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Inaccurate records of inventory occur frequently, and by some measures cost retailers approximately 4% in

annual sales. Detecting inventory inaccuracies manually is cost-prohibitive, and existing algorithmic solutions

rely almost exclusively on learning from longitudinal data, which is insufficient in the dynamic environment

induced by modern retail operations. Instead, we propose a solution based on cross-sectional data over

stores and SKUs, observing that detecting inventory inaccuracies can be viewed as a problem of identifying

anomalies in a (low-rank) Poisson matrix. State-of-the-art approaches to anomaly detection in low-rank

matrices apparently fall short. Specifically, from a theoretical perspective, recovery guarantees for these

approaches require that non-anomalous entries be observed with vanishingly small noise (which is not the

case in our problem, and indeed in many applications).

So motivated, we propose a conceptually simple entry-wise approach to anomaly detection in low-rank

Poisson matrices. Our approach accommodates a general class of probabilistic anomaly models. We show

that the cost incurred by our algorithm approaches that of an optimal algorithm at a min-max optimal rate.

Using synthetic data and real data from a consumer goods retailer, we show that our approach provides

up to a 10× cost reduction over incumbent approaches to anomaly detection. Along the way, we build on

recent work that seeks entry-wise error guarantees for matrix completion, establishing such guarantees for

sub-exponential matrices, a result of independent interest.

Key words : inventory record inaccuracies, phantom inventory, anomaly detection, matrix completion,

high-dimensional inference

1. Introduction

Consider the problem of tracking the inventory level of a single product (SKU) at a brick and mortar

shop. Among the slew of complex operational processes that a retailer performs, this one would

appear to be relatively simple, so it is perhaps surprising that in fact inaccurate records of inventory

occur frequently: past audits of major retail chains have found errors in 51–65% of inventory records

across all stores and SKUs (Raman et al. 2001, Kang and Gershwin 2005, DeHoratius and Raman

2008, Rekik et al. 2019). These inventory inaccuracies are costly. For example, one set of consequences

of these inaccuracies are events referred to as phantom inventory, wherein inventory is recorded to

be present on-shelf while in reality it is missing, perhaps due to shrinkage/theft (De Kok et al. 2008,
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Fan et al. 2014), misplacement by employees or shoppers (Ton and Raman 2010, Wang et al. 2016),

point-of-sale errors (Nachtmann et al. 2010), among other reasons. Detecting inventory inaccuracies

is the motivation for this work.

To appreciate the difficulty of maintaining accurate inventory records, it is worth briefly reviewing

a few ‘obvious’ potential solutions, and why they have failed so far:

1. Manual Auditing: Having employees perform manual store counts would certainly be accurate,

but again these inaccuracies occur frequently, to the point that the amount of labor needed to

correct and counteract them is simply too costly (Chuang and Oliva 2015).

2. Technology: The most promising technological solution to date is based on RFID tracking, and

indeed there is empirical evidence that this can reduce inventory inaccuracies (Lee and Özer

2007, Hardgrave et al. 2013, Goyal et al. 2016). However, after at least two decades of devel-

opment, the cost of integrating RFID inventory systems (including RFID tags, scanners, net-

working, building infrastructure, etc.) has not yet fallen to the point that there is widespread

adoption among retailers.

3. Ignore the Problem: While the previous approaches ultimately fail due to cost, the cost (e.g. in

lost sales) of ignoring inventory inaccuracies is equally high – phantom inventory events alone

cost the retail industry up to 4% in annual revenue (Fleisch and Tellkamp 2005).

These problems are only exacerbated in the modern retail environment, which adds the complexity of

omnichannel components such as ship-to-store (Akturk and Ketzenberg 2021) fulfillment, ship-from-

store (Li 2020) fulfillment, and third-party shopping and delivery.

