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Abstract

This paper considers the multi-armed bandit problem with multiple simultaneous arm pulls
and the additional restriction that we do not allow recourse to arms that were pulled at some
point in the past but then discarded. This additional restriction is highly desirable from an
operational perspective and we refer to this problem as the ‘Irrevocable Multi-Armed Bandit’
problem. We observe that natural modifications to well known heuristics for multi-armed bandit
problems that satisfy this irrevocability constraint have unsatisfactory performance, and thus
motivated introduce a new heuristic: the ‘packing’ heuristic. We establish through numerical
experiments that the packing heuristic offers excellent performance, even relative to heuristics
that are not constrained to be irrevocable. We also provide a theoretical analysis that studies the
‘price’ of irrevocability i.e. the performance loss incurred in imposing the constraint we propose
on the multi-armed bandit model. We show that this performance loss is uniformly bounded
for a general class of multi-armed bandit problems, and also indicate its dependence on various
problem parameters. Finally, we obtain a computationally fast algorithm to implement the
packing heuristic; the algorithm renders the packing heuristic computationally cheaper than
methods that rely on the computation of Gittins indices.

1. Introduction

Consider the operations of a ‘fast-fashion’ retailer such as Zara or H&M. Such retailers have devel-
oped and invested in merchandise procurement strategies that permit lead times for new fashions
as short as two weeks. As a consequence of this flexibility, such retailers are able to adjust the
assortment of products offered on sale at their stores to quickly adapt to popular fashion trends. In
particular, such retailers use weekly sales data to refine their estimates of an item’s popularity, and
based on such revised estimates weed out unpopular items, or else re-stock demonstrably popular
ones on a week-by-week basis. In view of the great deal of a-priori uncertainty in the popularity of
a new fashion and the speed at which fashion trends evolve, the fast-fashion operations model is
highly desirable and emerging as the de-facto operations model for large fashion retailers.

Among other things, the fast-fashion model relies crucially on an effective technology to learn
from purchase data, and adjust product assortments based on such data. Such a technology must
strike a balance between ‘exploring’ potentially successful products and ‘exploiting’ products that

*Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, email
wvivekf@mit.edu
tQualcomm-Flarion Technologies, email :rkmadan@stanfordalumni.org



are demonstrably popular. A convenient mathematical model within which to design algorithms
capable of accomplishing such a task is that of the multi-armed bandit. While we defer a precise
mathematical discussion to a later section, a multi-armed bandit consists of multiple (say n) ‘arms’,
each corresponding to a Markov Decision Process. As a special case, one may think of each arm as an
independent Bernoulli random variable with an uncertain bias specified via some prior distribution.
At each point in time, one may ‘pull’ up to a certain number of arms (say k£ < n) simultaneously.
For each arm pulled, we modify our estimate of its bias based on its realization and earn a reward
proportional to its realization. We neither learn about, nor earn rewards from arms that are not
pulled. The multi-armed bandit problem requires finding a policy that adaptively selects k arms to
pull at every point in time with an objective of maximizing total expected reward earned over some
finite time horizon or alternatively, discounted rewards earned over an infinite horizon or perhaps,
even long term average rewards.

The multi-armed bandit model while general and immensely useful, fails to capture an important
restriction one faces in several applications. In particular, in a number of applications, the act of
‘pulling’ an arm that has been pulled in the past but discarded in favor of another arm is undesirable
or unacceptable. Ignoring references to the extant literature for now, examples of such applications
include:

1. Fast Fashion: The fixed costs associated with the introduction of a new product make frequent
changes in the assortment of products offered undesirable. More importantly, fast fashion
retailers rely heavily on discouraging their customers from delaying/ strategizing on the timing
of their purchase decisions. They accomplish this by adhering to strict restocking policies;
reintroduction of an old product is undesirable from this viewpoint.

2. Call-Center Hiring: Given the rich variety of tasks call-center workers might face, recent
research has raised the possibility of ‘data-driven’ hiring/ staff allocation decisions at call-
centers. In this setting, the act of discarding an arm is equivalent to a firing or reassignment
decision; it is clear that such decisions are difficult to reverse.

3. Clinical Trials: A classical application of the bandit model, the act of discarding an arm in
this setting is equivalent to the discontinuation of trials on a particular treatment. The ethical
objections to administering treatments that may be viewed as inferior play a critical role in
the design of such trials and it is reasonable to expect that re-starting trials on a procedure
after a hiatus might well raise ethical concerns.

This paper considers the multi-armed bandit problem with an additional restriction: we require
that decisions to remove an arm from the set of arms currently being pulled be ‘irrevocable’. That
is, we do not allow recourse to arms that were pulled at some point in the past but then discarded.
We refer to this problem as the Irrevocable Multi-Armed Bandit Problem. We introduce a novel
heuristic we call the ‘packing’ heuristic for this problem. The packing heuristic establishes a static
ranking of bandit arms based on a measure of their potential value relative to the time required
to realize that value, and pulls arms in the order prescribed by this ranking. For an arm currently
being pulled, the heuristic may either choose to continue pulling that arm in the next time step
or else discard the arm in favor of the next highest ranked arm not currently being pulled. Once
discarded, an arm will never be chosen again hence satisfying the irrevocability constraint. We
demonstrate via computational experiments that the use of the packing heuristic incurs a small



performance loss relative to an optimal bandit policy without the irrevocability constraint. In
greater detail, the present work makes the following contributions:

e We introduce the irrevocable multi-armed bandit problem and develop a heuristic for its
solution motivated by recent advances in the study of stochastic packing. We present a
computational study which demonstrates that the performance of the packing heuristic com-
pares favorably with a computable upper bound on the performance of any (potentially non-
irreovocable) multi-armed bandit policy. We compare the performance of the packing heuris-
tic with that of a heuristic originally proposed by Whittle (which is not irrevocable) and a
natural irrevocable version of Whittle’s heuristic. We find that the packing heuristic offers
substantial performance gains over the irrevocable version of Whittle’s heuristic we consider.
Further we observe that the number of ‘revocations’ of an arm under Whittle’s heuristic is
substantial while offering only a modest improvement over the packing heuristic.

o We present a theoretical analysis to bound the performance loss incurred relative to an optimal
policy with no restrictions on irrevocability. We characterize a general class of bandits for
which this ‘price of irrevocability’ is uniformly bounded. We show that this class of bandits
admits the ‘learning’ applications we have alluded to thus far. For bandits within this class,
we show that the packing heuristic earns expected rewards that are always within a factor of
1/8 of an optimal policy for the classical multi-armed bandit. We present stronger bounds
by allowing for a dependence on problem parameters such as the number of bandits and the
degree of parallelism (i.e. the ratio k/n). For instance, we show that in a natural scaling
regime first proposed by Whittle, the above bound can be improved by a factor of 2. These
bounds imply, to the best of our knowledge, the first performance bounds for an important
general class of bandit problems with multiple simultaneous pulls over a finite time horizon.
We introduce a mode of analysis distinct from the ‘mean-field” techniques used for bandit
problems with the long run average reward criterion '; these latter techniques do not apply
to finite horizon problems.

An additional outcome of this analysis is that we establish a precise connection between
stochastic packing problems and the multi-armed bandit problem; we anticipate that this
connection can serve as a useful tool for the further design and analysis of algorithms for
bandit problems.

e In the interest of practical applicability, we develop a fast, essentially combinatorial imple-
mentation of the packing heuristic. Assuming that an individual arm has O(X) states, and
given a time horizon of T steps, an optimal solution to the multi-armed bandit problem
under consideration requires O(X"T™) computations. The main computational step in the
packing heuristic calls for the one time solution of a linear program with O(nXT) variables,
whose solution via a generic LP solver requires O(n3¥37T3) computations. We develop an
algorithm that solves this linear program in O(nX?TlogT) steps by solving a sequence of
dynamic programs for each bandit arm. The technique we develop here is potentially of inde-
pendent interest for the solution of ‘weakly coupled’ optimal control problems with coupling
constraints that must be met in expectation. Employing this solution technique, our heuristic

'we discuss why the average reward criterion is uninteresting for Bayesian learning problems in Section 1.1



requires a total of O(n¥2logT) computations per time step amortized over the time horizon.
In contrast, Whittle’s heuristic (or the irrevocable version of that heuristic we consider) re-
quires O(nX%T log T') computations per time step. Given the substantial amount of research
that has been dedicated to simply calculating Gittins indices (in the context of Whittle’s
heuristic) rapidly, this is a notable contribution. More importantly, we establish that the
packing heuristic is computationally attractive.

1.1. Relevant Literature

The multi-armed bandit problem has a rich history, and a number of excellent references (such as
Gittins (1989)) provide a thorough treatment of the subject. Our consideration of the ‘irrevocable’
multi-armed bandit problem stems from a number of applications of the bandit framework alluded to
earlier. |(Caro and Gallien (2007)) have considered using the multi-armed bandit for the assortment
design problem faced by fast fashion retailers. [Pich and Van der Heyden| (2002) emphasize the
importance of not allowing for ‘repeat’ products in an assortment in that setting. |Arlotto et al.
(2009) consider the application of the multi-armed bandit model in the context of ascertaining
the suitability of individuals for a given task at a call-center. The methodology suggested by the
authors respects the irrevocability constraint studied here and is similar to the irrevocable version
of Whittle’s heuristic we examine. This constraint is quite natural to their setting as firing decisions
are difficult to reverse. Finally, there is a very large and varied literature on the design of clinical
trials and we make no attempt to review that here. ‘Ethical’ experimentation policies are an
overriding theme of much of the work in this area; see |Anscombe| (1963)) for an early treatment on
the subject and |Armitage et al.| (2002) for a more recent overview.

There has been a great deal of work on heuristics for the multi-armed bandit problem. In the
case where k = 1, that is, allowing for a single arm to be pulled in a given time step, |Gittins
and Jones (1974) developed an elegant index based policy that was shown to be optimal for the
problem of maximizing discounted rewards over an infinite horizon. Their index policy is known to
be suboptimal if one is allowed to pull more than a single arm in a given time step. |Whittle (1988)
developed a simple index based heuristic for a more general bandit problem (the ‘restless’ bandit
problem) allowing for multiple arms to be pulled in a given time step. While his original paper
was concerned with maximizing long-term average rewards, his heuristic is easily adapted to other
objectives such as discounted infinite horizon rewards or expected rewards over a finite horizon (see
for instance Bertsimas and Nino-Mora/ (2000); (Caro and Gallien (2007)). It is important to note,
however, that much of the extant performance analysis for bandit problems (beyond the initial
work of |Gittins and Jones (1974)) in general, and Whittle’s heuristic in particular, focuses on
bandits with a single recurrent class and the average cost/reward criterion. In that setting Weber
and Weiss| (1990) presented a set of technical conditions that guarantee that Whittle’s heuristic is
asymptotically optimal (in a regime where n and k go to infinity keeping n/k constant) for the
general restless bandit problem and further, that Whittle’s heuristic is not optimal in general. The
conditions proposed by Weber and Weiss| (1990) are non-trivial to verify as they require checking
the global stability of a system of non-linear differential equations. In addition there is a vast
amount of work that analyzes special applications of the bandit model (for instance in scheduling,
or queueing problems) which we do not review here.

