise with application of CE. Such estimates can result

in undesirable trades and/or reductions in the degree of exploration.

It is also worth comparing CTRACE to a reinforcement learning algorithm recently proposed in

Abbasi-Yadkori and Szepesvàri [2010] which appears well-suited for our problem. This algorithm
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was designed to explore efficiently in a broader class of linear-quadratic control problems, and is

based on the principle of optimism in the face of uncertainty. Abbasi-Yadkori and Szepesvàri [2010]

establish an O(
√

T log(1/δ)) regret bound that holds with probability at least 1−δ, where T denotes

time and some logarithmic terms are hidden. Our bound for CTRACE is on expected regret and

exhibits a dependence on T of O(log2 T ). We also demonstrate via Monte Carlo simulation that

CTRACE dramatically outperforms this algorithm.

To summarize, the primary contributions of this paper include:

(a) We propose a new method for simultaneous execution and learning – the confidence-triggered

regularized adaptive certainty equivalent (CTRACE) policy.

(b) We establish a finite-time expected regret bound for CTRACE that exhibits a poly-logarithmic

dependence on time. This bound implies that CTRACE is efficient in the sense that, with

probability 1 − δ, the (ǫ, δ)-convergence time is bounded by a polynomial function of 1/ǫ and

log(1/δ).

(c) We demonstrate via Monte Carlo simulation that CTRACE outperforms the certainty equiva-

lent policy and a reinforcement learning algorithm recently proposed by Abbasi-Yadkori and Szepesvàri

[2010] which is designed to explore efficiently in linear-quadratic control problems.

The organization of the rest of this paper is as follows: Section 2 presents our problem for-

mulation, establishes existence and uniqueness of an optimal solution to our problem, and defines

performance measures that can be used to evaluate policies. In Section 3, we propose CTRACE and

derive a finite-time expected regret bound for CTRACE along with two properties: inter-temporal

consistency and efficiency. Section 4 is devoted to Monte Carlo simulation in which the performance

of CTRACE is compared to that of two benchmark policies. Finally, we conclude this paper in

Section 5. All proofs are provided in Appendix. Detailed proofs are available upon request.

2 Problem Formulation

2.1 Model Description

Decision Variable and Security Position We consider a trader who trades a single security over

an infinite time horizon. She submits a market buy or sell order at the beginning of each period
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of equal length. ut ∈ R represents the number of shares of the security to buy or sell at period t

and a positive (negative) value of ut denotes a buy (sell) order. Let xt−1 ∈ R denote the trader’s

pre-trade security position before placing an order ut at period t. Therefore, xt = xt−1 +ut, t ≥ 1.

Price Dynamics The absolute return of the security is given by

∆pt = pt − pt−1 = g⊤ft−1 + λ∗ut +
M
∑

m=1

γ∗
m(dm,t − dm,t−1) + ǫt

dm,t ,
t
∑

i=1

rt−im ui = rmdm,t−1 + ut, dt , [d1,t · · · dM,t]
⊤. (1)

We will explain each term in detail as we progress. This can be viewed as a first-order Taylor

expansion of a geometric model

log

(

pt
pt−1

)

= g̃⊤ft−1 + λ̃∗ut +
M
∑

m=1

γ̃∗
m(dm,t − dm,t−1) + ǫ̃t

over a certain period of time, say, a few weeks in calendar time, which makes this approximation

reasonably accurate for practical purposes. Although it is unrealistic that the security price can

be negative with positive probability, our model nevertheless serves its practical purpose for the

following reasons: Our numerical experiments conducted in Section 4 show that price changes after

a few weeks from now have ignorable impacts on a current optimal action. In other words, optimal

actions for our infinite-horizon control problem appear to be quite close to those for a finite-horizon

counterpart on a few week time scale. Furthermore, it turns out that in simulation we could learn

a unknown price impact model fast enough to take actions that are close to optimal actions within

a few weeks. Thus, learning based on our price dynamics model could also be justified. We will

give concrete numerical examples later to support these notions.

Price Impact The term λ∗ut represents “permanent price impact” on the security price of a

current trade. The permanent price impact is endogenously derived in Kyle [1985] from informa-

tional asymmetry between an informed trader and uninformed competitive market makers, and in

Rosu [2009] from equilibrium of a limit order market where fully strategic liquidity traders dynam-

ically choose limit and market orders. Huberman and Stanzl [2004] prove that the linearity of a

time-independent permanent price impact function is a necessary and sufficient condition for the

absence of “price manipulation” and “quasi-aribtrage” under some regularity conditions.
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The term
∑M
m=1 γ

∗
mdm,t indicates “transient price impact” that models other traders’ responses

to non-informative orders. For example, suppose that a large market buy order has arrived and

other traders monitoring the market somehow realize that there is no definitive evidence for abrupt

change in the fundamental value of the security. Then, they naturally infer that the large buy order

came merely for some liquidity reason, and gradually “correct” the perturbed price into what they

believe it is supposed to be by submitting counteracting selling orders. The dynamics of dm,t in (1)

indicates that the impact of a current trade on the security price decays exponentially over time,

which is considered in Obizhaeva and Wang [2005] that incorporate the dynamics of supply and

demand in a limit order market to optimal execution strategies. In Gatheral [2010], it is shown that

the exponentially decaying transient price impact is compatible only with a linear instantaneous

price impact function in the absence of “dynamic arbitrage.”

Observable Return-Predictive Factors We assume that there are multiple observable return-

predictive factors that affect the absolute return of the security as in Garleanu and Pedersen [2009].

Those factors could be macroeconomic factors such as gross domestic products (GDP), inflation

rates and unemployment rates, security-specific factors such as P/B ratio, P/E ratio and lagged

returns, or prices of other securities that are correlated with the security price. In our price

dynamics model, ft ∈ R
K denotes these factors and g ∈ R

K denotes factor loadings. The term

g⊤ft−1 represents predictable excess return or “alpha.” We assume that ft is a first-order vector

autoregressive process ft = Φft−1 +ωt where Φ ∈ R
K×K is a stable matrix that has all eigenvalues

inside a unit disk and ωt ∈ R
K is a martingale difference sequence adapted to the filtration {Ft =

σ({x0, d0, f0, ω1, . . . , ωt, ǫ1, . . . , ǫt})}. We further assume that ωt is bounded almost surely, i.e.

‖ωt‖ ≤ Cω a.s. for all t ≥ 1 for some deterministic constant Cω, and Cov[ωt|Ft−1] = Ω ∈ R
K×K

being positive definite and independent of t.

Unpredictable Noise The term ǫt represents random fluctuations that cannot be accounted

for by price impact and observable return-predictive factors. We assume that ǫt is a martingale

difference sequence adapted to the filtration {Ft}, and independent of x0, d0, f0 and ωτ for any

τ ≥ 1. Also, E[ǫ2t |Ft−1] = Σǫ ∈ R being independent of t. Finally, each ǫt is assumed to be

sub-Gaussian, i.e., E[exp(aǫt)|Ft−1] ≤ exp(C2
ǫ a

2/2), ∀t ≥ 1, ∀a ∈ R for some Cǫ > 0.

Policy A policy is defined as a sequence π = {π1, π2, . . .} of functions where πt maps the trader’s

information set at the beginning of period t into an action ut. The trader observes ft−1 and pt−1
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at the end of period t − 1 and thus her information set at the beginning of period t is given by

It−1 = {x0, d0, f0, . . . , ft−1, p0, . . . , pt−1}. A policy π is admissible if zt , [xt d
⊤
t f⊤

t ]⊤ generated

by ut = πt(It−1) satisfies limT→∞ ‖zT ‖2/T = 0. A set of admissible policies is denoted by Π.

Objective Function The trader’s objective is to maximize expected average “risk-adjusted”

profit defined as

lim inf
T→∞

E

[

1

T

T
∑

t=1

(

∆ptxt−1 − ρΣǫx
2
t

)

]

where the first term ∆ptxt−1 indicates change in book value and the second term ρΣǫx
2
t a quadratic

penalty for her non-zero security position in the next period that reflects her risk aversion. ρ is a

risk-aversion coefficient that quantifies the extent to which the trader is risk-averse.

Assumptions The following is a list of assumptions on which our analysis is based throughout

this paper. Let θ∗ , [λ∗ γ∗
1 . . . γ∗

M ]⊤ ∈ R
M+1. We will make two more assumptions as we progress.

Assumption 1. (a) The price impact coefficients θ∗ are unknown to the trader. Note that they can

be learned only through executed trades.

(b) The factor loadings g are known to the trader. This is a reasonable assumption since they can

be learned by observing prices without any transaction.

(c) The decaying rates r , [r1, . . . , rM ]⊤ ∈ [0, 1)M of the transient price impact are known to the

trader and all the elements are distinct. In practice, they are definitely not known a priori.

However, it can be handled effectively for practical purposes by using a sufficiently dense r with

a large M so that potential bias induced by modeling mismatch can be greatly reduced at the

expense of increased variance, which can be reduced by regularization.