Algorithmic Solutions: At first glance, the problem of detecting inventory inaccuracies would appear

to lend itself to fairly straightforward algorithmic solutions. For example, in the case of phantom

inventory: observe the sales transactions of the SKU over time, and loosely speaking, detect whether

the rate of transactions has slowed or stopped. This solution works in principle if we have an accurate

model of (a) the transactions as a stochastic process (a Poisson process with known rate, say), and

(b) the effect of the phantom inventory event we wish to detect (stopping all transactions, say). Given

these two ingredients, one can formalize the problem of detecting whether the event in question

has occurred – we will describe one such formalization later on – and build ‘optimal’ algorithms

for detecting these events or mitigating their effects (Kök and Shang 2007, DeHoratius et al. 2008).

Such longitudinal approaches, which rely only on the observation of single-SKU data over time, are

cheap to implement, and largely make up the current state of the art. They are effectively the gold

standard, again assuming two ingredients are known: a stochastic process for transactions, and the

effect of the event to be detected.

The primary challenge when applying this type of procedure in practice is that neither of the two

requisite ingredients are necessarily known in advance, due to rapid changes in customers’ demand
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and the assortments offered by retailers. For example, it may be reasonable to model the transactions

of a particular SKU over time as a Poisson process, but that process’ rate may change as quickly

as the amount of time it would take to detect that the process has stopped (i.e. a few inter-arrival

times). It is effectively impossible then to detect whether a sequence of sales (particularly a lack of

sales) is anomalous.

However, there is still hope for large retailers offering many SKUs across multiple locations. In

particular, a retailer might reasonably assume that the demand rate for a particular SKU at a

particular store is related to the demand for both (a) the same SKU at other stores and (b) other

SKUs at the same store. This model, which is in the same vein as the famous ‘Netflix Prize’ model

(Bennett et al. 2007), suggests that while the inventory inaccuracy problem cannot be solved for

a single SKU-store pair using its single stream of longitudinal data, it may be possible to detect

inaccuracies simultaneously across all SKU-store pairs using cross-sectional data. This is exactly what

we seek to accomplish in this paper.1

Detecting Anomalies in Matrices: The problem of detecting inventory accuracies, or anomalies,

across multiple SKUs and stores from cross-sectional sales data can be formulated as one of anomaly

detection in a low-rank matrix. Specifically, let M ∗ be the matrix of average demands, whose rows

correspond to individual stores, whose columns correspond to individual SKUs, and whose entries

are the expected demands during some, typically short, period – say, a week. M ∗ is unknown to us,

and is assumed to be low-rank, which is a typical mathematical formalization (Grover and Srinivasan

1987, Ansari et al. 2000, Ansari and Mela 2003, Farias and Li 2019) for relating a single SKU across

multiple stores, and multiple SKUs at a single store. Similarly, let Y be a random matrix of the

same dimensions as M ∗, whose entries are independent and have expected values matching the

corresponding entries of M ∗. We can think of Y as the matrix of hypothetical sales, assuming no

anomalous events (such as phantom inventory) have occurred. Finally, let X = Y + A, where A is

an unknown, sparse (in the sense that many of its entries are zero) matrix of anomalies, capturing

the effect of anomalous events on sales. We observe only X, and only on some subset of matrix

entries Ω. Matrix anomaly detection problems concern identifying the support of A simply from these

observations.

The previous allusion to the Netflix Prize problem might suggest that the problem here has already

been solved, in the same way that the Netflix Prize problem has been ‘solved’ (e.g. via matrix

completion algorithms). This is not the case, and it is worth understanding why. To begin, state-of-

the-art approaches to solving this problem do indeed stem from algorithms for matrix completion;

1 There are many scenarios in which longitudinal approaches suffice, such as for high-velocity SKUs, or environ-
ments that are homogeneous over time. We view our work on leveraging cross-sectional data as orthogonal to those
approaches, filling in the gap created by the scenarios in which longitudinal approaches fail.
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for instance, consider solving the following convex optimization problem (referred to as ‘stable PCP’

by Zhou et al. (2010)), where λ1 and λ2 are regularization parameters:

min
Ŷ ,Â

‖Ŷ ‖∗ + λ2‖Â‖1 + λ1‖PΩ(X − Ŷ − Â)‖2
F. (1)