While the assumption of a single recurrent class and the average reward criterion permits



performance analysis (via certain mean-field approximation techniques), such a setting immediately
rules out a vast number of interesting bandit problems, including most learning applications. In
addition to the fact that the assumption of a single recurrent class does not hold, the average
reward criterion is too coarse for such applications: very crudely, optimal policies for this criterion
do not face the problem of carefully allocating an ‘exploration budget’ across arms. More precisely,
any policy with ‘vanishing regret’ (Lai and Robbins (1985)) is optimal for the average reward
criterion. A relatively recent paper by |Glazebrook and Wilkinson| (2000) establishes that a Whittle-
like heuristic for irreducibile multi-armed bandits and the discounted infinite horizon criterion
approaches the optimal policy at a uniform rate as the discount factor approaches unity; this is
a regime where the average cost and discounted cost criteria effectively co-incide. Moreover, the
requirement of irreducibility again rules out Bayesian learning applications.

There is thus little available in the way of general performance analyses for the bandit problem
with multiple simultaneous plays under either the discounted infinite horizon or finite time horizon
criteria. Since the packing heuristic is certainly feasible for the multi-armed bandit problem, we
believe that the present work offers the first performance bounds for an important general class of
multi-armed bandit problems with the finite time horizon criterion and multiple simultaneous arm
plays.

The packing heuristic policy builds upon recent insights on the ‘adaptivity’ gap for stochastic
packing problems. In particular, Dean et al.| (2008]) recently established that a simple static rule
(Smith’s rule) for packing a knapsack with items of fixed reward (known a-priori), but whose sizes
were stochastic and unknown a-priori was within a constant factor of the optimal adaptive packing
policy. |Guha and Munagalal (2007)) used this insight to establish a similar static rule for ‘budgeted
learning problems’. In such a problem one is interested in finding a coin with highest bias from a
set of coins of uncertain bias, assuming one is allowed to toss a single coin in a given time step
and that one has a finite budget on the number of such experimental tosses allowed. Our work
parallels that work in that we draw on the insights of the stochastic packing results of |[Dean et al.
(2008)). In addition, we must address two significant hurdles - correlations between the total reward
earned from pulls of a given arm and the total number of pulls of that arm (these turn out not
to matter in the budgeted learning setting, but are crucial to our setting), and secondly, the fact
that multiple arms may be pulled simultaneously (only a single arm may be pulled at any time in
the budgeted learning setting). Finally, a working paper (Bhattacharjee et al.| (2007))), brought to
our attention by the authors of that work considers a variant of the budgeted learning problem of
Guha and Munagala (2007) wherein one is allowed to toss multiple coins simultaneously. While it
is conceivable that their heuristic may be modified to apply to the multi-armed bandit problem we
address, the heuristic they develop is also not irrevocable.

Restricted to learning applications, our work takes an inherently Bayesian view of the multi-
armed bandit problem. It is worth mentioning that there are a number of non-parametric for-
mulations to such problems with a vast associated literature. Most relevant to the present model
are the papers by [Anantharam et al. (1987alb) that develop simple ‘regret-optimal’ strategies for
multi-armed bandit problems with multiple simultaneous plays. One could easily imagine imposing
a similar ‘irrevocability’ restriction in that setting and it would be interesting to design algorithms
for such a problem.

The remainder of this paper is organized as follows. Section 2 presents the irrevocable multi-



armed bandit model. Section 3 develops the packing heuristic. Section 4 introduces a structural
property for bandit arms we call the ‘decreasing returns’ property. It is shown that bandits for
learning applications possess this property. That section then establishes that the price of irrevo-
cability for bandits possessing the decreasing returns property is uniformly bounded and develops
stronger performance bounds in interesting asymptotic parameter regimes. Section 5 presents very
encouraging computational experiments for large scale bandit problems drawn from an interesting
generative family. In the interest of implementability, Section 6 develops a combinatorial algorithm
for the fast computation of packing heuristic policies for multi-armed bandits. Section 7 concludes
with a perspective on interesting directions for future work.

2. The Irrevocable Multi-Armed Bandit Model

We consider a multi-armed bandit problem with multiple simultaneous ‘pulls’ permitted at every
time step and ‘irrevocability’ restrictions. A single bandit arm (indexed by %) is a Markov Decision
Process (MDP) specified by a state space S;, an action space, A;, a reward function r; : §; x A; —
R., and a transition kernel P; : S; x A; x §; — [0,1]; Pi(x;,ai,y;) is thus the probability that
employing action a; on arm 4 while it is in state x; will lead to a transition to state y;. Given
the state and action for an arm ¢ at some time ¢, the evolution of the state for that arm over the
subsequent time step is independent of the other arms.

Every bandit arm is endowed with a distinguished ‘idle’ action ¢;. Should a bandit be idled
in some time period, it yields no rewards in that period and transitions to the same state with
probability 1 in the next period. More precisely,

ri(si, ¢i) =0, Vs; €S,
Pi(si, ¢i,5:) =1, Vs; € S

We consider a bandit problem with n arms. The only action available at arms that were idled
in the prior time step but pulled at some point in the past is the idle action; that is, the decision
to idle an arm pulled in the previous time step is ‘irrevocable’. Should an action other than the
idle action be selected at an arm, we refer to such a selection as a ‘pull’ of that arm. That is,
any action a; € A; \ {¢;} would be considered a pull of the ith arm. In each time step one
must select a subset of up to k(< n) arms to pull. One is forced to pick the idle action for the
remaining n — k arms. We wish to find an action selection (or control) policy that maximizes
expected rewards earned over T time periods. Our problem may be cast as an optimal control
problem. In particular, we define as our state-space the set S =[[; S; and as our action space, the
set A=T[; Ai. Welet 7 ={0,1,...,T—1}. We understand by s;, the ith component of s € S and
similarly let a; denote the ith component of a € A. We define a reward function r : § x A — Ry,
given by r(s,a) = Y, ri(si,a;) and a system transition kernel P : S x A x S — [0, 1], given by
P(s,a,s) =1L Pi(s;,ai, ;).

We now formally develop what we mean by a feasible control policy. Let Xy be a random
variable that encapsulates any endogenous randomization in selecting an action, and define the
filtration generated by Xy and the history of visited states and actions by

Fr = U(XO, (80)7 (317 CLO), T ($t7at_1))>



where s' and a' denote the state and action at time ¢, respectively. We assume that P(s!*! =
s'|st = s,a' = a, Hy = hy) = P(s,a,s) for all 5,5’ € S,a € A,t € T and any F;-measurable random
variable Hy. A feasible policy simply specifies a sequence of A-valued actions {a'} adapted to F;
and satisfying:

al = ¢; if a§_1 = ¢; and I’ < t with af # ¢; (Irrevocability)

and
Z Ligtzgy <k (At most k simultaneous pulls).

In particular, such a policy may be specified by a collection of o(X") measurable, A-valued
random variables, {u(s’,...,st,a% ...,a’"1 )}, one for each possible state-action history of the
system. We let M denote the set of all such policies u, and denote by J#(s,0) the expected value

of using policy p starting in state s at time 0; in particular
T—1
JH(s,0) =FE [Z r(st,a") ‘50 = 3] ,
t=0

where a' = u(s,...,st,a" ... a7 t).
Our goal is to compute an optimal feasible policy. In particular, we would like to find a policy
©* that achieves

J* (5,0) = sup JH(s,0).
pneM

3. The Packing Heuristic

The irrevocable multi-armed bandit problem defined above does not appear to admit a tractable
optimal solution. As such, this section focuses on developing a heuristic for the problem that
we will subsequently demonstrate offers excellent performance and admits uniform performance
guarantees.

We begin this section with an overview of our proposed heuristic: Assume we are given some
set of policies, one for each individual arm, f; : S; — A4, (where A 4, is the |A4;| dimensional unit
simplex). Notice that unlike the optimal policy for the (irrevocable) multi-armed bandit problem,
this set is a tractable object since each policy in specified as a function of the state of a single
arm. Consider applying policy fi; to the ith arm in isolation over T' time periods. Let v;(j1;) be
the expected reward garnered from the arm and let ;(fi;) be the expected number of times the
arm was pulled over this T period horizon. Next, consider the problem of finding individual arm
policies f1; so as to solve the following problem:

maxpg, i=1,2,..,n > Vi)

s. t. > i) < kT
The above program can be expressed as a linear program with a tractable number of variables and
constraints. Moreover, the value of this program provides an upper bound on the performance of an
optimal policy for the classical multi-armed bandit problem. In fact, we will derive this program by
considering a natural relaxation of the classical multi-armed bandit problem. Although we do not



show it, Whittle’s heuristic may be viewed as a policy motivated by the dual of this program. Given
a solution, i1*, to the above program, the policy we propose — the ‘packing heuristic’ — operates
roughly as follows:

o Sort the arms in decreasing order of the ratio v;(i)/vi(j)).

e Select the top k& arms according to this ranking and select actions for these arms according
to their respective policies ji;. Should the policy for a specific arm choose not to pull that
arm, discard it and replace it with the highest ranked arm from the set of arms that have not
been selected yet. Once all arms are set to be pulled, let time advance.

e In the tth time step repeat the above procedure starting with the set of arms pulled in the
t—1st time step. If an arm is discarded its place is taken by the highest ranked arm according
to our initial ranking from among the arms not selected yet; discarded arms can thus never
be re-introduced.

In the remainder of this section, we rigorously develop the heuristic described above. We begin
by considering the classical multi-armed bandit problem which may be viewed as a relaxation of
the irrevocable problem and describe a (standard) linear program for its solution.

3.1. Computing an Optimal Policy without restrictions on Irrevocability

It is useful to consider the classical multi-armed bandit problem (without the irrevocability con-
straint) in designing policies for the irrevocable multi-armed bandit problem. In finding an optimal
policy for the classical multi-armed bandit problem, it suffices to restrict attention to Markovian
policies. A Markovian policy in this case is specified as a collection of independent A valued random
variables {u(s,t)} each measurable with respect to o(Xo), satisfying >; 1¢,(s.4),26,) < Kk, for all
s,t. In particular, assuming the system is in state s at time ¢, such a policy selects an action a' as
the random variable u(s,t), independent of past states and actions.