(d) θ∗ ∈ Θ , {θ ∈ R
M+1 : 0 ≤ θ ≤ θmax, 1⊤θ ≥ β} for some θmax > 0 component-wise and some

β > 0. The constraint 1⊤θ ≥ β is imposed to capture non-zero execution costs in practice.

Note that Θ is compact and convex.

Notations ‖ · ‖ and ‖ · ‖F denote the ℓ2-norm and the Frobenius norm of a matrix, respectively.

a ∨ b and a ∧ b denote max{a, b} and min{a, b}, respectively. For a symmetric matrix A, A ≻ 0

means that A is positive definite and A � 0 means that A is positive semidefinite. λmin(A) indicates

the smallest eigenvalue of A. (A)ij of a matrix A indicates the entry of A in the ith row and in the

jth column. (v)i of a vector v indicates the ith entry of v. diag(v) of a vector v denotes a diagonal
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matrix whose ith diagonal entry is (v)i. A∗,j denotes the jth column of A and Ai:j,k indicates a

segment of the kth column of A from the ith entry to the jth entry. 1{B} denotes an indicator

function on the event B.

2.2 Existence of Optimal Solution

Now, we will show that there exists an optimal policy among admissible policies that maximizes

expected average risk-adjusted profit. For convenience, we will consider the following minimization

problem that is equivalent to maximize expected average risk-adjusted profit.

min
π∈Π

lim sup
T→∞

E

[

1

T

T
∑

t=1

(

ρΣǫx
2
t −∆ptxt−1

)

]

We call the negative of average risk-adjusted profit “average cost.” This problem can be expressed

as a discrete-time linear quadratic control problem

min
π∈Π

lim sup
T→∞

E







1

T

T
∑

t=1

[

z⊤
t−1 ut

]







Q S

S⊤ R













zt−1

ut












s.t. zt = Azt−1+But+Wt, ut = πt(It−1)

where zt = [xt d
⊤
t f⊤

t ]⊤, v = [0 γ∗⊤(diag(r)− I) g⊤]⊤, γ∗ = [γ∗
1 · · · γ∗

M ]⊤, e1 = [1 0 · · · 0]⊤,

Q = ρΣǫe1e
⊤
1 −

1

2
(ve⊤

1 + e1v
⊤), S = ρΣǫe1 −

1

2
(λ∗ + γ∗⊤1)e1, R = ρΣǫ,

A =















1 0 0

0 diag(r) 0

0 0 Φ















, B =















1

1

0















, Wt =















0

0

ωt















, Ω̃ , Cov[Wt] =















0 0 0

0 0 0

0 0 Ω















.

Note that R is strictly positive but Q is not necessarily positive semidefinite. Therefore, special care

should be taken in order to prove the existence of an optimal policy. We start with a well-known

Bellman equation for average-cost linear quadratic control problems

H(zt−1) + h = min
ut

E
[

ρΣǫ(xt−1 + ut)
2 −∆ptxt−1 +H(zt)

]

(2)
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where H(·) denotes a differential value function and h denotes minimum average cost. It is natural

to conjecture H(zt) = z⊤
t Pzt. Plugging it into (2), we can obtain a discrete-time Riccati algebraic

equation

P = A⊤PA+Q− (S⊤ +B⊤PA)⊤(R +B⊤PB)−1(S⊤ +B⊤PA) (3)

with a second-order optimality condition R + B⊤PB > 0. The following theorem characterizes

an optimal policy among admissible policies that minimizes expected average cost, and proves

existence and uniqueness of such an optimal policy.

Theorem 1. For any θ∗ ∈ Θ, there exists a unique symmetric solution P to (3) that satisfies

R+B⊤PB > 0 and ρsr(A+BL) < 1 where L = −(R+B⊤PB)−1(S⊤ +B⊤PA) and ρsr(·) denotes

a spectral radius. Moreover, a policy π = (π1, π2, . . .) with πt(It−1) = Lzt−1 is an optimal policy

among admissible policies that attains minimum expected average cost tr(P Ω̃).

For ease of exposition, we define some notations: P (θ) denotes a unique symmetric stabilizing

solution to (3) with θ∗ = θ. L(θ) , −(R+B⊤P (θ)B)−1(S(θ)⊤ +B⊤P (θ)A) denotes a gain matrix

for an optimal policy with θ∗ = θ, G(θ) , A + BL(θ) denotes a closed-loop system matrix with

θ∗ = θ, and U(θ) , 1L(θ)+ [A− I O] denotes a linear mapping from zt−1 to a regressor ψt used in

least-squares regression for learning price impact, i.e. ψt = U(θ)zt−1. Having these notations, we

make two assumptions about L(θ) as follows. Indeed, we can verify through closed-form solutions

that these assumptions hold in a special case which will be discussed in Subsection 2.3.

Assumption 2. (a) There exists CL > 0 such that ‖L(θ1)−L(θ2)‖ ≤ CL‖θ1−θ2‖ for any θ1, θ2 ∈ Θ.

(b) (L(θ))1 6= 0 and (L(θ))M+2 6= 0 for any θ ∈ Θ

Using Assumption 2, we can obatin an upper bound on ‖zt‖ uniformly over θ ∈ Θ and t ≥ 0.

Lemma 1. For any 0 < ξ < 1, there exists N ∈ N being independent of θ such that ‖GN (θ)‖ ≤ ξ for

all θ ∈ Θ. Thus, max0≤i≤N−1 supθ∈Θ ‖Gi(θ)‖ , Cg is finite. For any fixed θ ∈ Θ, ‖zt‖ ≤ Cg‖z0‖+

CgCω/(ξ(1−ξ1/N )) , Cz, ∀t ≥ 0 a.s. where zt = G(θ)zt−1+Wt. Moreover, supθ∈Θ ‖U(θ)‖ ≤ Cg+1.

Note that Lemma 1 can be applied only when θ is fixed over time. From now on, we assume

‖z0‖ ≤ 2CgCω/(ξ(1−ξ1/N )) without loss of generality otherwise we can always set Cg to be greater

than ‖z0‖ξ(1 − ξ1/N )/(2Cω).
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Figure 1: (Left) Relative error for PT : T = 300 corresponds to 3.8 trading days. (Right) Relative
error for L(θt) from CTRACE: Period 3000 corresponds to 38 trading days. The verical bars represent
two standard errors. In both figures, the simulation setting in Section 4 is used.

Finally, we present concrete numerical examples that support the validity of our price model

as an approximation of the geometric model for practical purposes. As we discussed earlier, our

numerical experiments conducted in Section 4 show that our infinite-horizon control problem could

be approximated accurately by a finite-time control problem with a time horizon on a few week

time scale. To be more precise, we define relative error for P
(T )
0 as ‖P (T )

0 − P‖/‖P‖ where P
(T )
t

denotes a coefficient matrix of a quadratic value function at period t for a finite-horizon control

problem with a terminal period T , and P denotes a coefficient matrix of a quadratic value function

for our infinite-horizon control problem. As shown in Figure 1, the relative error for P
(T )
0 appears

to decrease exponentially in T and the relative error for P
(300)
0 is almost 10−7 where T = 300

corresponds to 3.8 trading days.

Furthermore, we could learn unknown θ∗ fast enough to take actions that are close to optimal

actions on a required time scale. An action from a current estimate could be quite close to an

optimal action even if estimation error for the current estimate is large, especially in cases where a

few “principal components” of L(θ) with large directional derivatives with respect to θ are learned

accurately. To be more precise, we define relative error for L(θt) as

E[(L(θt)z
∗
t−1 − L(θ∗)z∗

t−1)2]

E[(L(θ∗)z∗
t−1)2]

=
(L(θt)− L(θ∗))Πzz(θ

∗)(L(θt)− L(θ∗))⊤

L(θ∗)Πzz(θ∗)L(θ∗)⊤

where z∗
t is a stationary process generated by u∗

t = L(θ∗)z∗
t−1 and Πzz(θ

∗) = E[z∗
t z

∗⊤
t ]. The relative

error for L(θt) indicates how different an action from an estimate θt is than an optimal action
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from the true value θ∗. Figure 1 shows how the relative error for L(θt) evolves over time with

two-standard-error bars when θt’s are obtained from a new policy that we will propose in Section

3. As you can see, all the approximate 95%-confidence intervals lie within ±3% range after Period

2500 that corresponds to 32 trading days. It implies that actions from estimates learned over a few

weeks could be sufficiently close to optimal actions.

2.3 Closed-Form Solution: A Single Factor and Permanent Impact Only

When we consider only the permanent price impact and a single observable factor, we can derive

an exact closed-form P and L as follows.