The three matrix norms in the objective are, from left to right, the nuclear norm to promote low-

rankedness in Ŷ , the 1-norm to promote sparsity in Â, and the Frobenius norm to promote fit to X

on the observed entries Ω. Upon solving problem (1), ideally Ŷ ≈ Y and Â ≈ A, and so we may use

Â to estimate the support of A.

Now in the absence of anomalies, this optimization problem (after removing the Â terms) is in

essence optimal under a variety on assumptions on the distributions of Y and Ω. In contrast, the

available results for anomaly detection are weaker. In particular, approaches based on solving Eq. (1)

or similar formulations, along with their corresponding theoretical results, are insufficient for at least

the following reasons:

1. Do not allow for sufficient noise: Perhaps most limiting, without additional assumptions on the

anomaly model, results that guarantee the recovery of A require that the total observation ‘noise’

‖Y − M ∗‖F be bounded by a constant independent of the size of the matrix. In contrast, if we

want to model Y as, e.g., a matrix of Poisson entries with mean M ∗, then clearly E‖Y − M ∗‖F

will scale with the size of the matrix, so theoretical guarantees for extant matrix anomaly

detection approaches do not apply.

2. Do not incorporate realistic cost structures: Existing results guaranteeing recovery of A are

measured in simple metrics such as the number of entries for which Â and A match in terms

of being zero or non-zero. Thus, they neglect to incorporate the potentially imbalanced costs

of missing an anomaly (the cost being in lost sales) vs. falsely identifying an anomaly (the cost

being sending an employee to fix a non-existent inventory problem).

3. Do not allow for useful distributions: For technical reasons, results for standard matrix comple-

tion techniques by and large make a statistical assumption (sub-Gaussianity) which precludes

certain distributions that are standard for modeling sales, such as the Poisson distribution

(Conrad 1976, Shi et al. 2014).

4. Perform poorly in practice: Even ignoring these theoretical limitations, we will see using real

sales data that the optimization approach above can perform quite poorly.

This Paper: Against the above backdrop, we make the following contributions to the problem of

detecting inventory inaccuracies, and more generally anomaly detection in matrices:
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1. A near-optimal algorithm: We develop a new anomaly detection algorithm for low-rank

Poisson2 matrices, and prove that our approach is min-max optimal (up to logarithmic terms)

under a broad class of probabilistic anomaly models. These results demonstrate that, as alluded

to previously, our algorithm is able to accurately detect inventory inaccuracies across SKUs and

stores using a single snapshot of cross-sectional data, even when the underlying demand model

and anomaly model are unknown.

We frame the anomaly detection problem itself as one of minimizing an extremely flexible

cost function that is additive, but not necessarily identical, across entries of the matrix, and can

penalize false positives (i.e. falsely identifying an anomaly) and false negatives (i.e. missing an

anomaly) differently. Our main results are stated vis-à-vis this cost:

Theorem 1. (Informal) Let all matrices be of size n × n. Under mild assumptions, our

algorithm achieves, with high probability, a cost satisfying

cost ≤ cost∗ + O

(

log1.5 n√
n

)

.

The term cost∗ here represents the lowest achievable cost among all policies which know the

average demands M ∗ and underlying anomaly model (in contrast, our algorithm knows neither).

A useful interpretation of cost∗ is that it corresponds to the lowest cost given sufficient longi-

tudinal data, for every store-SKU pair, in an idealized time-homogeneous environment. Thus,

this result implies that our algorithm achieves, within an additive factor, that same idealized

cost with just a single cross-sectional snapshot of data. Moreover, this additive factor shrinks

as matrix size (meaning the number of SKUs and stores) increases, at a rate which is in fact

optimal up to logarithmic terms:

Proposition 1. (Informal) For any algorithm, there exists an instance such that its cost

satisfies

cost ≥ cost∗ + Ω
(

1√
n

)

.