We denote an optimal Markovian policy for the classical bandit problem by p{;5 and let J{jz (s, 0)
denote the value garnered under this policy starting in state s at time ¢. Now, J{jg(s,0) > J*(s,0)
since a feasible policy for the irrevocable bandit problem is clearly feasible for the classical bandit
problem. The policy ;5 may be found via the solution of the following linear program, LP(7y),
specified by a parameter 79 € Ag that determines the distribution of arm states at time ¢t = 0.

Here, Afe2 = {ac A}, Loz = k}.

max . Y2 saT(s,a,t)r(s, a),

s. t. Yam(s,a,t) =y 0 P(s',d',8)m(s',a',t = 1), Vt>0,s€S8,
7(s,a,t) =0, Vs,t,a ¢ Af2
Yoo 7(s,a,0) = 7o(s), Vs e S,
T > 0.

where the variables are the state-action frequencies 7 (s, a,t), which give the probability of being in
state s at time t and choosing action a. The first set of constraints in the above program simply
enforce the dynamics of the system, while the second set of constraints enforces the requirement
that at most k£ arms are simultaneously pulled at any point in time.



An optimal solution to the program above may be used to construct a policy ju;5 that attains
expected value J;5(s,0) starting at any state s for which 7g(s) > 0. In particular, given an
optimal solution 7°P* to LP(7(), one obtains such a policy by defining pfjz(s,t) as a random
variable that takes value a € A with probability 7°P*(s,a,t)/ >, 7°P(s,a,t). By construction,
we have E[J{5(s,0)|s ~ ] = OPT(LP(7)). Efficient solution of the above program is not a
tractable task and we next consider making a further relaxation: as opposed to allowing up to k
pulls in a given time step, we require that this constraint only be met in expectation.

3.2. A Further Relaxation

Consider the following relaxation of the program LP(7), RLP(7):

max. 33> Dls,a, Mi(Si, @i, O)ri(si, ai),
s. t. >, Ti(8isaiy t) = 2y o Pi(s}, ag, si)mi(s), ap,t — 1), Vi >0,s; € S;, i,

2 [T —Ds 2t 7T7;(S7;7¢Z',t)} < kT,
Zai Wi(si’ @, O) = Z§:§izsi 7~T0(§)a

T >0,

where 7;(s;, a;, t) is the probability of the ith bandit being in state s; at time ¢ and choosing action
a;.

The program above relaxes the requirement that up to k& arms be pulled in a given time step;
instead we now require that over the entire horizon at most k7" arms are pulled in expectation,
where the expectation is over policy randomization and state evolution. The first set of equality
constraints enforce individual arm dynamics whereas the first inequality constraint enforces the
requirement that at most k7 arms be pulled in expectation over the entire time horizon. The
following lemma makes the notion of a relaxation to LP(7) precise; the proof may be found in the
appendix.

Lemma 1. OPT(RLP(7y)) > OPT(LP(7))

Given an optimal solution 7 to RLP(7g), one may consider the policy ', that, assuming we
are in state s at time ¢, selects a random action pft(s,t), where uf(s,t) = a with probability
IL (ﬁi(si, aist)/ > g, milsi, ai,t)) independent of the past. Noting that the action for each arm 1
is chosen independently of all other arms, we use ,uf(s,-, t) to denote the induced policy for arm
1. Assume for convenience that 7y is degenerate and puts mass 1 on a single starting state, say
s, we have by construction, J*" (s,0) = OPT(RLP(#)). Moreover, we have that pf satisfies the
constraint

< kT,
t=

T—1
s [Zo Z 1{uﬁ(s§,t)sﬁ¢i}’50 =9

where the expectation is over random state transitions and endogenous policy randomization. Note
that uf is not necessarily feasible; we ultimately require a policy that entails at most & arm pulls
in any time step and is irrevocable. We will next use pf* to construct such a feasible policy.



3.3. The Packing Heuristic

In what follows we will assume for convenience that 7y is degenerate and puts mass 1 on a single
starting state. That is, 7o(s;) = 1 for some s; € S; for all i. We first introduce some relevant
notation. Given an optimal solution 7 to RLP(7), define the value generated by arm i as the

random variable
T_

R; = Z ?”Z‘(SE,MZR(SLLL)),

t=0

[y

and the ‘active time’ of arm ¢, T; as the total number of pulls of arm i entailed under that policy

T-1
Ti = ZO 1{Mf(sfat)¢¢i}’
1—

The expected value of arm i, E[R;] = > ;. ; 7i(si,ai,t)ri(si,a;), and the expected active time
B[Ti] = 3, ai t-a;26; Ti(8is iy t). We will assume in what follows that E[T;] > 0 for all 4; otherwise,
we simply consider eliminating those i for which E[T;] = 0. We will also assume for analytical
convenience that Y, E[T;] = kT. Neither assumption results in a loss of generality.

To motivate our policy we begin with the following analogy with a packing problem: Imagine
packing n objects into a knapsack of size B. Each object ¢ has size v; and value v;. Moreover, we
assume that we are allowed to pack fractional quantities of an object into the knapsack and that
packing a fraction « of the ith object requires space at); and generates value av;. An optimal policy
is then given by the following greedy procedure: select objects in decreasing order of the ratio v;/v;
and place them in to the knapsack to the extent that there is room available. If one had more than
a single knapsack and the additional constraint that an item could not be placed in more than
a single knapsack, then the situation is more complicated. One may consider a greedy procedure
that, as before, considers items in decreasing order of the ratio v;/1; and places them (possibly
fractionally) in sequence, into the least loaded of the bins at that point. This generalization of the
greedy procedure for the simple knapsack is suboptimal, but still a reasonable heuristic.

Thus motivated, we begin with a loose high level description of our control policy, which we call
the ‘packing’ heuristic. We think of each bandit arm 7 as an ‘item’ of value F[R;| with size E[T}],
where E[R;] and E[T;] are obtained through the solution of RLP(7() as described above. For the
purposes of this explanation alone, we will assume for convenience that should policy uf call for
an arm that was pulled in the past to be idled, it will never again call for that arm to be pulled;
we will momentarily remove that assumption. Our control policy will operate as follows: we will
order arms in decreasing order of the ratio E[R;]/E[T;]. We begin with the top k£ arms according
to this ordering. For each such arm we will select an action according to the policy specified for
that arm by uﬁ; should this policy call for the arm to be idled, we discard that arm and will never
again consider pulling it. We replace the discarded arm with the next available arm (in order of
initial arm rankings) and select an action for the arm according to pt. We repeat this procedure
until we have selected non-idle actions for up to k& arms (or no arms are available). We then let
time advance, earn rewards, and repeat the procedure described above until the end of the time
horizon.

Algorithm (1| describes the packing heuristic policy precisely, addressing the fact that /%R may
call for an arm to be idled but then pulled in some subsequent time step.
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Algorithm 1 The Packing Heuristic

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:

: Renumber bandits so that

E[Rn]
E[T,]"

E[R1]  E[Ry]
EN] < ET]
li < 0,a; < ¢; for all i, s ~ 7p(+)
{The ‘local time’ of every arm is set to 0 and its designated action to the idle action. An initial
state is drawn according to the initial state distribution 7.}
J « 0 {Total reward earned is initialized to 0.}
X—{1,2,...;k},A—{k+1,....,n},D=0.
{Initialize the set of active (X), available (A), and discarded (D) arms.}
fort=0to7T —1do
while there exists an arm i € X with a; = ¢; do {Select up to k arms to pull.}
Select an i € X with a; = ¢;
{In what follows, either select an action for arm i or else discard it.}
while a; = ¢; and [; < T do {Attempt to select a pull action for arm i}
Select a; o< T;(si, -, 1;) {Select an action according to the solution to RLP(7).}
l; < l; + 1 {Increment arm ¢’s local time.}
end while
if [; = T and a; = ¢; then {Discard arm i and activate next highest ranked arm available.}
X —X\{i},D —DuU{i} {Discard arm i.}
if A # () then {There are available arms.}
j < min A {Select highest ranked available arm.}
X —XU{j}A—A\{j} {Add arm to active set.}
end if
end if
end while
for Every i € X do {Pull selected arms.}
S P(Si, a;, )
{Pull arm i; select next arm i state according to its transition kernel assuming the use of
action a;.}
J — J +ri(si,a;) {Earn rewards.}
ai — ¢
end for
end for

Index bandits by variable <.
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In the event that we placed no restriction on the time horizon (i.e. we ignored the upper limit
on t in line 5 of the algorithm), we have by construction, that the expected total reward earned
under the above policy is precisely OPT(RLP(7)); subsequent analysis will, in a sense, quantify
the loss due to the fact that we do not count rewards earned by the algorithm beyond t =7 —1. In
essence, RLP(7) prescribes a policy wherein each arm generates a total reward with mean E[R;]
using an expected total number of pulls E[T;], independent of other arms. Our algorithm may be
visualized as one which ‘packs’ as many of the pulls of various arms possible in a manner so as to
meet feasibility constraints.

In the Sec. [5] we present a comprehensive computational study of the packing heuristic we
have proposed. The study establishes that the packing heuristic offers performance levels within
about 10% of an upper bound on the performance of an optimal policy for the classical multi-
armed bandit problem. The computational study also establishes that Whittle’s heuristic for the
corresponding classical multi-armed bandit problems entails a large number of ‘revocations’ while
yielding only a marginal performance improvement over the packing heuristic. Finally, we also
consider a natural ‘irrevocable’ modification of Whittle’s heuristic which we show performs poorly
relative to the packing heuristic. Before we launch into these computational experiments however,
we present a theoretical analysis of the performance loss incurred in using the packing heuristic.

4. The Price of Irrevocability

This section establishes upper bounds on the performance loss incurred in using the irrevocable
packing heuristic relative to an upper bound on the performance of an optimal policy for the classical
multi-armed bandit problem. We restrict attention to a class of bandits whose arms satisfy a certain
‘decreasing returns’ property; as we will subsequently discuss, this class subsumes an important
canonical family of bandit problems related to learning applications. We establish that the packing
heuristic always earns expected rewards that are within a factor of 1/8 of an optimal scheme for
such problems. We sharpen our analysis for problems in an asymptotic regime first proposed by
Whittle, where the number of bandits n is increased while keeping the ratio k/n constant. In
that regime, we present a performance guarantee that depend on the ‘degree of parallelism’ in the
problem, i.e. the ratio k/n and also a substantially improved uniform guarantee.