Pxx =
λ∗ − ρΣǫ +

√

2λ∗ρΣǫ + (ρΣǫ)2

2

Pxf =
−gλ∗

(1− Φ)λ∗ − ΦρΣǫ + Φ
√

2λ∗ρΣǫ + (ρΣǫ)2

Pff =
−g2Φ2

2(1− Φ2)
(

(1−Φ)2λ∗ + (1 + Φ2)ρΣǫ + (1− Φ2)
√

2λ∗ρΣǫ + (ρΣǫ)2
)

Lx =
−2ρΣǫ

ρΣǫ +
√

2λ∗ρΣǫ + (ρΣǫ)2

Lf =
gΦ

(1− Φ)λ∗ + ρΣǫ +
√

2λ∗ρΣǫ + (ρΣǫ)2

Although this is a special case of our general setting, we can get useful insights into the effect of

permanent price impact coefficient λ∗ on various quantities. Here are some examples:

• |Lx| and |Lf | are strictly decreasing in λ∗.

• limλ∗→0 Lx = −1, limλ∗→∞ Lx = 0.

• limλ∗→0 Lf = gΦ/(2ρΣǫ), limλ∗→∞Lf = 0.

• The expected average risk-adjusted profit −PffΩ is strictly decreasing in λ∗.

• limλ∗→0(−PffΩ) = g2Φ2Ω/(4(1 − Φ2)ρΣǫ), limλ∗→∞(−PffΩ) = 0.
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2.4 Performance Measure: Regret

In this subsection, we define a performance measure that can be used to evaluate policies. For

notational simplicity, let L∗ = L(θ∗), G∗ = G(θ∗) and P ∗ = P (θ∗). Using (3), we can show that

JπT (z0|FT ) ,
T
∑

t=1

{

ρΣǫ(xt−1 + πt(It−1))2 −∆ptxt−1

}

= z⊤
0 P

∗z0 − z⊤
T P

∗zT + 2
T
∑

t=1

(Azt−1 +Bπt(It−1))⊤P ∗Wt +
T
∑

t=1

W⊤
t P

∗Wt −
T
∑

t=1

xt−1ǫt

+
T
∑

t=1

(πt(It)− L∗zt−1)⊤(R+B⊤P ∗B)(πt(It−1)− L∗zt−1) for any policy π.

First, we define pathwise regret RπT (z0|FT ) of a policy π at period T as JπT (z0|FT ) − Jπ∗

T (z0|FT )

where π∗
t (It−1) = L∗z∗

t−1 and z∗
t = G∗z∗

t−1 +Wt with z∗
0 = z0. In other words, the pathwise regret

of a policy π at period T amounts to excess costs accumulated over T periods when applying π

relative to when applying the optimal policy π∗. By definition of π∗, the pathwise regret of a policy

π at period T can be expressed as

RπT (z0|FT ) = z∗⊤
T P ∗z∗

T − z⊤
T P

∗zT +
T
∑

t=1

(πt(It−1)− L∗zt−1)⊤(R+B⊤P ∗B)(πt(It−1)− L∗zt−1)

+ 2
T
∑

t=1

((Azt−1 +Bπt(It−1))− (A+BL∗)z∗
t−1)⊤P ∗Wt +

T
∑

t=1

(x∗
t−1 − xt−1)ǫt.

Second, we define expected regret R̄πT (z0) of a policy π at period T as E[RπT (z0|FT )]. Taking expec-

tation of pathwise regret, we can obtain a more concise expression for expected regret because the

last two terms vanish by the law of total expectation. Hence, we have

R̄πT (z0) = E[z∗⊤
T P ∗z∗

T − z⊤
T P

∗zT ] + E

[

T
∑

t=1

(πt(It−1)− L∗zt−1)⊤(R +B⊤P ∗B)(πt(It−1)− L∗zt−1)

]

.

Finally, we define relative regret R̃πT (z0) of a policy π at period T as R̄πT (z0)/|tr(P ∗Ω̃)| where tr(P ∗Ω̃)

is minimum expected average cost for θ∗. Our choice of performance measure will be either expected

regret or relative regret in the rest of this paper.
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3 Confidence-Triggered Regularized Adaptive Certainty Equivalent

Policy

Our problem can be viewed as a special case of reinforcement learning, which focuses on sequential

decision-making problems in which unknown properties of an environment must be learned in

the course of taking actions. It is often emphasized in reinforcement learning that longer-term

performance can be greatly improved by making decisions that explore the environment efficiently

at the expense of suboptimal short-term behavior. In our problem, a price impact model is unknown,

and submission of large orders can be considered exploratory actions that facilitate learning.

Certainty equivalent control (CE) represents one extreme where at any time, current point

estimates are assumed to be correct and actions are made accordingly. Although learning is carried

out with observations made as the system evolves, no decisions are designed to enhance learning.

Thus, this is an instance of pure exploitation of current knowledge. In our problem, CE estimates

the unknown price impact coefficients θ∗ at each period via least-squares regression using available

data, and makes decisions that maximize expected average risk-adjusted profit under an assumption

that the estimated model is correct. That is, an action ut for CE is given by ut = L(θ̃t−1)zt−1 where

θ̃t−1 = argminθ∈Θ

∑t−1
i=1

(

(∆pi − g⊤fi−1)− ψ⊤
i θ
)2

with a regressor ψi = [ui (di − di−1)⊤]⊤.

An important question is how aggressively the trader should explore to learn θ∗. Unlike many

other reinforcement learning problems, a fairly large amount of exploration is naturally induced

by exploitative decisions in our problem. That is, regular trading activity triggered by the return-

predictive factors ft excites the market regardless of whether or not she aims to learn price impact.

Given sufficiently large factor variability, the induced exploration might adequately resolve uncer-

tainties about price impact. However, we will demonstrate by proposing a new exploratory policy

that executing trades to explore beyond what would naturally occur through the factor-driven

exploitation can result in significant benefit.

Now, let us formally state that exploitative actions triggered by the return-predictive factors

induce a large degree of exploration that could yield strong consistency of least-squares estimates.

It is worth noting that pure exploitation is not sufficient for strong consistency in other problems

such as Lai and Wei [1986] and Chen and Guo [1986].

Lemma 2. For any θ ∈ Θ, let ut = L(θ)zt−1, zt = G(θ)zt−1 + Wt and ψ⊤
t =

[

ut (dt − dt−1)⊤
]

=

13



(U(θ)zt−1)⊤. Also, let Πzz(θ) denote a unique solution to Πzz(θ) = G(θ)Πzz(θ)G(θ)⊤ + Ω̃. Then,

lim
T→∞

1

T

T
∑

t=1

ψtψ
⊤
t = U(θ)Πzz(θ)U(θ)⊤ ≻ 0 a.s. (4)

Moreover, we can show that Πzz(θ) is continuous on Θ by proving uniform convergence of

E
[

1
T

∑T
t=1 zt−1z

⊤
t−1

]

to Πzz(θ) on Θ. Continuity leads to λ∗
ψψ , infθ∈Θ λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

> 0

which will be used later.

Corollary 1. Πzz(θ) is continuous on Θ and λ∗
ψψ , infθ∈Θ λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

> 0.

Lemma 2 implies that λmin

(

∑T
t=1 ψtψ

⊤
t

)

increases linearly in time T a.s. asymptotically. In

addition, we can obtain a similar result for a finite-sample case: There exists a finite, deterministic

constant T1(θ, δ) such that λmin

(

∑T
t=1 ψtψ

⊤
t

)

grows linearly in time T for all T ≥ T1(θ, δ) with

probability at least 1 − δ. This is a crucial result that will be used for bounding above “(ǫ, δ)-

convergence time” later. It is formally stated in the following lemma.

Lemma 3. For any θ ∈ Θ, let ut = L(θ)zt−1, zt = G(θ)zt−1 + Wt and ψ⊤
t =

[

ut (dt − dt−1)⊤
]

=

(U(θ)zt−1)⊤. Then, there exists an event B(δ) such that on B(δ) with Pr(B(δ)) ≥ 1− δ

7

8
U(θ)Πzz(θ)U(θ)⊤ � 1

T

T
∑

t=1

ψtψ
⊤
t �

17

16
U(θ)Πzz(θ)U(θ)⊤ ∀T ≥ T1(θ, δ) where

T1(θ, δ) = 4

(

32(CzCg)
2(M +K + 1)

ξ2(1− ξ 2

N )λmin(Πzz(θ))

)2

log

(

(M +K + 2)4

432δ2

)

∨ 8

(

32(CzCg)
2(M +K + 1)

ξ2(1 − ξ 2

N )λmin(Πzz(θ))

)3

∨ 216.

Furthermore, we can extend Lemma 2 in such a way that λmin

(

∑T
t=1 ψtψ

⊤
t

)

still increases to

infinity linearly in time T for time-varying {θt} adapted to {σ(It)} as long as θt remains sufficiently

close to a fixed θ ∈ Θ for all t ≥ 0. Here, σ(It) denotes a σ-algebra generated by It and θt is σ(It)-

measurable for each t.