Our results are powered by two ingredients. The first is a new result for Poisson matrix

completion described in the third contribution below. The second is we show that combined with

a moment matching approach to learning the anomaly model, we can jointly learn the anomaly

model along with the true underlying rate matrix. This in turn suffices to build an algorithm

that we show is near optimal in the sense that it achieves the cost that converges to the optimal

cost at a min-max optimal rate. The min-max optimality is established through a hypothesis

testing argument.

2 Sub-exponential, more generally.
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2. Experimental validation: Testing our algorithm on both synthetic data and real data from a

national retailer, we find that our approach significantly outperforms the existing optimization

approach to detecting anomalies. Indeed, our algorithm achieves a lower cost than the incumbent

‘Stable PCP’ (and other existing benchmarks) by factors of 3 to 10 on synthetic and real data.

3. Entry-wise guarantee for sub-exponential matrices: As part of our approach, we prove

a new result of independent interest for matrix completion with sub-exponential noise that, for

the first time, bounds the entry-wise error under sub-exponential noise:

Theorem 2. (Informal) Let M ∗ be of size n × n and rank r, and assume that the entries of

M ∗ are observed independently with probability p, along with additive sub-exponential noise.

Under mild assumptions, there exists an estimator M̂ such that, with high probability,

‖M̂ − M ∗‖max ≤ O

(

r log n

p
√

n

)

.

This result substantially improves upon previous results for sub-exponential matrices, all

of which bound an aggregate error measure (Lafond 2015, Sambasivan and Haupt 2018,

Cao and Xie 2015, McRae and Davenport 2019).

The remainder of this paper is organized as follows: we conclude this section by reviewing the

related literature and quickly establishing a base set of notation. Section 2 formally introduces our

model for data and anomalies, along with the anomaly detection problem we seek to solve, and our

main results. We describe our algorithm in Section 3, and our experimental results in Section 4. Proof

sketches of the main results are given in Section 5. Finally, conclusions are drawn in Section 6.

1.1. Related Literature

There are two ongoing streams of work to which the present paper contributes:

Inventory Inaccuracies: The first, naturally, is in inventory record inaccuracies, which are

well-studied in Operations Management, e.g. see the survey by Mou et al. (2018). The phe-

nomenon itself has been observed for some time (Raman et al. 2001, DeHoratius and Raman 2008,

Kang and Gershwin 2005, Rekik et al. 2019), and inventory inaccuracies remain a primary chal-

lenge for retailers (Chen and Mersereau 2015, Fleisch and Tellkamp 2005). Observed causes range

from shrinkage/theft (Fan et al. 2014, De Kok et al. 2008), to misplacement (Wang et al. 2016,

Ton and Raman 2010), to point-of-sale errors (Nachtmann et al. 2010).

The success and costs of non-algorithmic solutions like manual auditing (Chuang and Oliva 2015),

technological solutions using (Lee and Özer 2007, Hardgrave et al. 2013, Goyal et al. 2016), and sim-

ply ignoring the problem (Fleisch and Tellkamp 2005) have been studied. Existing algorithmic solu-

tions (Kök and Shang 2007, DeHoratius et al. 2008) have focused on adapting inventory management
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∥M̂ − M ∗
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∥

F

∥

∥

∥M̂ − M ∗
∥

∥

∥

max

Zhou et al. (2010) n‖E‖F –
Wong and Lee (2017)

√
n‖E‖F –

Klopp et al. (2017)
√

log n‖E‖F –

This paper
√

logn
√
n

‖E‖F

√
logn

n
√
n

‖E‖F

Table 1 Comparison of our results with existing work under proper hyper-parameters. The reported quantities

are the scalings of upper bounds on the error of ‖M̂ − M∗‖, for two matrix norms, with respect to matrix size n

and noise E := Y − M∗.

policies to uncertain inventory levels. Algorithmic detection, particularly in a form that leverages

cross-sectional data, i.e. observations across products and stores, is the motivation for this work.