Our analysis provides the first performance bounds for a general class of bandits with multiple
simultaneous plays and the finite horizon criterion. Prior analyses have typically focused on irre-
ducible bandits and the infinite horizon criterion (which rule out applications to learning problems,
for instance); the mean field analyses used there do not apply here. Our analysis sheds light on the
structural properties and operating regimes for which the packing heuristic is likely to offer a viable
solution to the irrevocable multi-armed bandit problem. Our methods make a precise connection
between stochastic packing problems and multi-armed bandit problems, and in doing so open up
new avenues for the design and analysis of multi-armed bandit algorithms.

In what follows we first specify the decreasing returns property and explicitly identify a class of
bandits that possess this property. We then present our performance analysis which will proceed
as follows: we first consider pulling bandit arms serially, i.e. at most one arm at a time, in order
of their rank and show that the total reward earned from bandits that were first pulled within the
first K7'/2 pulls is at least within a factor of 1/8 of an optimal policy; this factor can be improved
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to 1/4 in a certain asymptotic regime. Our uniform bound relies on the static ranking of bandit
arms used, and a symmetrization idea exploited by Dean et al.| (2008]) in their result on stochastic
packing where rewards are statistically independent of item size. In contrast to that work, we
must address the fact that the rewards earned from a bandit are statistically dependent on the
number of pulls of that bandit and to this end we exploit the decreasing returns property that
establishes the nature of this correlation. We then show via a combinatorial sample path argument
that the expected reward earned from bandits pulled within the first 7'/2 time steps of the packing
heuristic i.e., with arms being pulled in parallel, is at least as much as that earned in the setting
above where arms are pulled serially, thereby establishing our first performance guarantee. Our
analysis in Whittle’s regime uses a similar program but sharper estimates of a number of quantities
of interest.

4.1. The Decreasing Returns Property

Define for every ¢ and I < T', the random variable

l
Li(l) = > Lgun(st )26}
t=0

L;(1) tracks the number of times a given arm i has been pulled under policy p® among the first
[ + 1 steps of selecting an action for that arm. Further, define

T-1

R" = Z I{Li(l)gm}ri(s'lia/‘Lﬁ(sé?l))‘
=0

R is the random reward earned within the first m pulls of arm ¢ under the policy uf. The
decreasing returns property roughly states that the expected incremental returns from allowing an
additional pull of a bandit arm are, on average, decreasing. More precisely, we have:

Property 1. (Decreasing Returns) E[RI"] — E[R"] < E[R!] — E[R™ '] for all0 <m < T.

One useful class of bandits from a modeling perspective that satisfy this property are bandits
whose arms yield i.i.d rewards of an a-priori unknown, arm-specific mean. We refer to these as
‘learning problems’. The following discussion makes this notion more precise:

4.1.1. Learning problems and the decreasing returns property

We consider the following generic class of ‘learning’ problems: We have n bandit arms. A pull of
the ith arm yields an independent, random, non-negative reward ? X; having density (or p.m.f.)
fo,(+) where 6; is an unknown parameter in some set ©;. We assume that 6; is drawn randomly at
time 0 according to the density (or p.m.f) g;, and is independent of all §; with j # i. Our objective
is to arrive at an arm selection policy that adaptively selects a subset of k£ arms to pull at each point
in time with a view to maximizing total expected reward earned over T periods. In the interest
of tractability, we assume that g; belongs to some parametric class of functions G;, a member of
which is specified by parameter s; € S;; we make this dependence precise with the notation g;*.

2we may also assume that the reward earned is h(X;) where h is a known, non-negative, concave function.
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Moreover, we assume that g;* is a conjugate prior for fy, for all s; € S;. That is, our posterior on
0; given an observation X; remains in G;.

Learning problems of this type are rather common and fit a number of modeling needs, including
for instance, the fast fashion and call-center staffing examples described in the introduction (see
Caro and Gallien (2007)), |Arlotto et al. (2009), and also Section [5| for concrete examples within
this framework). In addition, these problems are in a sense the canonical application of the bandit
model (see Bellman| (1956), Gittins and Wang| (1992))). For further applications see the books
Bergman and Gittins| (1985); Berry and Fristedt| (1985).

It is not hard to see that the learning problem we have posed can be cast as a multi-armed
bandit problem in the sense of the model in Section 3. In particular, the state space for each arm is
simply S;, with action space A; = {p;, $;} consisting of two actions — pull and idle. The transition
kernel P; is specified implicitly by Bayes’ rule and the reward function is defined according to:

7i(8i, Pi) :/axfei(l‘)gfi(ei)deidlf
z,
By Bayes’ rule, rewards from a given arm (as defined above) will then satisfy the following intuitive
property reflecting the consistency of our estimate of the mean reward from a bandit arm:

ri(si,pi) = Y Pi(si,p,sp)ri(si,pi),  Vsi € Si.
SQES,'

In light of the following Lemma, this broad class of learning problems satisfy the decreasing
returns property. In particular, we have the following result whose proof may be found in the
appendix:

Lemma 2. Given a multi-armed bandit problem with A; = {p;, ¢;} Vi, and
ri(s’hpi) 2 Z Pi<3i7pi7 S;)Ti(s,/i,pi), vzv S; € 8i7
S%ESi
we must have
E[R["™] — E[R]"] < E[R]"] - E[R["™]

forall0<m<T.

4.2. A Uniform Bound on the Price of Irrevocability

For convenience of exposition we assume that T is even; addressing the odd case requires essentially
identical proofs but cumbersome notation.

We re-order the bandits in decreasing order of E[R;]/E[T;] as in the packing heuristic. Let us
define

H* = min {j : ZJ:E[Tz] > k:T/Q} )
i=1

Thus, H* is the set of bandits that take up approximately half the budget on total expected pulls.
Next, let us define for all ¢ < H*, random variables R; and T} according to R; = R;, T, = T, for all

kT/2-5 N BTy
ETg+] )

i < H* and RH* = aRpg+ and TH* = ol'g+, where a =
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We begin with a preliminary lemma whose proof may be found in the appendix:

Lemma 3.

ZE[R 5opT(RLP( 0)).

We next compare the expected reward earned by a certain subset of bandits with indices no
larger than H*. The significance of the subset of bandits we define will be seen later in the proof
of Lemma [6] — we will see there that all bandits in this subset will begin operation prior to time
T'/2 in a run of the packing heuristic. In particular, define

H*
Ryjp = Z:ZI 1{2;11 Tj<kT/2}R’i'
Lemma 4. 1
E[Rl/z] > ZOPT(RLP(?TO)).

Proof. We have:

(a) H* i—1

(b) H* 1—1
> > Pr (Z < kT/2) E[R)]
i=1 j=1
* i—1
9N pr ( T < kT/Q) B[R]
i=1 j=1

(d) H” BT, _
> Z 1— j=1 [ J])E[RZ]

—t kT /2

H* N H* i'fl E[T] _
_ 1 Jj=1 J .

i=1 =1
@i T BT
S 1_ = J=1j7#i ,
- izlE[Rl] 2 7; KT /2 ElRi]
n1E
> =) E[Rj]

2 4

=1

(9) 1 _
> ZOPT(RLP(WO))

Equality (a) follows from the fact that under policy u®, R; is independent of T; for j < i. In-
equality (b) follows from our definition of R;: R; < R;. Equality (c) follows from the fact that by
definition Tj = T; for all i < H*. Inequality (d) invokes Markov’s inequality.

Inequality (e) is the critical step in establishing the result and uses the simple symmetrization

idea exploited by [Dean et al.| (2008): In particular, we observe that since ?E[[];l}} < ?3[[?}} for i >
J

j, it follows that E[R;|E[T;] < 3(E[R;|E[Tj] + E[R;|E[T}]) for i > j. Replacing every term
of the form E[R;|E[T};] (with ¢ > j) in the expression preceding inequality (e) with the upper
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bound i (E[R;|E[Tj] + E[R;|E[T;]) yields inequality (e). Inequality (f) follows from the fact that
SH E[T;] = kT /2 and since E[R;] > 0. Inequality (g) follows from Lemma [ |

Before moving on to our main Lemma that translates the above guarantees to a guarantee on
the performance of the packing heuristic, we need to establish one additional technical fact. Recall
that R™ is the reward earned by bandit i in the first m pulls of this bandit under policy uf. Also,
note that RZ-T = R;. Exploiting the assumed decreasing returns property, we have the following
Lemma whose proof may be found in the appendix:

Lemma 5. For bandits satisfying the decreasing returns property (Property ,

H*
. T/2 1
. ;1{23;11 1,<kr/2 i ] = §E[R1/2]-

We have thus far established estimates for total expected rewards earned assuming implicitly
that bandits are pulled in a serial fashion in order of their rank. The following Lemma connects these
estimates to the expected reward earned under the pP2¥1"8 policy (given by the packing heuristic)
using a simple sample path argument. In particular, the following Lemma shows that the expected

rewards under the pP2Ki"8 policy are at least as large as E {ZZH*I 1 {Z;;ll T, <kT /Q}RiT/ 2
Lemma 6. Assuming 7o(s) = 1, we have
ki &L T/2
JHE(5,0) > F 1, e R17|.
(s,0) 2 Z:Z1 {iji Tj<kT/2}" Vi ]
Proof. For a given sample path of the system define
i
h=(H*)Amin{i:» T;>kT/2;.
j=1
On this sample path, it must be that:
il T/2 L T/2
(1) z} L i = Z}Ri :
1= 1=
We claim that arms 1,2,...,h are all first pulled at times ¢ < 7'/2 under ppacking - Assume to

the contrary that this were not the case and recall that arms are considered in order of index under
pPacking g that an arm with index 4 is pulled for the first time no later than the first time arm [
is pulled for I > i. Let A’ be the highest arm index among the arms pulled at time ¢t = T7'/2 — 1 so
that h' < h. It must be that ", T; > kT/2. But then,

H*/\min{i Y T > k:T/2} < W

J=1

which is a contradiction.
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Thus, since every one of the arms 1,2, ..., h is first pulled at times ¢t < T'/2, each such arm may
be pulled for at least 7'/2 time steps prior to time 7" (the horizon). Consequently, we have that the
total rewards earned on this sample path under policy pP2kine are at least

h
R

Using identity and taking an expectation over sample paths yields the result. |

We are ready to establish our main Theorem that provides a uniform bound on the performance
loss incurred in using the packing heuristic policy relative to an optimal policy with no restrictions
on exploration. In particular, we have that the price of irrevocability is uniformly bounded for
bandits satisfying the decreasing returns property.