Lemma 4. Consider any θ ∈ Θ and {θt ∈ Θ} adapted to {σ(It)} such that ‖θt− θ‖ ≤ η√
M+1CL

a.s.

where η =

(

ν3(1− ν 1
N )3λmin(Πzz(θ))

42NCN+1
g C2

ω

∧ ν
3(1− ν 1

N )3λmin(U(θ)Πzz(θ)U(θ)⊤)

42NCN+1
g C2

ω(1 + ‖U(θ)‖)2
∧ ν − ξ
NCN−1

g

)

for all t ≥ 0 and any ν ∈ (ξ, 1). Let ut = L(θt−1)zt−1, zt = G(θt−1)zt−1 + Wt and ψ⊤
t =

14



[

ut (dt − dt−1)⊤
]

= (U(θt−1)zt−1)⊤. Then,

lim inf
T→∞

1

T

T
∑

t=1

ψtψ
⊤
t �

λmin(U(θ)Πzz(θ)U(θ)⊤)

2
I a.s.

Similarly to Lemma 3, we can obtain a finite-sample result for Lemma 4. This result will provide

with a useful insight into how our new exploratory policy operates in the long term.

Lemma 5. Consider {θt ∈ Θ} defined in Lemma 4. Let ut = L(θt−1)zt−1, zt = G(θt−1)zt−1 + Wt

and ψ⊤
t =

[

ut (dt − dt−1)⊤
]

= (U(θt−1)zt−1)⊤. Then, for any 0 < δ < 1 on the event B(δ) in

Lemma 3 with Pr(B(δ)) ≥ 1− δ

λmin

(

1

T

T
∑

t=1

ψtψ
⊤
t

)

≥ 3

8
λmin(U(θ)Πzz(θ)U(θ)⊤), ∀T ≥ T1(θ, δ) ∨ 3‖z0‖(2Cω + ‖z0‖)

C2
ω

.

It is challenging to guarantee that all estimates generated by CE are sufficiently close to one

another uniformly over time so that Lemma 4 and Lemma 5 can be applied to CE. In particular,

CE is subject to overestimation of price impact that could be considerably detrimental to trading

performance. The reason is that overestimated price impact discourages submission of large orders

and thus it might take a while for the trader to realize that price impact is overestimated due to

reduced “signal-to-noise ratio.” To address this issue, we propose the confidence-triggered regularized

adaptive certainty equivalent policy (CTRACE) as presented in Algorithm 1. CTRACE can be

viewed as a generalization of CE and deviates from CE in two ways: (1) ℓ2 regularization is

Algorithm 1 CTRACE

Input: θ0, x0, d0, r, g, κ, Cv, τ , L(·), θmax, {pt}∞t=0, {ft}∞t=0

Output: {ut}∞t=1

1: V0 ← κI, t0 ← 0, i← 1
2: for t = 1, 2, . . . do

3: ut ← L(θt−1)zt−1, xt ← xt−1 + ut, dt ← diag(r)dt−1 + 1ut
4: ψt ← [ut (dt − dt−1)⊤]⊤, Vt ← Vt−1 + ψtψ

⊤
t

5: if λmin(Vt) ≥ κ+ Cvt and t ≥ ti−1 + τ then

6: θt ← argminθ∈Θ

∑t
i=1

(

(∆pi − g⊤fi−1)− ψ⊤
i θ
)2

+ κ‖θ‖2, ti ← t, i← i+ 1

7: else

8: θt ← θt−1

9: end if

10: end for
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applied in least-squares regression, (2) coefficients are only updated when a certain measure of

confidence exceeds a pre-specified threshold and a minimum inter-update time has elapsed. Note

that CTRACE reduces to CE as the regularization penalty κ and the threshold Cv tend to zero,

and the minimum inter-update time τ tends to one.

Regularization induces active exploration in our problem by penalizing the ℓ2-norm of price

impact coefficients as well as reduces the variance of an estimator. Without regularization, we

are more likely to obtain overestimates of price impact. Such an outcome attenuates trading

intensity and thereby makes it difficult to escape from the misjudged perspective on price impact.

Regularization decreases the chances of obtaining overestimates by reducing the variance of an

estimator and furthermore tends to yield underestimates that encourage active exploration.

Another source of improvement of CTRACE relative to CE is that updates are made based

on a certain measure of confidence for estimates whereas CE updates at every period regardless

of confidence. To be more precise on this confidence measure, we first present a high-probability

confidence region for least-squares estimates from Abbasi-Yadkori et al. [2011].

Proposition 1 (Corollary 10 of Abbasi-Yadkori et al. [2011]).

Pr (θ∗ ∈ St(δ), ∀t ≥ 1) ≥ 1− δ where Vt = κI +
t
∑

i=1

ψiψ
⊤
i , θ̂t = V −1

t

(

t
∑

i=1

ψiψ
⊤
i θ

∗ +
t
∑

i=1

ψiǫi

)

,

St(δ) ,











θ ∈ R
M+1 : (θ − θ̂t)⊤Vt(θ − θ̂t) ≤



Cǫ

√

√

√

√2 log

(

det(Vt)1/2det(κI)−1/2

δ

)

+ κ1/2‖θmax‖




2










.

This implies that for any θ ∈ St(δ)

‖θ − θ̂t‖2 ≤
1

λmin(Vt)



Cǫ

√

√

√

√2 log

(

det(Vt)1/2det(κI)−1/2

δ

)

+ κ1/2‖θmax‖




2

.

By definition, CTRACE updates only when λmin(Vt) ≥ κ + Cv t. λmin(Vt) typically dominates

log (det(Vt)) for large t because it increases linearly in t, and is inversely proportional to the

squared estimation error ‖θ̂t − θ∗‖2. That is, CTRACE updates only when confidence represented

by λmin(Vt) exceeds the specified level κ + Cv t. From now on, we refer to this updating scheme

as confidence-triggered update. Confidence-triggered update makes a significant contribution to
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reducing the chances of obtaining overestimates of price impact by updating “carefully” only at the

moments when an upper bound on the estimation error is guaranteed to decrease.

The minimum inter-update time τ ∈ N in Algorithm 1 can guarantee that the closed-loop

system {zt} from CTRACE is stable as long as τ is sufficiently large. Meanwhile, there is no such

stability guarantee for CE. The following lemma provides with a specific uniform bound on ‖zt‖.

Lemma 6. Under CTRACE with τ ≥ N log(2Cg/ξ)/ log(1/ξ)

‖zt‖ ≤
(2Cg + 1)CgCω

ξ(1− ξ 1
N )

, C∗
z a.s. and ‖ψt‖ ≤

(Cg + 1)(2Cg + 1)CgCω

ξ(1− ξ 1
N )

, Cψ a.s. ∀t ≥ 0.

Confidence-triggered update yields a good property of CTRACE that CE lacks: CTRACE is

inter-temporally consistent in the sense that estimation errors ‖θt − θ∗‖ are bounded with high

probability by monotonically nonincreasing upper bounds that converge to zero almost surely as

time tends to infinity. The following theorem formally states this property.

Theorem 2 (Inter-temporal Consistency of CTRACE). Let {θt} be estimates generated by CTRACE

with M ≥ 2, τ ≥ N log(2Cg/ξ)/ log(1/ξ) and Cv < λ∗
ψψ. Then, the ith update time ti in Algorithm

1 is finite a.s. Moreover, ‖θt − θ∗‖ ≤ bt, ∀t ≥ 0 on the event {θ∗ ∈ St(δ), ∀t ≥ 1} where

bt =



















2Cǫ

√

(M+1) log
(

C2
ψ
t/κ+M+1

)

+2 log(1/δ)+2κ1/2‖θmax‖
√
Cvt

if t = ti for some i

bt−1 otherwise

, b0 = ‖θ0 − θ∗‖,

and {bt} is monotonically nonincreasing for all t ≥ 1 with limt→∞ bt = 0 a.s.

Moreover, we can show that CTRACE is efficient in the sense that its (ǫ, δ)-convergence time

is bounded above by a polynomial of 1/ǫ, log(1/δ) and log(1/δ′) with probability at least 1 − δ′.

We define (ǫ, δ)-convergence time to be the first time when an estimate and all the future estimates

following it are within an ǫ-neighborhood of θ∗ with probability at least 1 − δ. If ǫ is sufficiently

small, we can apply Lemma 4 and Lemma 5 to guarantee that λmin(Vt) increases linearly in t with

high probability after (ǫ, δ)-convergence time and thereby confidence-triggered update occurs at

every τ periods. This is a critical property that will be used for deriving a poly-logarithmic finite-

time expected regret bound for CTRACE. By Theorem 2, it is easy to see that the (ǫ, δ)-convergence
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time of CTRACE is bounded above by tN(ǫ,δ,Cv) where N(ǫ, δ, Cv) is defined as

N(ǫ, δ, Cv) = inf















i ∈ N :
2Cǫ

√

(M + 1) log
(

C2
ψ ti/κ+M + 1

)

+ 2 log (1/δ) + 2κ1/2‖θmax‖
√
Cvti

≤ ǫ















.

The following theorem presents the polynomial bound on the (ǫ, δ)-convergence time of CTRACE.