Matrix Anomaly Detection and Statistical Inference: The second body of work concerns anomaly

detection for matrices. The majority of existing work has focused on a formulation called robust

principal component analysis (robust PCA) (Candès et al. 2011, Chandrasekaran et al. 2011). Most

relevant to our problem (which allows for noise) are approaches for noisy robust PCA (Zhou et al.

2010, Agarwal et al. 2012, Wong and Lee 2017, Zhang and Yang 2018, Chen et al. 2020b). Despite a

sequence of breakthroughs and improvements in algorithms for optimizing objectives in noisy robust

PCA (Lin et al. 2009, 2010, Yuan and Yang 2009, Aybat 2016, Ma and Aybat 2018, Netrapalli et al.

2014, Yi et al. 2016, Zhang and Yang 2018), progress in statistical guarantees for these formulations

has been relatively slower (Zhou et al. 2010, Wong and Lee 2017, Klopp et al. 2017). See Table 1

for a summary of existing statistical guarantees. Note that any hope of identifying the anomalies A

would require, at the very least, that ‖M̂ − M ∗‖F = o(n). Thus, with respect to the noisy problem

we are studying, in which ‖E‖ = Ω(n), existing results are insufficient. In contrast, our algorithm

not only improves upon the recovery of M ∗ to sufficiently allow for recovery of A, it also provides an

additional guarantee on entrywise recovery: ‖M̂ − M ∗‖max. All our guarantees are min-max optimal,

and beyond the recovery of M ∗, to the best of our knowledge, we are also the first paper to analyze

the matrix anomaly detection as a formal cost minimization problem.

Finally, our work contributes to the area of statistical inference in matrix completion. This stream

(Abbe et al. 2017, Chen et al. 2019, Ma et al. 2019) has recently produced tight statistical character-

izations of various algorithms for random matrices. Our own algorithm necessitates proving a similar

result, namely, the first entry-wise guarantee for sub-exponential (rather than sub-Gaussian) noise.

Our proof of this result builds on techniques from Abbe et al. (2017), and also draws on a recent

result from Poisson matrix completion (McRae and Davenport 2019).

Notation: For matrix A ∈ R
n×m, we abbreviate

∑

(i,j)∈[n]×[m] Aij as
∑

ij Aij when no ambiguity

exists. We will require a few matrix norms: ‖A‖2,∞ := maxi
√

∑

j A2
ij , ‖A‖max = maxij |Aij |, ‖A‖F =
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√

∑

ij A2
ij , and the spectral norm of A is denoted ‖A‖2 . The letter C (and c) represents a sufficiently

large (and small) universal (i.e. not dependent on problem parameters) constant that may change

between equations.

2. Model and Main Results

The following is the core problem which we will study. There exists an expected demand matrix

M ∗ ∈ R
n×m
+ , whose n rows correspond to individual stores, whose m columns correspond to individual

SKUs, and whose entries are non-negative. Without loss of generality, we will assume that n ≥
m.3 Let r denote the matrix rank of M ∗, which loosely speaking, controls the extent to which the

expected demands are related across stores and SKUs. For example, the most restrictive case (r = 1)

is equivalent to the following structural equation:

M ∗
ij = uivj ,

where ui and vj can be interpreted as fixed effects, respectively, for store i and SKU j. At the other

extreme, the least restrictive case (r = n) corresponds to placing no restriction at all on M ∗. All

other cases interpolate between these two (precisely, r corresponds to the dimensionality of the fixed

effects). A second anomaly matrix B ∈ {0, 1}n×m, of the same dimensions as M ∗, contains binary

elements which serve to indicate the store-SKU pairs for which an anomalous event (such as phantom

inventory) has occurred.