Theorem 1. For multi-armed bandits satisfying the decreasing returns property (Property , we
have
packing

1
J‘LL (S’O) 2 gJ*(S7O)

Proof. We have from Lemmas [][f] and [6] that
ackin, ].
T (5 0) > GOPT(RLP (7))

where 7o(s) = 1. We know from Lemma [I| that OPT(RLP(7o)) > OPT(LP(7)) = J*(s,0) from
which the result follows. u

4.3. The Price of Irrevocability in Whittle’s Asymptotic Regime

This section considers an asymptotic parameter regime where one may establish a stronger bound
than that in Theorem In particular, the regime we will consider is a natural candidate for
what one might consider a ‘large-scale’ problem. We are given an ‘unscaled’ problem with ng arms
in which we are allowed up to kg simultaneous plays over a time horizon of T. We will assume
that each of these ng arms have identical specifications and start in identical states; this is not an
essential assumption but doing away with it does not permit a clean exposition. We next consider
a sequence of problems indexed by N, where the Nth problem has N copies of each of the ng arms
in the unscaled problem, and we allow N kg simultaneous plays over T' time periods. Our goal is to
understand the price of irrevocability as N gets large. Notice that this regime is still relevant for
learning problems since we are not scaling the time horizon, T', and are not restricting the kernels
P; in any way. This regime is analogous to one considered by Whittle (1988) and [Weber and Weiss
(1990)), albeit for irreducible bandit problems and the average reward criterion (which rules out
learning applications, for instance). The finite horizon criterion and the fact that the bandits we
consider may be (and, for learning applications, will be) non-irreducible rule out the mean-field
analysis techniques of Weber and Weiss| (1990).

Letting R; v and T; y denote the value generated by arm ¢ and its active time (as defined in
the previous section) for the Nth problem, the following facts are apparent by our assumption that
each bandit is identical:
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1. Rin iRi,N/, and T; v iTM\p for all N, N and ¢ < min(ngN,noN’).

2. For every N, the collection of random variables Ry n, Ra N, ..., Ry~ N are i.i.d. as are the
random variables T1 n,To N, . . ., TyoN,N-

3. E[T; N] = koT/ng for all N and i < ngN.

In light of the above facts we will eliminate the subscript N from R; 5 and T; y. We note then
that for the N'th problem, OPT(RLP (7)) = Y% E[Ri).
We prove two main bounds in this section:

1. We first present a performance guarantee that illustrates a dependence on the ratio ky/ng.
This ratio may be interpreted as the ‘degree of parallelism’ inherent to the multi-armed bandit
problem at hand.

2. We then prove a performance guarantee that holds in an asymptotic regime where N gets
large (but is otherwise uniform over problem parameters). This bound improves the bound
in Theorem [I] by a factor of 2.

4.3.1. Impact of the ‘Degree of Parallelism’ (kq/no)

Let us define the random variable 7y = min{j : Zgzl T; > koNT}. We then have the following
Lemma.

Lemma 7. In the Nth system, all arms with indices smaller than or equal to v A ngIN begin
operation prior to time T. Moreover, for any € > 0 and almost all w € Q, AN (w), such that

™~ > Nng — (1 + €)/Nngloglog Nng

for all N > N¢(w).

The above Lemma is proved in the appendix. The Lemma is remarkable in that it states that
for large scale problems (i.e. large N), almost all bandits begin operation prior to the end of the
time horizon. We next translate this fact to a bound on performance. To this end, for every N,
let V() denote a (random) permutation of {1,..., Nng} satisfying R; > R; = o(i) < o(j).
Further, for every [ < Nng, define the random variable

My()= > R

1:0(1)<l

Mp (1) is thus the realized reward of the top [ arms assuming the packing heuristic were not
terminated at the end of the time horizon. Define for a € [0, 1],

Nng

> R

=1

v (a) = E[MN([Nnoal)l/E

Since the R; are i.i.d random variables, limy vy (a) = 7(a) is well defined by the law of large
numbers and is naturally interpreted as the ratio between the expected contribution of an arm
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restricted to realizations that are in the top « fractile and the expected contribution of an arm.
We then have the following result theorem indicates the impact of the ‘degree of parallelism’ in the
problem on the performance of the heuristic:

Theorem 2. Dacking
lim —Jk] (5,0)

> 1 — ~(mi _
N, 0) > 1 — ~v(min(ko/no, 1 — ko/nop))

The above bound (which is established in the appendix) provides an indication of the role played
by the ratio ko/ng. Loosely, it may be interpreted as stating that the performance loss incurred by
the packing heuristic is no more than the relative contribution from the top ko/ng percent of arms.
While one may characterize the + function given the distribution of rewards from a given arm R;,
a fair criticism of this bound is that it is difficult to characterize v given only primitive problem
data. The next bound we provide will be uniform over problems parameters and valid for problems
in Whittle’s asymptotic regime.

4.3.2. A Uniform Guarantee for Whittle’s Regime

We present here a performance guarantee for the asymptotic regime under consideration that
depends only on problem primitives (and is, in fact, uniform over this regime). The program we
will follow is essentially identical to that we followed for our proof of a uniform bound with the
exception of Lemma |4} we prove an alternative result below allowing for a dependence on problem
scale N. The proof may be found in the appendix.

Lemma 8. For the Nth bandit problem, we have:
1 -
E[R; 9] > 5(1 — k(N))OPT(RLP(7)).

where k(N) = O(N~Y24%) and d > 0 is arbitrary.

Using the result of the previous Lemma (in place of Lemma [4)), and Lemmas [5| and @] we have
that

Theorem 3. For the Nth multi-armed bandit problem,

JHE (5 0) > = (1 — k(N))J*(s,0)

SN

where kK(N) = O(N~Y2+4) for arbitrary d > 0 and we assume s; = s; Vi, j.

This bound while still lose, provides a substantial improvement over the uniform bound in the
previous section. Together, Theorems[2|and [3|indicate that the packing heuristic is likely to perform
well in Whittle’s asymptotic regime.

5. Computational Experiments

This section presents a computational investigation of the performance of the packing heuristic for
the irrevocable multi-armed bandit problem with a view to gauge its practical efficacy. We also
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examine as an alternative heuristic for the irrevocable bandit problem, a natural modification to
Whittle’s heuristic. Finally, we examine the performance of Whittle’s (non-irrevocable) heuristic
itself, paying special attention to the number of arm ‘revocations’ under that heuristic. In addition,
we benchmark the performance of all of these schemes against a computable upper bound on the
expected reward for any policy (with no restrictions on revocability); specifically, the bound is given
by the objective function of problem LP(7() in Sec. for an optimal solution®. We consider a
number of large scale bandit problems drawn from a generative family of problems to be discussed
shortly, and demonstrate the following;:

o The packing heuristic consistently demonstrates performance within about 10 to 20 % of an
upper bound on the performance of an optimal policy for the classical multi-armed bandit
problem. This upper bound is also an upper bound to the performance of any irrevocable
scheme.

e The number of ‘revocations’ under Whittle’s heuristic can be large in a variety of operating
regimes. A natural modification to Whittle’s heuristic making it feasible for the irrevocable
bandit problem typically performs 15 to 20 percent worse than Whittle’s heuristic in these
regimes. The packing heuristic can recover a substantial portion of the above gap (between
50 and 100 %) in most cases.

The Generative Model: We consider multi-armed bandit problems with n arms up to k of
which may be pulled simultaneously at any time. The ith arm corresponds to a Binomial(m, P;)
random variable where m is fixed and known, and P; is unknown but drawn from a Beta(a;, 5;)
prior distribution. Assuming we choose to ‘pull’ arm i at some point, we realize a random outcome
M; € {0,1,...,m}. M, isaBinomial(m, P;) random variable where P; is itself a Beta(«;, ;) random
variable. We receive a reward of r;M; and update the prior distribution parameters according to
a; — o; + M;, B — B; + m — M;. By selecting the initial values of a; and §; for each arm
appropriately we can control for the initial level of uncertainty in the value of P;; by ‘level of
uncertainty’ we mean the co-efficient of variation of P; which is defined according to o(P;)/E[P;].
This model is applicable to the dynamic assortment selection problem studied in |Caro and Gallien
(2007) with each arm representing a product of uncertain popularity and M; representing the
uncertain number of product ¢ sales over a single period in which that product is offered for sale;
the only difference with that work is that as opposed to assuming Binomial demand, the authors
there assume Poisson demand.

5.1. 1ID Bandits

We consider bandits with (n, k) € {(500, 75), (500, 125), (100, 15), (100, 25)}. These dimensions are
representative of large scale applications such as the dynamic assortment problem (see |(Caro and
Gallien (2007)). For each value of (n, k) we consider time horizons T" = 40, 25 and 10 (again, horizon
lengths of 40 and 25 reflect the dynamic assortment applications, assuming weekly restocking
decisions). We consider three different values for the coefficient of variation in arm bias: cv =
{1,2.5,4}. These coefficients of variation represent respectively, a low, moderate and high degree

3The problem LP (70) for both computation of the upper bound and the packing heuristic is solved with a tolerance
of 107°; the computational algorithm is described in the next section.
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CvV Horizon | Arms | Simultaneous Pulls Performance: J#/J* Revocations
(cv) (T) (n) (k) Packing | Whittle Irrev | Whittle Whittle
40 500 125 0.81 0.64 0.89 1685
40 100 25 0.80 0.64 0.88 340
40 500 75 0.79 0.68 0.87 723
40 100 15 0.79 0.68 0.86 149
High 25 500 125 0.80 0.68 0.86 1190
(4) 25 100 25 0.80 0.68 0.86 237
25 500 75 0.78 0.73 0.84 474
25 100 15 0.78 0.73 0.84 95
10 500 125 0.79 0.78 0.83 431
10 100 25 0.79 0.77 0.84 86
10 500 75 0.78 0.79 0.80 48
10 100 15 0.78 0.78 0.80 11
40 500 125 0.87 0.79 0.94 519
40 100 25 0.85 0.78 0.94 103
40 500 75 0.86 0.82 0.93 112
40 100 15 0.85 0.81 0.92 25
Moderate 25 500 125 0.85 0.80 0.92 336
(2.5) 25 100 25 0.84 0.79 0.92 67
25 500 75 0.83 0.84 0.91 72
25 100 15 0.82 0.83 0.89 15
10 500 125 0.82 0.81 0.85 84
10 100 25 0.82 0.82 0.85 20
10 500 75 0.80 0.86 0.86 26
10 100 15 0.80 0.86 0.86 4
40 500 125 0.93 0.95 0.99 60
40 100 25 0.91 0.93 0.98 14
40 500 75 0.92 0.99 0.99 17
40 100 15 0.90 0.99 0.99 3
Low 25 500 125 0.91 0.97 0.98 34
(1) 25 100 25 0.91 0.95 0.98 9
25 500 75 0.92 0.98 0.98 19
25 100 15 0.90 0.98 0.98 3
10 500 125 0.89 0.95 0.96 19
10 100 25 0.89 0.95 0.96 3
10 500 75 0.90 0.96 0.96 11
10 100 15 0.89 0.96 0.96 2

Table 1: Computational Summary. Each row represents the performance of three different heuristics
for « = 0.2, m = 2, and (8 chosen to satisfy the corresponding coefficient of variation. Performance for
each instance was computed from 3000 simulations of that instance.
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of a-priori uncertainty in arm bias (or in the context of the dynamic assortment application, for
example, product popularity).