Theorem 3 (Efficiency of CTRACE). For any ǫ > 0, 0 < δ, δ′ < 1, τ ≥ N log(2Cg/ξ)/ log(1/ξ) and

Cv <
7
8λ

∗
ψψ on the event B(δ′) defined in Lemma 3,

tN(ǫ,δ,Cv) ≤ T ∗
1 (δ′) ∨ τ + T2(ǫ, δ, Cv) where

T ∗

1 (δ′) = 4

(

32(C∗

zCg)
2(M +K + 1)

ξ2(1− ξ 2

N )λ∗

zz

)2

log

(

(M +K + 2)4

432δ′2

)

∨ 8

(

32(C∗

zCg)
2(M +K + 1)

ξ2(1− ξ 2

N )λ∗

zz

)3

∨ 216,

T2(ǫ, δ, Cv) =

(

8C2
ǫCψ(M + 1) + 4

√

4C4
ǫC2

ψ(M + 1)2 + κC2
ǫCvǫ2 ((M + 1)3/2 + 2 log(1/δ))

√
κCvǫ2

)2

∨ (4κ‖θmax‖)2

Cvǫ2
.

Finally, we derive a finite-time expected regret bound for CTRACE that is quadratic in loga-

rithm of elapsed time using the efficiency of CTRACE and Lemma 5.

Theorem 4 (Finite-Time Expected Regret Bound of CTRACE). If π is CTRACE with M ≥ 2, τ ≥

N log(2Cg/ξ)/ log(1/ξ) and Cv <
7
8λ

∗
ψψ, then for any ν ∈ (ξ, 1) and all T ≥ 2,

R̄πT (z0) ≤ 2‖P ∗‖C∗2
z + (R+B⊤P ∗B)C∗2

z C
2
L

(

(τ∗
1 (T ) + τ∗

2 (T ) + 1) ‖θmax‖2 + τ∗
3 (T )ǫ2

+
τ

(

2Cǫ

√

(M + 1) log
(

C2
ψ T/κ +M + 1

)

+ 2 log (2T ) + 2κ1/2‖θmax‖
)2

C̃

× log

(

κ+ C̃(T − 1)− (C̃ − Cv)+(τ∗
1 (T ) + τ∗

2 (T ))

κ+ C̃(τ∗(T )− 1)− (C̃ − Cv)+(τ∗
1 (T ) + τ∗

2 (T ))

)

1{T > τ∗(T )}
)

where C̃ , 3
8λmin(U(θ∗)Πzz(θ

∗)U(θ∗)⊤), τ∗(T ) = τ∗
1 (T ) + τ∗

2 (T ) + τ∗
3 (T ),

τ∗

1 (T ) = 8

(

32(C∗
zCg)

2(M +K + 1)

ξ2(1− ξ 2

N )λ∗

zz

)2

log

(

(M +K + 2)2T

6
√

3

)

∨ 8

(

32(C∗
zCg)

2(M +K + 1)

ξ2(1− ξ 2

N )λ∗

zz

)3

∨ 216 ∨ τ,
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τ∗

2 (T ) =





8C2
ǫCψ(M + 1) + 4

√

4C4
ǫC

2
ψ(M + 1)2 + κC2

ǫCvǫ
2
(

(M + 1)3/2 + 2 log(2T )
)

√
κCvǫ2





2

∨ (4κ‖θmax‖)2

Cvǫ2
,

τ∗

3 (T ) = 8

(

32(C∗
zCg)

2(M +K + 1)

ξ2(1− ξ 2

N )λmin(Πzz(θ∗))

)2

log

(

(M +K + 2)2T

6
√

3

)

∨ 8

(

32(C∗
zCg)

2(M +K + 1)

ξ2(1− ξ 2

N )λmin(Πzz(θ∗))

)3

∨ 216

∨ 3C∗

z (2Cω + C∗

z )

C2
ω

,

ǫ =
1√

M + 1CL

(

ν3(1− ν 1

N )3λmin(Πzz(θ
∗))

42NCN+1
g C2

ω

∧ ν
3(1 − ν 1

N )3λmin(U(θ∗)Πzz(θ
∗)U(θ∗)⊤)

42NCN+1
g C2

ω(1 + ‖U(θ∗)‖)2
∧ ν − ξ
NCN−1

g

)

.

Note that τ∗
1 (T ), τ∗

2 (T ) and τ∗
3 (T ) are all O(log T ). Therefore, it is not difficult to see that the

expected regret bound for CTRACE is O(log2 T ).

4 Computational Analysis

In this section, we will compare via Monte Carlo simulation the performance of CTRACE to

that of two benchmark policies: CE and a reinforcement learning algorithm recently proposed in

Abbasi-Yadkori and Szepesvàri [2010], which is referred to as AS policy from now on. AS policy

was designed to explore efficiently in a broader class of linear-quadratic control problems and

appears well-suited for our problem. It updates an estimate only when the determinant of Vt is

at least twice as large as the determinant evaluated at the last update, and selects an element

from a high-probability confidence region that yields maximum average reward. In our problem,

AS policy can translate to update an estimate with θt = argminθ∈St(δ)∩Θ tr(P (θ)Ω̃) at each update

time t. Intuitively, the smaller price impact, the larger average profit, equivalently, the smaller

tr(P (θ)Ω̃) which is the negative of average profit. In light of this, we restrict our attention to

solutions to minθ∈St(δ)∩Θ tr(P (θ)Ω̃) of the form {αtθ̂con,t ∈ St(δ) ∩ Θ : 0 ≤ αt ≤ 1} where θ̂con,t

denotes a constrained least-squares estimate to Θ with ℓ2 regularization. The motivation is to

reduce the amount of computation needed for AS policy otherwise it would be prohibitive. Indeed,

the minimum appears to be attained always with the smallest αt such that αtθ̂con,t ∈ St(δ) ∩ Θ,

which is provable in the special case considered in Subsection 2.3. Note that αt can be viewed as a

measure of aggressiveness of exploration: αt = 1 means no extra exploration and smaller αt implies

more active exploration.
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Table 1: Monte Carlo Simulation Setting (1 trading day = 6.5 hours)

M 6 K 2

Trading interval 5 mins Initial asset price $50

Half-life of r [5, 7.5, 10, 15, 30, 45] mins Half life of factor [10, 40] mins

r [ 0.50, 0.63, 0.71, 0.79, 0.89, 0.93 ] Φ diag([0.707, 0.917])

γ ($/share) [0, 6, 0, 3, 7, 5] × 10−8 λ ($/share) 2× 10−8

Σǫ 0.0013 (annualized vol. = 10%) Ω diag([1, 1])

ρ 1× 10−6 θmax (5× 10−7)1

β 5× 10−9 g [0.006, 0.002]

T 3000 (≈ 38 trading days) Sample paths 600

Table 1 summarizes numerical values used in our simulation. The signal-to-noise ratio (SNR),

which is defined as E[(λut+
∑M
m=1 γm(dm,t−dm,t−1))2]/E[ǫ2t ] under ut = L(θ∗)zt−1, is 0.058 and the

optimal average profit is $765.19 per period. ǫt and ωt are sampled independently from Gaussian

distribution even though ωt is assumed to be bounded almost surely for the theoretical analysis. In

fact, it turns out that the use of Gaussian distribution for ωt does not make a noticeable difference

from a bounded case. The regularization coefficient κ, the confidence-triggered update threshold

Cv, the minimum inter-update time τ and the significance level δ are chosen via cross-validation

with realized profit: For CTRACE, κ = 1× 1011, Cv = 600 and τ = 1. For AS policy, κ = 1× 108

and δ = 0.99. The reason for smaller κ and large δ for AS policy is to keep the radius of confidence

regions small because the exploration done by AS policy tends to be more than necessary and thus

costly.

The left figure in Figure 2 illustrates improvement of relative regret due to regularization. It

shows the relative regret of CTRACE with varying κ and fixed Cv = 0, i.e. no confidence-triggered

update. The vertical bars indicate two standard errors in both directions, that is, approximate

95% confidence intervals. It is clear that the relative regret is reduced as CTRACE regularizes

more, and the improvement from no regularization to κ = 1× 1011 is statistically significant with

approximate 95% confidence level. The right figure in Figure 2 shows improvement achieved by

confidence-triggered update with varying Cv but fixed κ = 1×1011. As you can see, update based on

confidence makes a substantial contribution to reducing relative regret further. The improvement

from Cv = 0 to Cv = 600 is statistically significant with approximate 95% confidence level.

As shown on the left of Figure 3, CTRACE clearly outperforms CE in terms of relative regret

and the difference is statistically significant with approximate 95% confidence level. The dominance
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Figure 2: Relative regret with varying κ and Cv: (Left) Varying κ ∈ {0, 2× 1010, 1× 1011} with fixed
Cv = 0. (Right) Varying Cv ∈ {0, 20, 600} with fixed κ = 1× 1011.

stems from both regularization and confidence-triggered update as shown in Figure 2. The figure

on the right shows an empirical distribution of difference between realized profit of CTRACE and

that of CE over 600 sample paths. Much more realizations are located to the right with respect to

zero profit. It implies that CTRACE tends to make more profit than CE more frequently.