Given M ∗ and B, a random sales matrix X is generated with independent entries distributed

according to4

Xij ∼
{

Poisson(M ∗
ij) if Bij = 0

Anom(α∗, M ∗
ij) if Bij = 1.

In words, if an anomaly has not occurred for a particular store-SKU pair (Bij = 0), then the demand

is drawn according to the ‘usual’ Poisson distribution with mean M ∗
ij. If an anomaly has occurred,

the demand is instead drawn according to an alternate distribution Anom(·, ·), which is some non-

negative, integer-valued random variable parameterized by M ∗
ij and an unknown parameter vector

α∗ ∈ R
d. This model for the effect of an anomaly is flexible enough to model many different types

of real-world anomalous events – one simple example is phantom inventory events, for which it is

natural to use Anom(α, M ∗
ij) = Poisson(αM ∗

ij), meaning the original Poisson sales process terminates

some fraction α ∈ (0, 1) of the way through the measured time horizon (DeHoratius et al. 2008).

3 This assumption is without loss of generality because we can flip the store and SKU axes.

4 We focus here on a model with non-negative, integer-valued X that fits inventory applications. Our results can
easily be extended to more general sub-exponential noise, as we discuss in Section 3.3.
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None of M ∗, B, or α∗ are known in advance. Instead, we observe only X, and only on a subset of

store-SKU pairs Ω ⊂ [n]× [m]. We denote this observation by XΩ. The subset of entries Ω is observed

independently with probability pO. In addition, we assume that the entries of B are independent

Bernoulli(p∗
A) variables, where p∗

A is bounded away from one by a constant (so that at least a constant

fraction of store-SKU pairs are not anomalous).5 The fact that the positions of the observed entries

(Ω) and the anomalies (B) are uniformly distributed across the matrix is a seemingly-restrictive

assumption that is worth addressing immediately:

• This assumption, often referred to as the ‘random uniform model’, is canonical in the matrix

completion and matrix anomaly detection literature, e.g. since the seminal work of Candès et al.

(2011).

• While the assumption itself enables a cleaner theoretical analysis of our algorithm, the algorithm

can still be used when the assumption does not hold. In fact, we observe that our algorithm

is robust to non-uniform observations and anomalies. One example of such is the real-data

experiment in Section 4.2, where both Ω and B are highly correlated.6

• Recent progress for deterministic matrix regression problems (Chatterjee 2020, Farias et al.

2021) suggests that this robustness to non-uniform patterns is theoretically justified.

Given the above model, our goal is to minimize a certain cost function, to be described shortly,

which will rely on inferring B from XΩ. Before proceeding, we will state and discuss the assumptions

we place on both M ∗ and the anomaly distribution. First, on M ∗, we make the following assumptions,

which are by this point standard in the matrix completion literature (e.g. Abbe et al. (2017), Ma et al.

(2019)):

Assumptions on M ∗: Let M ∗ = UΣV T be its singular value decomposition (SVD), where Σ ∈ R
r×r

is a diagonal matrix with singular values σ∗
1 ≥ σ∗

2 ≥ . . . ≥ σ∗
r (let κ := σ∗

1/σ∗
r), and U ∈ R

n×r, V ∈R
m×r

are matrices whose columns are the left and right-singular vectors of M ∗.

• (Boundedness): ‖M ∗‖max is bounded away from 0 by a constant, and

‖M ∗‖max ≤ L.

• (Incoherence):

‖U ‖2,∞ ≤
√

µr

n
, ‖V ‖2,∞ ≤

√

µr

m

5 For readability, we have taken care to ensure that unknown quantities are denoted with asterisks (*). The quantity
pO is an exception – it is unknown, but it is also so trivially estimated (from Ω) that we omit the asterisk.