For each combination of the parameters above, we evaluate the packing heuristic, Whittle’s
heuristic and a natural ‘irrevocable’ modification to Whittle’s heuristic. In particular, this irrevo-
cable modification selects, at every point in time, to pull the k£ arms with the highest Gittin’s index
among all arms that are currently active or else, have never been pulled (as opposed to all arms,
as would Whittle’s heuristic).

We make the following observations:

o Impact of Initial Coefficient of Variation (cv): A higher cv represents a high degree
of uncertainty in arm bias. Hence, for cv = 4, one can potentially gain from exploring a
large number of arms before making a decision on the arms to pull for longer periods of
time. Thus, Whittle’s heuristic has a large number of revocations for higher values of cv,
i.e., a large number of arms are discarded and picked again. For an irrevocable heuristic,
mistakes — that is, discarding an arm that is performing reasonably in favor of an unexplored
arm that turns out to perform poorly — are particularly expensive in such problems. The
irrevocable modification to Whittle’s heuristic performs poorly because of the restriction that
a discarded arm cannot be pulled again; specifically, it loses 20-25% compared to Whittle’s
heuristic. In many cases, the packing heuristic is able to recover well over 50% of this gap.
This is also true for moderate co-efficients of variation (cv = 2.5) in initial arm bias, albeit
not for small time horizons (see the point below). For low levels of initial uncertainty in arm
bias (cv = 1), Whittle’s heuristic entails very few revocations and it is thus not surprising
that the irrevocable modification to this heuristic also performs well. The packing heuristic
is outperformed by both heuristics in this low uncertainty regime, albeit by a few percent; all
heuristics are within 11% of an upper bound on achievable performance in the low uncertainty
regime.

o Impact of time horizon (7'): For longer time horizons (T=25 and 7" = 40), it is again
reasonable to expect that Whittle’s heuristic would entail a large number or revocations (since
one may effectively explore all arms before settling on the best). We expect the irrevocable
modification to Whittle’s heuristic to perform poorly here, as indeed it does. The performance
of the packing heuristic is surprisingly consistent, providing a significant advantage over the
irrevocable modification to Whittle’s heuristic, while losing little in performance relative to
Whittle’s heuristic. For short time horizons (7' = 10), all three heuristic are within a few
percent of each other with the packing heuristic being dominated by Whittle’s heuristic and
its irrevocable modification.

To summarize, the packing heuristic provides excellent performance across regimes characterized
by a moderate to high degree of uncertainty in initial arm bias and a relatively longer time horizon;
it provides a significant improvement over a natural irrevocable modification to Whittle’s heuristic
in these regimes while being almost competitive with Whittle’s heuristic itself. At low levels of
uncertainty and/or short time horizons, the packing heuristic is inferior to both Whittle’s heuristic
as also its irrevocable modification, albeit by a small margin.
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Horizon | Arms | Simultaneous Pulls Performance: J*/J* Revocations
(T) (n) (k) Packing | Whittle Irrev | Whittle Whittle
40 501 125 0.91 0.80 0.92 1983
40 99 25 0.91 0.80 0.92 389
40 501 75 0.88 0.80 0.91 1055
40 99 15 0.88 0.79 0.90 214
25 501 125 0.90 0.83 0.92 1376
25 99 25 0.88 0.82 0.92 264
25 501 75 0.87 0.83 0.90 699
25 99 15 0.88 0.83 0.89 142
10 501 125 0.89 0.90 0.92 322
10 99 25 0.88 0.90 0.91 59
10 501 75 0.85 0.86 0.87 120
10 99 15 0.83 0.88 0.88 26

Table 2: Computational Summary. Each row represents the performance of three different heuristics
for M =2, o/ = 0.05. Each instance consisted of an equal number of bandits with CVs of 1, 2.5, 4.0.
Performance for each instance was computed from 3000 simulations of that instance.

5.2. Non IID Bandit Arms

We now consider a model with an equal number of three different categories of bandits: each
category has a distinct cv, but the ratio (a/3) is equal across categories, i.e., we have the same
initial mean for arm bias P; for every arm ¢. The maximum number of arrivals in a given time slot
is m = 1. The results are summarized in Table[5.2] We see that for moderate to long time horizons,
the packing heuristic is effectively competitive with Whittle’s heuristic even though the latter resorts
to a very large number of arm revocations! For these time horizons, the irrevocable modification
to Whittle’s heuristic is substantially inferior to both the packing heuristic and Whittle’s heuristic;
this is intuitive given the large number or revocations incurred by Whittle’s heuristic for these time
horizons. For short time horizons, all three heuristics are quite close, with the packing heuristic
being marginally inferior to Whittle’s heuristic and its irrevocable modification.

We thus see the same merits for the packing heuristic when the bandit arms are not i.i.d. In
fact, the advantages of the packing heuristic are further accentuated in this setting: the heuristic
appears to provide levels of performance essentially identical to Whittle’s heuristic, although the
latter entails a large number of arm revocations.

6. Fast Computation

This section considers the computational effort required to implement the packing heuristic. We
develop a computational scheme that makes the packing heuristic substantially easier to implement
than popular index heuristics such as Whittle’s heuristic and thus establish that the heuristic is
viable from a computational perspective.

The key computational step in implementing the packing heuristic is the solution of the linear
program RLP(7p). Assuming that |S;| = O(X) and |A4;| = O(A) for all 4, this linear program
has O(nT AY)) variables and each Newton iteration of a general purpose interior point method will
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require O ((nTAE)S) steps. An interior point method that exploits the fact that bandit arms are
coupled via a single constraint will require O(n(T AX)3) computational steps at each iteration. We
develop a combinatorial scheme to solve this linear program that is in spirit similar to the classical
Dantzig-Wolfe dual decomposition algorithm. In contrast with Dantzig-Wolfe decomposition, our
scheme is efficient. In particular, the scheme requires O(nTAX2log(kT)) computational steps
to solve RLP(7y) making it a significantly faster solution alternative to the schemes alluded to
above. Equipped with this fast scheme, it is notable that using the packing heuristic requires
O(nAX%log(kT)) computations per time step amortized over the time horizon which will typically
be substantially less than the O(nAX2T) computations required per time step for index policy
heuristics such as Whittle’s heuristic.

Our scheme employs a ‘dual decomposition’ of RLP(7y). The key technical difficulty we
must overcome in developing our computational scheme for the solution of RLP(7() is the non-
differentiability of the dual function corresponding to RLP(7() at an optimal dual solution which
prevents us from recovering an optimal or near optimal policy by direct minimization of the dual

function.

6.1. An Overview of the Scheme

ISill AT of permissible state-action frequencies

For each bandit arm ¢, define the polytope D;(7p) € R
for that bandit arm specified via the constraints of RLP(7) relevant to that arm.

A point within this polytope, 7;, corresponds to a set of valid state-action frequencies for the
ith bandit arm. With some abuse of notation, we denote the expected reward from this arm under

m; by the ‘value’ function:
T—1

Ri(mi) =Y milsi, ai, t)ri(si, ai).
=0

In addition denote the expected number of pulls of bandit arm 7 under m; by
Ti(mi) =T = > mi(si, ¢i, t).
si i

We understand that both R;(-) and T;(-) are defined over the domain D;(7).
We may thus rewrite RLP(7) in the following form:

max. > Ri(mi),

(2) s. t. > Ti(mi) < kT.

The Lagrangian dual of this program is DRLP(7):

min . AET + 37, maxy, (Ri(mi) — ATi(mi)),
s. t. A > 0.

The above program is convex. In particular, the objective is a convex function of \. We will
show that strong duality applies to the dual pair of programs above, so that the optimal solution
to the two programs have identical value. Next, we will observe that for a given value of A, it is
simple to compute max,, (R;(m;) — AT;(m;)) via the solution of a dynamic program over the state
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space of arm i (a fast procedure). Finally it is simple to derive useful a-priori lower and upper
bounds on the optimal dual solution A*. Thus, in order to solve the dual program, one may simply
employ a bisection search over A. Since for a given value of A\, the objective may be evaluated
via the solution of n simple dynamic programs, the overall procedure of solving the dual program
DRLP(7) is fast.

What we ultimately require is the optimal solution to the primal program RLP(7p). One
natural way we might hope to do this (that ultimately will not work) is the following: Having
computed an optimal dual solution A*, one may hope to recover an optimal primal solution, 7*
(which is what we ultimately want), via the solution of the problem
(3) max (Ri(mi) = A" Ti(m)).
for each ¢. This is the typical dual decomposition procedure. Unfortunately, this last step need
not necessarily yield a feasible solution to RLP (7). In particular, solving for A = A\* + € may
result in an arbitrarily suboptimal solution for any e > 0, while solving for a A < A* may
yield an infeasible solution to RLP (7). The technical reason for this is that the Lagrangian dual
function for RLP(7) may be non-differentiable at A*. These difficulties are far from pathological,
and Example [I| illustrates how they may arise in a very simple example.

Example 1. The following example illustrates that the dual function may be non-differentiable at
an optimal solution, and that it is not sufficient to solve for A< X or A= X*+¢€ for an e >0
arbitrarily small. Specifically, consider the case where we have n = 2 identical bandits, T =1, and
K = 1. Fach bandit starts in state s, and two actions can be chosen for it, namely, a and the
idling action ¢. The rewards are r(s,a) =1 and r(s,¢) = 0. Thus, RLP (7o) for this specific case
s given by:

max . m1(s,a,0) + ma(s, a,0),

s. t. m1(s,a,0) + ma(s,a,0) <1,

where m; € Di(7), © = 1,2. Clearly, the optimal objective function value for the above optimization
problem is 1. The Lagrangian dual function for the above problem is

g(A) =X+ max mi(s,a,0)(1 — )+ max ma(s,a,0)(1—N)

m1(s,a,0) m2(s,a,0)
Cf2-x A<t
A A>1

Not the dual function is minimized at \* = 1, which is a point of non-differentiability. Moreover,
solving at \* 4 € for any € > 0, gives m1(s,a,0) = ma(s,a,0) = 0 which is clearly suboptimal.
Also, a solution for 0 < X < X\* is mi(s,a,0) = ma(s,a,0) = 1, which is clearly infeasible.