Finally, we compare performance of CTRACE to that of AS policy in Figure 4. The left figure

shows that CTRACE outperforms AS policy even more drastically than CE in terms of relative

regret, and the superiority is statistically significant with approximate 95% confidence level. On

the right, you can see an empirical distribution of difference between realized profit of CTRACE
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Figure 3: (Left) Relative regret of CTRACE and CE. (Right) Distribution of realized profit of
CTRACE and CE. The red dotted line represents zero difference.
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Figure 4: (Left) Relative regret of CTRACE and AS policy. (Right) Distribution of realized profit of
CTRACE and AS policy. The red dotted line represents zero difference.

and that of AE over 600 sample paths. It is clear that CTRACE is more profitable than AS policy

in most of the sample paths. This illustrates that aggressive exploration performed by AS policy

is too costly. The reason is that AS policy is designed to explore actively in situations where pure

exploitation done by CE is unable to identify a true model. In our problem, however, a great degree

of exploration is naturally induced by observable return-predictive factors and thus aggressiveness

of exploration suggested by AS policy turns out to be even more than necessary. Meanwhile,

CTRACE strikes a desired balance between exploration and exploitation by taking into account

factor-driven natural exploration.

5 Conclusion

We have considered a dynamic trading problem where a trader maximizes expected average risk-

adjusted profit while trading a single security in the presence of unknown price impact. Our

problem can be viewed as a special case of reinforcement learning: the trader can improve longer-

term performance significantly by making decisions that explore efficiently to learn price impact

at the expense of suboptimal short-term behavior such as execution of larger orders than appear-

ing optimal with respect to current information. Like other reinforcement learning problems, it is

crucial to strike a balance between exploration and exploitation. To this end, we have proposed

the confidence-triggered regularized adaptive certainty equivalent policy (CTRACE) that improves
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purely exploitative certainty equivalent control (CE) in our problem. The enhancement is attributed

to two properties of CTRACE: regularization and confidence-triggered update. Regularization en-

courages active exploration that accelerates learning as well as reduces the variance of an estimator.

It helps keep CTRACE from being a passive learner due to overestimation of price impact that

abates trading. Confidence-triggered update allows CTRACE to have monotonically nonincreasing

upper bounds on estimation errors so that it reduces the frequency of overestimation. Using these

two properties, we derived a finite-time expected regret bound for CTRACE of the form O(log2 T ).

Finally, we have demonstrated through Monte Carlo simulation that CTRACE outperforms CE

and a reinforcement learning policy recently proposed in Abbasi-Yadkori and Szepesvàri [2010].

As extention to our current model, it would be interesting to develop an efficient reinforcement

learning algorithm for a portfolio of securities. Another interesting direction is to incorporate a

prior knowledge of particular structures of price impact coefficients, e.g. sparsity, to an estimation

problem. It is worth considering other regularization schemes such as LASSO.

A Proofs

Proof of Theorem 1 Since the evolution of ft is not affected by {xt}, {dt} and {ut}, it is not

difficult to see that there exists a desired P for our stochastic control problem if there exists P with

the same properties for a deterministic control problem having no ft and g = 0. Let (Ã, B̃, Q̃, R̃, S̃)

denote reduced coefficient matrices for the deterministic problem of appropriate dimensions. Now,

(Ã, B̃) is controllable and this problem is a special case of the problem considered in Molinari

[1975]. By Theorem 1 in Molinari [1975], there exists a desired P if Ψ(z) > 0 for all z on the unit

circle where

Ψ(z) ,

[

B̃⊤(Iz−1 − Ã⊤)−1 I

]







Q̃ S̃

S̃⊤ R̃













(Iz − Ã)−1B̃

I






.

In our problem, it is not difficult to check that for any φ ∈ (0, 2π), λ ≥ 0 and γi ≥ 0,

Ψ(eiφ) =
ρΣǫ

2(1− cosφ)
+
λ

2
+

M
∑

m=1

2γm(1− rm cosφ)

1 + r2
m − 2rm cosφ

> 0
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and limφ→0 Ψ(eiφ) =∞ > 0. Therefore, the desired result follows. Noting an upper block diagonal

structure of the original closed-loop system matrix A + BL, we can easily see that the stability

for the deterministic problem carries over to our original problem. The uniqueness of a stabilizing

solution follows from the stability. For the optimality of π, we can use the same proof in Chapter

4 of Bertsekas [2005]. �

Proof of Lemma 1 By Theorem 1, ρsr(G(θ)) < 1 for all θ ∈ Θ. Since Θ is a compact set and

Assumption 2-(a) implies the continuity of L(θ) and G(θ), it follows that supθ∈Θ ‖G(θ)‖ <∞ and

supθ∈Θ ρsr(G(θ)) < 1. Therefore, by Theorem in Buchanan and Parlett [1966], {Gn(θ)} uniformly

converges to zero matrix. That is, for any 0 < ξ < 1, there exists N ∈ N being independent of θ

such that ‖GN (θ)‖ ≤ ξ for all θ ∈ Θ. Also, max0≤i≤N−1 supθ∈Θ ‖Gi(θ)‖ <∞ by continuity of G(θ)

and compactness of Θ. For any t ≥ 0, it is easy to see that ‖Gt(θ)‖ ≤ Cgξ⌊t/N⌋ by definition of Cg

and N . Since zt = Gt(θ)z0 +
∑t
i=1 G

t−i(θ)Wt,

‖zt‖ ≤ ‖Gt(θ)‖‖z0‖+
t
∑

i=1

‖Gt−i(θ))‖‖Wt‖ ≤ Cgξ⌊t/N⌋‖z0‖+
t
∑

i=1

Cgξ
⌊(t−i)/N⌋Cω

≤ Cg‖z0‖+ CgCω

t
∑

i=1

ξ(t−i)/N−1 ≤ Cg‖z0‖+CgCω/(ξ(1 − ξ1/N )) a.s.

Since U(θ) = (G(θ))1:M+1,∗−[I 0], it follows that ‖U(θ)‖ ≤ ‖(G(θ))1:M+1,∗‖+‖[I 0]‖ ≤ Cg+1. �

Proof of Lemma 2 For notational simplicity, let G = G(θ), L = L(θ) and Πzz = Πzz(θ). The

almost-sure convergence in (4) follows from Lemma 2 in Anderson and Taylor [1979]. It is easy to

see that U(θ) is full-rank since (L)1 6= 0. Therefore, it is sufficient to show that Πzz is positive

definite. Since G is a stable matrix and Ω̃ � 0, Πzz =
∑∞
i=0G

iΩ̃(G⊤)i �∑M+K
i=0 GiΩ̃(G⊤)i = HH⊤

where H =
[

Ω̃1/2 GΩ̃1/2 . . . GM+KΩ̃1/2
]

. Thus, it is sufficient to show that H is full-rank. First,

we will show that {(G)1:M+1,M+2, . . . , (G
M+1)1:M+1,M+2} is linearly independent. We can show by

induction that (Gi)∗,M+2 = [gi(1) gi(r1) · · · gi(rM ) hi]
⊤ where gi(r) = (L)M+2

∑i−1
m=0(Φm)1,1r

i−1−m

and hi = (Φi)∗,1. Since each gi(r) is a polynomial of degree i − 1 and its leading coefficient

is all (L)M+2 6= 0, we can transform [(G)1:M+1,M+2, . . . (GM+1)1:M+1,M+2] into Vandermonde

matrix through elementary row operations. Thus, [(G)1:M+1,M+2 . . . (GM+1)1:M+1,M+2] is non-

singluar. Now, suppose α⊤H = 0 for some α ∈ R
M+K+1. By definition of H and Ω̃, it implies

(α)M+2:M+K+1 = 0. Then, by nonsingularity of [(G)1:M+1,M+2 . . . (GM+1)1:M+1,M+2], we may
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conclude α⊤
1:M+1 = 0. Therefore, α = 0 and we may conclude that H is full-rank. �

Proof of Corollary 1 By Assumption 2-(a), L(θ) is continuous on Θ and so are G(θ) and U(θ).

Uniform convergence of E
[

1
T

∑T
t=1 zt−1z

⊤
t−1

]

to Πzz(θ) on Θ follows from the fact that for any ǫ > 0

∥

∥

∥

∥

∥

E

[

1

T

T
∑

t=1

zt−1z
⊤
t−1

]

−Πzz(θ)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1

T
z0z

⊤
0 +

T−1
∑

t=1

t− 1

T
Gt−1Ω̃(G⊤)t−1 +

∞
∑

t=T

Gt−1Ω̃(G⊤)t−1

∥

∥

∥

∥

∥

≤ ‖z0‖2
T

+
∥

∥

∥Ω̃
∥

∥

∥

C2
g

ξ2





1

T

ξ
2
N

(1− ξ 2
N )2

+
ξ

2(T−1)
N

1− ξ 2
N



 ≤ ǫ for sufficiently large T independent of θ.

Since E
[

1
T

∑T
t=1 zt−1z

⊤
t−1

]

= 1
T z0z

⊤
0 + 1

T

∑T−1
t=1

∑t−1
i=0 G

iΩ̃(G⊤)i is continuous in θ ∈ Θ for all T ≥ 1,

the limiting matrix Πzz(θ) is continuous in θ ∈ Θ component-wise. Thus, so is U(θ)Πzz(θ)U(θ)⊤.