6 The empirical success of matrix-completion-type methods for non-uniform patterns can be traced back to the Netflix
prize (Bennett et al. 2007).
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• (Sparsity):
√

pO ≥ C
log1.5(m)µrκ2

√
m

for some constant C.

These assumptions include parameters (µ, L, κ), all of which typically scale as O(1) with respect to

n, though we do not assume this scaling explicitly (instead, our theoretical guarantees depend on

them). The first two assumptions together are meant to preclude the possibility that a single (or

just a few) store-SKU pair’s demand makes up an overwhelming proportion of that store’s, or that

SKU’s, total demand. The third assumption ensures we observe sufficiently many entries of the sales

matrix X.

Second, recall that we assume a probabilistic anomaly model Anom(·, ·) parameterized by a finite

number of unknown parameters α∗ ∈ R
d, or more generally α∗ ∈ Γ for some known Γ ⊂ R

d. We will

make the following assumptions on Anom(·, ·):

Assumptions on Anom(·, ·):
• (Sub-exponential): Anom(α∗, M ∗

ij) is sub-exponential:7

‖Anom(α∗, M ∗
ij)‖ψ1

≤ L.

• (Smoothly-parameterized): For each k ∈ N, the quantity P (Anom(α, M ) = k), viewed as a real-

valued function on (α, M ), is K-Lipschitz.

• (Mean Decomposition): For any M ∈R+ and α ∈ Γ, we have that

E (Anom(α, M )) = g(α)M (2)

for some g : Rd → [0, 1], where g(α) is K-Lipschitz in α.

It is worth pausing to discuss these assumptions on Anom(·, ·) (incidentally, our example anomaly

model for phantom inventory, Anom(α, M ∗
ij) = Poisson(αM ∗

ij), does satisfy all three assumptions, and

is a useful example to hold in mind while parsing through them). First, sub-exponential distributions

are actually more general than the usually assumed sub-Gaussian distributions. This is an integral

component of this work, as existing results do not apply to certain useful distributions that are

sub-exponential, but not sub-Gaussian, such as the Poisson.

The second and third assumptions together enable identification of α∗. The second assumption is,

loosely speaking, necessary (there must be some requirement that the parameterization of Anom(·, ·)
be meaningful). The third assumption is new and is another critical component of this work. We will

discuss this more in the following section, but for now, consider alternative approaches:

7 The sub-exponential norm of a random variable X is defined as ‖X‖ψ1
:= inf{t > 0 : E (exp(|X|/t)) ≤ 2}. For X itself

to be sub-exponential is equivalent to having finite sub-exponential norm. The set of sub-exponential distributions
includes all sub-Gaussian distributions, along with others such as the Poisson. We also use the same L as in the
assumption for ‖M∗‖max for convenience. One can simply take L := max{‖Anom(α∗, M∗

ij)‖ψ1
, ‖M∗‖max}.
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• The matrix anomaly detection literature by and large makes a zero-mean assumption, i.e. that

the net additive perturbation of all anomalies is zero E (Anom(α, M )) = 0. This is more restric-

tive than our assumption, and would not apply to our inventory applications.

• In contrast to this probabilistic model, one could consider an adversarial anomaly model. How-

ever, the adversarial model that allows for arbitrary anomalies will essentially either require

noiseless observations or incur non-identification problems (Candès et al. 2011, Zhang and Yang

2018, Chen et al. 2020b). Hence, certain probabilistic assumptions for the anomalies are required

to make the problem meaningful.

2.1. The Cost Function

We will view any anomaly detection algorithm π as a mapping from the observed sales XΩ to a

binary matrix Aπ ∈ {0, 1}n×m, which encodes the store-SKU pairs that algorithm π identifies to be

anomalous. In particular, Aπ
ij = 1 indicates that the algorithm predicts that Bij = 1, i.e. an anomaly

has occurred at entry (i, j).