Notice that in the above example, the average of the solutions to problem for A = A\*—¢c and
A = X +e does yield a feasible, optimal primal solution, (s, a,0) = ma(s, a,0) = 1/2. We overcome
the difficulties presented by the non-differentiability of the dual function by computing both upper
and lower approximations to A*, and computing solutions to for both of these approximations.
We then consider as our candidate solution to RLP(7), a certain convex combination of the two
solutions. In particular, we propose algorithm [2] that takes as input the specification of the bandit

25



and a tolerance parameter €. The algorithm produces a feasible solution to RLP(7() that is within
an additive factor of 2e of optimal.

Algorithm 2 RLP SOLVER
o MNeas g e+ 0, for any & > 0, \infeas
2: For all 4, 7/ « m; € argmax,, (Ri(m) - )\feaSTi(m)),
rinfeas ;€ argmax,, (Ri(ﬂ'z‘) — )\infeas]}(ﬂ'i)).
: while Afeas — \infeas > ¢ do
)\ - Afcas+2)\mfcas

[y

3
4
5: fori=1tondo

6: € argmax, (R;i(m;) — ANT;(m;)).
7

8

9

end for
if Zf?:l T(m}) }fkT then
Aln eas «— )\’ 7.[.11111 eas — 7T:<, V’L
10: else
11: Meas )\ pleas gy
12:  end if

13: end while

14: if 3, Ty (winfeas) — Ty(xfeas) > 0 then
kT—S", T (rfeas

o — ZL Ti(ﬁixggas)(_%i(w)’feas) AN 1

16: else

17: a+—0

18: end if

19: for i =1 to n do

20: 7TiRLP — aﬂ.%nfeas 4 (1 . a)ﬂ.zfeas

21: end for

It is clear that the bisection search above will require O(log(rmaxkT/€)) steps (where rpax =
max; s, a; 7(8i,a;)). At each step in this search, we solve n problems of the type in , i.e.
maxy, (Ri(m;) — AT;(m;)). These subproblems may be reduced to a dynamic program over the
state space of a single arm. In particular, we define a reward function 7; : §; — R4 accord-
ing to 7i(s;,a;) = ri(si,a;) — Mg, 24, and compute the value of an optimal policy starting at
state so; (where so is that state on which 7y places mass 1) assuming 7; as the reward func-
tion. This requires O(S?AT) steps per arm. Thus the RLP Solver algorithm requires a total of
O(nS%AT log(rmaxkT /€)) computational steps prior to termination. The following theorem, proved
in the appendix establishes the quality of the solution produced by the RLP Solver algorithm:

Theorem 4. RLP Solver produces a feasible solution to RLP (7o) of value at least OPT(RLP (7)) —
2e.

The RLP Solver scheme was used for all computational experiments in the previous section.
Using this scheme, the largest problem instances we considered were solved in a few minutes on a
laptop computer.
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7. Concluding Remarks

This paper introduced the ‘irrevocable’ multi-armed bandit problem as a practical model within
which to design policies for a number of interesting learning applications. We have developed a new
algorithm for this problem — the packing heuristic — that we have shown performs quite well and
is practical for large scale deployment. In particular, we have presented a thorough performance
analysis that has yielded uniform approximation performance guarantees as well as guarantees that
illustrate a dependence on problem parameters. We have also presented an extensive computational
study to support what the theory suggests. In the interest of performance, we have presented a fast
implementation of the packing heuristic that is faster than schemes that rely on the computation
of Gittins indices.

Perhaps the single most useful outcome of this work has been to show that irrevocability is not
necessarily an expensive constraint. This fact is supported by both our theory and computational
experiments for a general class of learning applications. While natural ‘irrevocable’ modifications to
schemes that perform well for the classical multi-armed bandit problem (such as Whittles heuristic)
may not necessarily achieve this goal, the scheme we provide — the packing heuristic - does.

In addition, the theoretical analysis we provide has indirectly yielded the first performance
bounds for an important general class of multi-armed bandit problems that to this point have had
surprisingly little theoretical attention. More importantly, the new mode of analysis these problems
have called for reveals a tantalizing connection with stochastic packing problems. This paper has
furthered that connection.

Moving forward, we anticipate two research directions emerging from the present work. First,
it would be interesting to further explore the connection with stochastic packing problems. There
exists a vast body of algorithmic work for such problems, and it would be interesting to see what
this yields for multi-armed bandit problems. A second direction is exploring the requirement
of irrevocability in the non-parametric bandit setting; it is clear that an irrevocable scheme can
never be regret optimal. The question to ask is how sub-optimal from a regret perspective can an
irrevocable scheme be made in the non-parasmetric setting.
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A. Proofs for Section 3
Lemma 1. OPT(RLP(7y)) > OPT(LP(7))

Proof. Let 7 be an optimal solution to LP (7). We construct a feasible solution to RLP(7) of equal value.
In particular, define a candidate solution to RLP(7), 7 according to

7?(82'7aiat) = Z ’ff’(g,d,t)

,a:8;,=8;,a;=a;

|

This solution has value precisely OPT(LP(7y)). It remains to establish feasibility. For this we first observe
that

ZP (sh,al, s)Ti(sh,alt —1) = ZP (s}, al,s;) Z #(s,a,t—1)

cAare.—e! 7.—q!
5,a:5;,=s},a;=a;

ZP sh,al,s > S 11 PG a;.%) | #(s.a,t 1)

st,al Sé:gyi:sg,di:ag S jFi

(4) = Z P(s',d,8)7(s',a , t —1)

s’.a’,8:8;,=s;

> #(5a,t)

§:8;=s;,a

= Z (i, @iy t)
a;
Next, we observe that the expected total number of pulls of arm pulls under the policy prescribed by 7

Z Z (s, a,t)

iostaiaiF P

is simply

Since the total number of pulls in a given time step under 7 is at most k, we have

Z Z #(s,a,t) < kT

i s,t,a:a; Fp;
But,
Z Z 5 @, t Z Z Z S’Lv ala
i s,t,ara;#di 7 t s;,a;7#;
ZZ(lz 517¢17 ))
-3 (- Seteenn).
Si,t
so that
(5) Z(T Z (50, dirt ><kT
From () and (f]), 7 is indeed a feasible solution to RLP (7). This completes the proof. [ |
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B. Proofs for Section 4

Lemma 2. Given a multi-armed bandit problem with A; = {p;, ¢:} Vi, and

ri(8i,pi) = Z Py(siypi s7)ri(si, i), Viysi € Sy,
sLES;

we must have
B[R] - E[R}"] < E[R]"] - E[R}"""]

forall0<m < T.

Proof. We first introduce some notation. It is clear that the policy uf induces a Markov process on the
state space S;. We expand this state space, so as to track the total number of arm pulls so that our state
space now become S; x T U{T}. The policy 2 induces a distribution over arm i states for every time t < T,
which we denote by the variable #. Thus, 7 (s;, m,t,a;) will denote the probability of being in state (s;,m)
at time t and taking action a;.

Now,

E[R[" — R = Z 7t(si,m, t, pi)ri(si, vi)
84, t<T

and similarly, for E[R?" — R"™].

But,

Z ﬁ(Si,m,t,pi)ri(Si,pi) = Z ﬁ-(slam_ 17t7p2) sz(sz,pusg)h(S;J‘F 1)ri(8{iapi)
s

s4,t<T 5:,t<T—1

IN

Z ﬁ-(siam717tapi) ZB(Sz,p175;)T1(5;7p1)

si,t<T—1

> w(sim =1t pi)ri(si, pi)

si,t<T—1
< Z 7(s5,m — 1,t,pi)ri(s4,pi)
8;i,t<T

= BIR" — R

IN

where h(s;,t) =1 — Zj;tl Pr(ufi(si,t') = ¢;). Here Hf;g Pr(ufi(si,t') = ¢;) is the probability of never
pulling the arm after reaching state s; at time ¢ so that h(s;,¢) represents the probability of eventually
pulling arm ¢ after reaching state s; at time ¢. The second inequality follows from the assumption on reward
structure in the statement of the Lemma. We thus see that coins satisfy the decreasing returns property. W

Lemma 4.

-
Z E[R;] > %OPT(RLP(%O)).

Proof. For ¢t > 0, define a function

1 +
t—Y E[T]| AE[T]|,

n ERl
=3 iy

E[R;]
BT

where (a A b) = min(a,b) and (z)* = z if x > 0, and 0 otherwise. By construction (i.e. since is
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non-increasing in 4), we have that f is a concave function on [0, k¥T"]. Now observe that

H*—1

> ~ E[Rj] E[Rpy-]
E[R;| = E[T)] + kT/2 — ET) | = f(kT/2).
Next, observe that
OPT(RLP(7 Z = f(kT).
By the concavity of f and since f(0) = 0, we have that f(kT/2) > §f(kT), which yields the result. |

Lemma 5. For bandits satisfying the decreasing returns property (Property ,

T/2 1
Z 1{21 v anryy | 2 §E[R1/2]-

T/Q] > S F[R;] for all <. The assertion of the

Proof. We note that assuming Property |1 I implies that E[R %

Lemma is then evident — in particular,

E[Ry 5] = ZPr > T; < kT/2 | E[R)]

j=1
H* i—1
T/2
<> pr ("1 < kT/2 | 2E[R]"?)
i=1 j=1

o
T/2
=2E Z 1{21 by <kT/2}R
where the first and second equality use the fact that R; and RiT/ % are each independent of Tj for j #4. M

Lemma 7. In the Nth system, all arms with indices smaller than or equal to v AngN begin operation prior
to time T. Moreover, for any € > 0 and almost all w € Q, AN¢(w), such that

T~ > Nng — (1 + €)4/Nng loglog Nng
for all N > N¢(w).