Finally, λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

is continuous on Θ. Since λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

> 0, ∀θ ∈ Θ

and Θ is a compact set, it follows from its continuity that infθ∈Θ λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

> 0. �

Proof of Lemma 3 Let ei ∈ R
M+K+1 denote an elementary vector whose entries are all zero

except for ith entry being one and ηij,k , e⊤
i zkz

⊤
k ej − e⊤

i E[zkz
⊤
k |Fk−1]ej , 1 ≤ i, j,≤ M + K + 1.

Since |ηij,k| ≤ 2C2
z a.s., {ηij,k} is an almost-surely bounded martingale difference process adapted

to {Fk} and thus it is conditionally sub-Gaussian with E[exp(γηij,k)|Fk−1] ≤ exp
(

γ2(2C2
z )2/2

)

a.s.

Hence, if we use a special case of Corollary 1 in Abbasi-Yadkori et al. [2011] with mk = 1 for all k,

then for all 1 ≤ i, j ≤M +K + 1 and any a > 0

Pr





∣

∣

∣

∣

∣

t
∑

k=1

ηij,k

∣

∣

∣

∣

∣

≤ 2C2
z

√

(a+ t) log

(

(M +K + 2)4(a+ t)

4aδ2

)

∀t ≥ 1



 ≥ 1− 2δ

(M +K + 2)2
.

Using ηij,k = ηji,k and E[zkz
⊤
k |Fk−1] = G(θ)zk−1z

⊤
k−1G(θ)⊤ + Ω̃, it follows from the union bound

that Pr

(

| (Yt)ij | ≤ ǫ, 1 ≤ i, j ≤ M + K + 1, ∀t ≥ t∗(δ, ǫ, a)

)

≥ 1 − δ where Yt ,
1
t

∑t
k=1 zkz

⊤
k −

G(θ)
(

1
t

∑t
k=1 zk−1z

⊤
k−1

)

G(θ)⊤ − Ω̃ and

t∗(δ, ǫ, a) , 4

(

2C2
z

ǫ

)2

log

(

(M +K + 2)4

2aδ2

)

∨ 8

(

2C2
z

ǫ

)3

∨ a ∨ 216.

On the above event, ‖Yt‖ ≤ ‖Yt‖F ≤ (M+K+1)ǫ and −(M+K+1)ǫI � Yt � (M+K+1)ǫI, ∀t ≥
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t∗(δ, ǫ, a). We can rewrite −(M +K + 1)ǫI � Yt as

1

t

t
∑

k=1

zk−1z
⊤
k−1 � G(θ)

(

1

t

t
∑

k=1

zk−1z
⊤
k−1

)

G(θ)⊤ + Ω̃− (M +K + 1)ǫI +

(

1

t
z0z

⊤
0 −

1

t
ztz

⊤
t

)

.

Repeating n times a process of left-multiplying both sides with G(θ), right-multiplying with G(θ)⊤

and adding the resulting inequality into the original one side-by-side, we obtain

1

t

t
∑

k=1

zk−1z
⊤
k−1 � Gn+1(θ)

(

1

t

t
∑

k=1

zk−1z
⊤
k−1

)

Gn+1(θ)⊤ +
n
∑

i=0

Gi(θ)Ω̃Gi(θ)⊤

− (M +K + 1)ǫ
n
∑

i=0

Gi(θ)Gi(θ)⊤ +
n
∑

i=0

Gi(θ)

(

1

t
z0z

⊤
0 −

1

t
ztz

⊤
t

)

Gi(θ)⊤.

Note that
∥

∥

∥

∑n
i=0 G

i(θ)
(

1
t z0z

⊤
0 − 1

t ztz
⊤
t

)

Gi(θ)⊤
∥

∥

∥ ≤ ∑n
i=0

2
tC

2
z‖Gi(θ)‖2 ≤ 2C2

zC
2
g/(tξ

2(1 − ξ2/N ))

and
∥

∥

∥

∑n
i=0 G

i(θ)Gi(θ)⊤
∥

∥

∥ ≤ ∑n
i=0 ‖Gi(θ)‖2 ≤ C2

g/(ξ
2(1 − ξ2/N )). Taking limit over n and using

these two inequalities, we have with probability at least 1− δ

1

t

t
∑

k=1

zk−1z
⊤
k−1 � Πzz(θ)−

(

C2
g (M +K + 1)

ξ2(1− ξ 2
N )

ǫ+
1

t

2C2
zC

2
g

ξ2(1− ξ 2
N )

)

I, ∀t ≥ t∗(δ, ǫ, a).

Setting ǫ = ξ2(1− ξ2/N )λmin(Πzz(θ))/(16C2
g (M +K+ 1)) and a = 216, we have 1

t

∑t
k=1 zk−1z

⊤
k−1 �

Πzz(θ)− λmin(Πzz(θ))
8 I for all t ≥ t∗(δ, ǫ, a) ∨ 32C2

zC
2
g/(ξ

2(1− ξ2/N )λmin(Πzz(θ))). It is easy to show

that t∗(δ, ǫ, a) ≥ 32C2
zC

2
g/(ξ

2(1− ξ2/N )λmin(Πzz(θ))). Similarly, from Yt � (M +K + 1)ǫI, we can

obtain for all t ≥ t∗(δ, ǫ, a)

1

t

t
∑

k=1

zk−1z
⊤
k−1 � Πzz(θ) +

(

(M +K + 1)C2
g

ξ2(1− ξ 2
N )

ǫ− 1

t

2C2
zC

2
g

ξ2(1− ξ 2
N )

)

I � Πzz(θ) +
λmin(Πzz(θ))

16
I.

Since λmin(Πzz(θ))I � Πzz(θ), it follows that 7
8Πzz(θ) � 1

t

∑t
k=1 zk−1z

⊤
k−1 � 17

16Πzz(θ) and thus

7
8U(θ)Πzz(θ)U(θ)⊤ � U(θ)1

t

∑t
k=1 zk−1z

⊤
k−1U(θ)⊤ � 17

16U(θ)Πzz(θ)U(θ)⊤. �

Proof of Lemma 4 For notational convenience, let G = G(θ), Gt = G(θt), U = U(θ), Ut =

U(θt), Πzz = Πzz(θ) and Π(i, j) = Gi · · ·Gj . By definition of G and η, ‖Gt − G‖ ≤ ‖B‖‖L(θt) −

L(θ)‖ ≤
√
M + 1CL‖θt − θ‖ ≤ η, ∀t ≥ 0. Since zt can be expressed as zt = Π(0, t − 1)z0 +
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∑t
i=1 Π(i, t− 1)Wi, we have

1

T

T
∑

t=1

zt−1z
⊤
t−1 =

1

T

T
∑

t=1

(

Gt−1z0 +
t−1
∑

i=1

Gt−i−1Wi

)



Gt−1z0 +
t−1
∑

j=1

Gt−j−1Wj





⊤

+
1

T

T
∑

t=1

(

Π(0, t − 2)z0z
⊤
0 Π(0, t − 2)⊤ −Gt−1z0z

⊤
0 G

t−1⊤
)

· · · (a)

+
1

T

T
∑

t=2

t−1
∑

j=1

(

Π(0, t− 2)z0W
⊤
j Π(j, t − 2)⊤ −Gt−1z0W

⊤
j G

t−j−1⊤
)

· · · (b)

+
1

T

T
∑

t=2

t−1
∑

j=1

(

Π(j, t− 2)Wjz
⊤
0 Π(0, t− 2)⊤ −Gt−j−1Wjz

⊤
0 G

t−1⊤
)

· · · (c)

+
1

T

T
∑

t=2

t−1
∑

i=1

t−1
∑

j=1

(

Π(i, t− 2)WiW
⊤
j Π(j, t− 2)⊤ −Gt−i−1WiW

⊤
j G

t−j−1⊤
)

· · · (d)

Then, we can show that

‖(a)‖ ≤
9ηNCN+1

g ‖z0‖2
Tν3(1− ν2/N )2

, ‖(b)‖, ‖(c)‖ ≤
9ηNCN+1

g Cω‖z0‖
Tν3(1− ν1/N )3

‖(d)‖ ≤
18ηNCN+1

g C2
ω

ν3(1− ν1/N )3
and

‖(a) + (b) + (c) + (d)‖ ≤
21ηNCN+1

g C2
ω

ν3(1− ν1/N )3
≤ λmin(Πzz)

2
, ∀T ≥ 3‖z0‖(2Cω + ‖z0‖)

C2
ω

.

It follows that

1

T

T
∑

t=1

zt−1z
⊤
t−1 �

1

T

T
∑

t=1

(

Gt−1z0 +
t−1
∑

i=1

Gt−i−1Wi

)



Gt−1z0 +
t−1
∑

j=1

Gt−j−1Wj





⊤

− λmin(Πzz)

2
I.

Taking lim inf on both sides, lim infT→∞ 1
T

∑T
t=1 zt−1z

⊤
t−1 � Πzz− λmin(Πzz)

2 I � λmin(Πzz)
2 I a.s. Like-

wise, we can show that lim infT→∞
1
T

∑T
t=1 ψtψ

⊤
t � UΠzzU

⊤ − λmin(UΠzzU⊤)
2 I � λmin(UΠzzU⊤)

2 I a.s.

�

Proof of Lemma 5 Using the same techniques in the proof of Lemma 3 and Lemma 4, we can

obtain that on the event B(δ) with Pr(B(δ)) ≥ 1− δ,

1

T

T
∑

t=1

ψtψ
⊤
t � U(θ)

1

T

T
∑

t=1

(

G(θ)t−1z0 +
t−1
∑

i=1

G(θ)t−i−1Wi

)



G(θ)t−1z0 +
t−1
∑

j=1

G(θ)t−j−1Wj





⊤

U(θ)⊤

− λmin(U(θ)Πzz(θ)U(θ)⊤)

2
I
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� U(θ)

(

Πzz(θ)−
λmin(Πzz(θ))

8
I

)

U(θ)⊤ − λmin(U(θ)Πzz(θ)U(θ)⊤)

2
I

� 3

8
λmin(U(θ)Πzz(θ)U(θ)⊤), ∀T ≥ T1(‖z0‖, θ, δ) ∨

3‖z0‖(2Cω + ‖z0‖)
C2
ω

. �

Proof of Lemma 6 Using ‖zti+j‖ ≤ Cgξj/N−1‖zti‖+CgCω/(ξ(1− ξ1/N )) a.s. for j ≤ ti+1 − ti
and Cgξ

τ/N−1 ≤ 1
2 , we can show by induction that ‖zti‖ ≤ 2CgCω/(ξ(1 − ξ1/N )) a.s. for all i ≥ 1.

For any ti < t < ti+1, ‖zt‖ ≤ Cgξ
(t−ti)/N−1‖zti‖ + CgCω/(ξ(1 − ξ1/N )) ≤ C∗

z a.s. Finally, ‖ψt‖ ≤

‖U(θt−1)‖‖zt−1‖ ≤ (Cg + 1)C∗
z = Cψ. �

Proof of Theorem 2 Given Cv < λ∗
ψψ ≤ λmin

(

U(θ)Πzz(θ)U(θ)⊤
)

, it is easy to show that

Pr(ti < ∞, ∀i ≥ 1) = 1. Using θti = argminθ∈Θ

∑ti
j=1

(

(∆pj − g⊤fj−1)− ψ⊤
j θ
)2

+ κ‖θ‖2 =

argminθ∈Θ (θ−θ̂ti)⊤Vti(θ−θ̂ti) and Proposition 1, we can show that on the event {θ∗ ∈ St(δ) ∀t ≥ 1}
for any i ≥ 1

‖θti − θ∗‖ ≤ ‖θti − θ̂ti‖+ ‖θ̂ti − θ∗‖ ≤
2Cǫ

√

(M + 1) log
(

C2
ψ ti/κ+M + 1

)

+ 2 log (1/δ) + 2κ1/2‖θmax‖
√
Cvti

= bti .

For any ti < t < ti+1, ‖θt − θ∗‖ = ‖θti − θ∗‖ ≤ bti = bt. It is easy to show through elementary

calculus that bti is strictly decreasing in ti ≥ 1 if M ≥ 2. �

Proof of Theorem 3 Using log(t+M + 1) ≤
√
t+
√
M + 1 for all t ≥ 0, we can show that

2Cǫ

√

(M + 1) log
(

C2
ψ t/κ+M + 1

)

+ 2 log (1/δ) + 2κ1/2‖θmax‖
√
Cvt

≤ ǫ, ∀t ≥ T2(ǫ, δ, Cv).

Suppose for contradiction that tN(ǫ,δ,Cv) > T ∗
1 (δ′) ∨ τ + T2(ǫ, δ, Cv) , T̃ ∗. Let ti be the last update

time less than T2(ǫ, δ, Cv). Then, there is no update time in the interval [ti + 1, T̃ ∗] by definition of

tN(ǫ,δ,Cv) and T2(ǫ, δ, Cv). By definition of ti and Lemma 3,

λmin
(

VT̃ ∗

)

≥ λmin(Vti) + λmin





T̃ ∗

∑

t=ti+1

ψtψ
⊤
t



 ≥ κ+ Cvti +
7

8
λ∗
ψψ(T̃ ∗ − ti) ≥ κ+ CvT̃

∗.

It is clear that T̃ ∗ − ti ≥ τ . Consequently, T̃ ∗ is eligible for a next update time after ti. It implies

that tN(ǫ,δ,Cv) = T̃ ∗ but this is a contradiction. �

28



Proof of Theorem 4 Note that

(R+B⊤P ∗B)
T
∑

t=1

((L(θt−1)− L(θ∗))zt−1)2 ≤ (R+B⊤P ∗B)C∗2
z C

2
L

T
∑

t=1

‖θt−1 − θ∗‖2.

Set δ = 1/T . Then, on the event A(T ) , {θ∗ ∈ St(1/(2T )) ∀t ≥ 1} ∩ B(1/(2T )) with Pr (A(T )) ≥

1− 1/T , we have

τ∗

1 (T )+τ∗

2 (T )
∑

t=1

‖θt−1 − θ∗‖2 ≤ (τ∗
1 (T ) + τ∗

2 (T ))‖θmax‖2,
τ∗(T )
∑

t=τ∗

1 (T )+τ∗

2 (T )+1

‖θt−1 − θ∗‖2 ≤ τ∗
3 (T )ǫ2.

By Lemma 5,

λmin (Vt−1) ≥ λmin

(

VtN(ǫ,1/(2T ),Cv )

)

+ λmin





t−1
∑

i=tN(ǫ,1/(2T ),Cv )+1

ψiψ
⊤
i





≥ κ+ C̃(t− 1)− (C̃ − Cv)+(τ∗
1 (T ) + τ∗

2 (T )), ∀t ≥ τ∗(T ).

Therefore,

T
∑

t=τ∗(T )+1

‖θt−1 − θ∗‖2 ≤
T
∑

t=τ∗(T )+1

τ

λmin(Vt−1)

(

2Cǫ

√

2 log

(

det(Vt−1)1/2det(κI)−1/2

δ/2

)

+ 2κ1/2‖θmax‖
)2

≤
τ

(

2Cǫ

√

(M + 1) log
(

C2
ψ T/κ+M + 1

)

+ 2 log (2T ) + 2κ1/2‖θmax‖
)2

C̃

× log

(

κ+ C̃(T − 1)− (C̃ − Cv)+(τ∗

1 (T ) + τ∗

2 (T ))

κ+ C̃(τ∗(T )− 1)− (C̃ − Cv)+(τ∗

1 (T ) + τ∗

2 (T ))

)

.

Let q = Pr (A(T )), Lt = L(θt) and L∗ = L(θ∗). Then,

R̄πT (z0) = E[z∗⊤
T P ∗z∗

T − z⊤
T P

∗zT ] + E

[

T
∑

t=1

(Lt−1zt−1 − L∗zt−1)⊤(R +B⊤P ∗B)(Lt−1zt−1 − L∗zt−1)

]

≤ 2‖P ∗‖C2
z + qE

[

T
∑

t=1

(Lt−1zt−1 − L∗zt−1)⊤(R+B⊤P ∗B)(Lt−1zt−1 − L∗zt−1)

∣

∣

∣

∣

∣

A(T )

]

+ (1− q)E
[

T
∑

t=1

(Lt−1zt−1 − L∗zt−1)⊤(R +B⊤P ∗B)(Lt−1zt−1 − L∗zt−1)

∣

∣

∣

∣

∣

A(T )c
]

≤ 2‖P ∗‖C2
z + E

[

T
∑

t=1

(Lt−1zt−1 − L∗zt−1)⊤(R +B⊤P ∗B)(Lt−1zt−1 − L∗zt−1)

∣

∣

∣

∣

∣

A(T )

]
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+ (R+B⊤P ∗B)C2
zC

2
L‖θmax‖2

(

∵ 1− 1

T
≤ q ≤ 1

)

≤ 2‖P ∗‖C2
z + (R+B⊤P ∗B)C2

zC
2
L

(

(τ∗
1 (T ) + τ∗

2 (T ) + 1) ‖θmax‖2 + τ∗
3 (T )ǫ2

+
τ

(

2Cǫ

√

(M + 1) log
(

C2
ψ T/κ +M + 1

)

+ 2 log (2T ) + 2κ1/2‖θmax‖
)2

C̃

× log

(

κ+ C̃(T − 1)− (C̃ − Cv)+(τ∗
1 (T ) + τ∗

2 (T ))

κ+ C̃(τ∗(T )− 1)− (C̃ − Cv)+(τ∗
1 (T ) + τ∗

2 (T ))

)

1 {T > τ∗(T )}
)

. �
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