Proof. We begin with noting that for any € > 0 and almost all w € Q, IN¢(w), such that

(6) ZE < mkoT /ng + (1 4 €)/mloglog mkoT/ng
i=1

for all m > N€¢(w). This is immediate from the Law of the Iterated Logarithm for i.i.d random variables.
Now, let us denote m(N) = Nng — (1 + €)v/Nngloglog Nng. Notice that

( )koT/no + 1 + 6 \/m IOgIOg m( )koT/’rlo < NkoT

Thus, by @, it follows that

Z T, < NkoT
=1
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eventually. But then it must be that
Tn = m(N)

eventually, which yields the second part of the Lemma. Now, for the first part of the Lemma, assume for
the sake of contradiction that the highest indexed arm pulled up to time T — 1 has an index (say, [) smaller
than 7y A ngN. That is, this assumption would imply that there exists an | < 75 A nglV satisfying

l

> T; > NkoT.
i=1
But then, 7y <[ which yields a contradiction and thus the result. |
Theorem 2. g
packing
Jh (s,0)

oIn 800 . _
A}gnoo G0 1 — y(min(ko/no,1 — ko/no))

Proof. From Lemma [7] it follows that in the Nth system at least 7 A ngN bandits begin operation prior
to time T, i.e. the end of the horizon. Now since at most kg/N arms can be active at any point in time, it
must then be that

aekin TnAng N
T (5,0) zEl > Ri—MTnMON(kON)]

Tn Ao N

Z R;i — My, n (ko )1

We also have

i k‘oN ’n.oN
J (5,0 > B ZR >E ZR M, n((ng — ko) N )1
TT,/\'ILUN

Z R; — My, n((no —ko)N)]

B TNARON o
w =1 (by Lemmal(7| and since the R; are bounded) and J5(s,0) < E [ZZL:"JIV Rl} .
i=1

Thus, the above bounds, and the fact that v(-) is non-decreasing yield:

Now, lim y

packing
lim In__(50)

>1—~(k ANl —k .
N—o0 ‘];/'(870) ,Y( O/nO O/nO)

Lemma 7. For the Nth bandit problem, we have:
1 ~
E[Ryyo] > 5(1 = (N))OPT(RLP (7)),

where k(N) = O(N~Y2+4) and d > 0 is arbitrary.

Proof. Observe that for the Nth problem, H* = {kONT/f‘ = [N;m

ToT o W We then have for the Nth problem
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and an arbitrary € > 0,

H* i—1
E[Rijs) = > Pr| > T; <kNT/2 | E[R)]
i=1 j=1

l=5S] /i
> Y Pr|) T, <kNT/2|E[R]
i=1 j=1

Now, for i < L%J, we have that Zgoj\}%i >1+¢e Now, for i < {%} we have:

Pr (> T; <koNT/2| =1-Pr | T; > kNT/2
j=1 j=1
Bl
>1—Pr T; > koNT/2
j=1
[t Nng
Jj=1
[t N
=1-Pr| Y T,-E[T]=> {2(1 +06)J ekoT /no
j=1
N
>1—exp (—Zkg/ng {2(1 ZOG)J 62)

where the third inequality is Hoeffding’s inequality for independent random variables.
Thus,

N [y )
E[Ry 5] > <1 — exp (ng/ng 1+ o) 62> Z E[R;]
L — i=1

> (1 exp (—2k§/n§ Nng 62> <1 6) <Nn0 —2> OPT(RLP())

)
> (1 oo (28 | 225 | ) () (Nez) S
[2(1+€) ) i 2
H

where the second inequality follows from the fact that
arbitrarily small, we have the result.
|

C. Proof of Theorem [

The following lemma shows that the optimal objective function value of the dual is equal to OPT(RLP(7y)).
In particular, it shows that Slater’s constraint qualification condition holds (see, for example, Boyd and
Vandenberghe| (2004)).
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Lemma 9. OPT(RLP(7y)) = OPT(DRLP(7y)). That is, strong duality holds.

Proof. To show this, it is sufficient to show that there is a strictly feasible solution to , i.e., the inequality
is satisfied strictly. This is straightforward — in particular, for each bandit i, set m;(s;, ¢i,t) = 7o,:(s;) for all
s; and ¢, where 7 ;(s;) is the probability of bandit ¢ starting in state s;. Set m;(s;,a;,t) = 0 for a; # ¢; for
all s;,t. These state action frequencies belong to D; (), and also give T;(m;) = 0. ]

We denote R* = OPT(RLP(7y)) = OPT(DRLP(7)). Also, define the following set of total running
times for all bandits corresponding to a dual variable A:

T = {me

K2

m; € argmax (R;(m;) — /\Ti(m))> , Vi} .
Lemma 10. If 0 < A\ < Xg, then
min7 (A1) > max 7 (\2).

Proof. We denote the objective function in DRLP(7g), i.e., the dual function by:

g(A\) = kT + Znﬁx (Ri(m;) — NT;(my))

The slack in the total running time constraint ), T;(m;) < kT, i.e. kKT — >, T(m;), is a subgradient of g for
any 7 such that m; € argmax, (R;(m;) — AT;(m;)) (see Shor| (1985)). Thus, the set of subgradients of the
dual function g at A are given by

Ag\) ={kT —t:t e T(\)}.

Then, since g is a convex function, it follows that for 0 < A; < Ag,
kT —ty < KT —to, vVt ET()\l), to ET()\Q)
The lemma then follows. |

(m*, A*) is an optimal solution for the primal and dual problems if and only if (see, for example, [Boyd
and Vandenberghe| (2004)))

T € argmax (R;(m;) — A" T5(m;))

7
@) either A* > 0 and ZTi(w;‘):kT, or A*=0and ZTi(W:‘)ng.

We prove the correctness of the RLP Solver algorithm separately for the cases when A\* = 0 is optimal,
and when any optimal solution satisfies A* > 0. We denote the values of the bounds on the dual variable
that are computed by the last iteration of the RLP solver algorithm by Af® and A™f#s Recall that,

ﬂfeas € argmax (Ri(m) — )\feasTi(m)) ,

i
minfeas ¢ argmax (Ri(m;) — )\i“feasTi(m-)) .
!
We introduce some additional notation:

Tfeas _ ZTz (,n_lfeaus)7 Rfeas _ Z R; (,n_lfeaus)7

i
Tinfcas — E Ti(ﬂ_;nfcas), Rinfcas _ § Rz (ﬂ_infcas)'
i [
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Thus,

g(AfeaS) _ )\feaskT + Rfeas . )\feasTfeas’

8 i ) ) .
( ) g(Amfcas) _ )\mfcask_T + Rlnfcas _ AfcasTmfcas'

Lemma 11. If (7*, \*) is a solution to with \* = 0, then
R — (aRinfeas + (1 o a)Rfeas) <e.

Proof. If \* = 0, it follows from that there is some t € 7(0) such that ¢t < kT. Hence, it follows from
Lemma (10| that for any A > 0, max7 (\) < kT. Hence, Line 11 of the RLP solver algorithm is always
invoked, and so, the RLP solver algorithm converges to

Ainfeas — g and 0 < A8 < ¢/(kT).
Hence, M2 € argmax, (R;(m;)). Also, g(A) is minimized at A\* = 0. Hence, it follows from Lemma@tha‘c
(9) R* =g¢(0) = ZHELX Ri(m;) = Rinfeas,
Since, Af2s > 0, it follows from 7% < kT. Hen(;e, we now consider the following three cases:

e Case 1: Tinfeas < L
Here, a = 1, and hence, using @ it follows that

R* — (aRinfeas + (1 o a)Rfeas) =0.

o Case 2: Tt = kT.
In this case, (eras,)\feas) satisfy the optimality conditions in . Thus, R = R*, and so (since
Rinfeas = R* by @)
R — (aRinfeas + (1 _ Q)Rfeas) =0.

o Case 3: Tfeas > T > Tfeas,

Since, g(\) is minimized at A = 0,

R* = g(O) < g(AfeaS) — )\feaskT + Rfeas _ /\feasTfeas
= R* — Rfeas S )\feas (]CT _ Tfeas) .

Since, R* = R™** (from (J)), and using the fact that 0 < o < 1 when 7% > kT > T2 we have

R* — aRinfcas _ (1 _ a)Rfcas _ (1 _ Oé)(R* _ Rfcas)
(1 _ a)(kT _ Tfeas))\feas
kT)\feas

€

(10)

IN N CIA

)

Lemma 12. If every solution to @ satisfies \* > 0, then
R* — (aRinfeas + (1 _ a)Rfeas) S %.

Proof. The RLP solver algorithm is initialized with A2 = 0. Since, \* > 0, and (kT) € T(\*) ((7), it
follows from Lemma [10| that min 7 (0) > kT. But (k¥T) ¢ 7 (0), else there would be a solution to that
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satisfies A* = 0, leading to a contradiction. Thus, min7 (0) > kT, and so lines 8-12 of the RLP solver
algorithm guarantee that

(11) Tinfeas 5 g,

Using an appropriate modification of the optimality conditions in @ for the case where the horizon is T"feas
(instead of kT'), we see that R {5 the maximum reward earned by any policy in {7 : >, T;(m;) < T'nfeas},
Since, R* is the maximum reward earned by any policy in {m : >, Tj(m;) < kT < T'infeas},

(12) Rinfeas > R*.
We now argue that 7% < kT. The RLP solver algorithm is initialized with A* > ... Since,
mieas € argmax, (R;(m;) — A®®T;(m;)), initially, the optimal policy is to idle at all times. Thus, 7% < kT

at initialization; at all other iterations, lines 8-12 of the algorithm ensure that 7 < kT
We now consider the following two cases separately:

e Case 1: T2 = LT,
In this case, (7125, A\f3) satisfy the optimality conditions in , and so, R®* = R*. Now, using

(aRinfcas + (1 _ O[)f{fcas) Z R*.

e Case 2: T < T.
Note that the RLP solver algorithm terminates when

(13) Afeas _ yimfeas: ¢ /(1T

Now Tt < kT and (kT) € T (\*). If Afeas < \*_ it follows from Lemma [10] that
T2 > min T (A*2) > max T(\*) > kT,

which is a contradiction. Hence,

(14) Afeas > \x.

Also, since (kT) € T(X*), it follows from Lemma [10] that for any A > A*, max 7 (\) < kT So,
implies that

(15) )\infeas < A*.
It follows from ,, that

max (07>\* _ k%) < )\infeas and )\feas < A +

€

kT
Since g(A) is minimized at A*, it follows from and strong duality proved in Lemma@ that

g(>\*) _ R* S g()\feas) _ Rfeas + )\feas (k’T _ Tfeas) S Rfeas + ()\* + 5) (kT _ Tfeas) ,
R* < g()\infeas) _ Rinfeas + Ainfeas (kT _ Tinfeas) < Rinfeas 4 ()\* _ 6) (kT _ Tinfeas) ,

K=
N
b
*
N

I

where § = ¢/(kT). Note that the above inequalities also use 7% < kT (by assumption) and 7 nfeas >
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kT (from (11))). Thus,

R — Od?infeas _ (1 _ a)Rfeas _

a(R* — R™e) 1 (1 — a)(R* — R™)

< a6 — N*) (T™ —KT) + (1 — a)(\* +68) (KT — T7)
§(Tmfeas — BT)(KT — Tes)

=2 Tinfeas _ Tfeas

< 26kT

= 2e.

Theorem 2. RLP Solver produce a feasible solution to RLP(7y) of value at least OPT(RLP (7)) — 2e.

Proof. The result follows from Lemmas|11] and and the fact that A* > 0 (from (7).
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