The final component in fully stating our problem is to define the performance metric with which

we will evaluate any algorithm. Now existing results are, for the most part, stated in terms of the

number of errors, that is entries for which Aπ
ij 6= Bij . However, as discussed in the previous section,

there are in reality two different types of errors, with potentially different costs. Thus, the metric we

will use (and seek to minimize) is total cost, where the cost incurred at each entry (i, j) ∈ Ω depends

on the type of error:

• c
(0)
ij is incurred if Aπ

ij = 1 and Bij = 0. This false positive cost might represent the labor-time

wasted by sending an employee to verify and correct a (non-existent) inventory anomaly.

• c
(1)
ij is incurred if Aπ

ij = 0 and Bij = 1. This false negative cost might represent lost sales from an

inventory anomaly, minus the labor-time that would have been spent on sending an employee

to verify and correct the inventory anomaly.

Both costs are assumed to be non-negative. Furthermore, the costs can be heterogeneous across stores

and SKUs, e.g. because some SKUs are more sensitive to inconsistent inventory records than others,

or different stores have different labor costs.

Conditioned on the observation XΩ,8 our performance metric is the expected average cost for an

algorithm π, as given by

costπ(XΩ) :=
1

|Ω|E




∑

(i,j)∈Ω

cij
∣

∣

∣XΩ



 ,

8 When ‘conditioning’ on XΩ, we are referring to the probability distribution over XΩ and B that is fully specified
by (M∗, α∗, p∗

A) and pO.
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where cij is the cost incurred at entry (i, j)9:

cij := c
(1)
ij 1

{

Aπ
ij = 1, Bij = 0

}

+ c
(0)
ij 1

{

Aπ
ij = 0, Bij = 1

}

.

2.2. Our Main Results

In the next section, we will outline our algorithm πEW, which we refer to as the entrywise (EW)

algorithm. Before doing so, we will state our main result, which is an upper bound on the cost of πEW.

We will specifically measure cost relative to π∗, which denotes the optimal algorithm10 if the expected

demand M ∗, the anomaly model parameter α∗, and the anomaly likelihood p∗
A are known exactly (in

contrast, our algorithm πEW knows none of these in advance). Note that having (M ∗, α∗, p∗
A) is not

sufficient to back out B exactly, so π∗ incurs a non-zero cost.

Our main result is the following, which guarantees that the cost of the EW algorithm is within an

additive factor of the cost of π∗, which vanishes with increasing m (recall that m is the smaller of

the two matrix dimensions):

Theorem 1. The expected cost of the entrywise algorithm πEW satisfies

EXΩ

(

costπ
EW

(XΩ) − costπ
∗

(XΩ)
)

= O

(

log1.5(m)√
m

)

.

Here, O(·) hides polynomial dependence on K, L, κ, µ, p−1
O and r, which typically scale as constant

with respect to m in applications. As a technical aside, Theorem 1 is stated in terms of the expected

cost (with the expectation taken over the different random realizations of observed data XΩ), but

we in fact prove a stronger guarantee that the same bound holds with probability 1 − O(1/nm). The

proof of Theorem 1 is sketched in Section 5.

A few comments on the consequences of Theorem 1:

1. Theorem 1 makes explicit the value of cross-sectional data: as the number of stores and SKUs

grow, the cost of our algorithm approaches the lowest cost we could incur had we known the

expected demand and underlying anomaly model. Recall that the longitudinal approach relies

on knowing (by learning over time) exactly these pieces of information, and so π∗ can be viewed

as applying the longitudinal approach to each store-SKU pair separately, with data collected

over a long period of time, in an idealized time-homogeneous environment. In short, Theorem 1

guarantees that our algorithm achieves nearly that same idealized cost, in a potentially time-

heterogeneous environment, using a single cross-sectional ‘snapshot’ of data.

9 Our model can also allow more general costs (or rewards) incurred when Aπ
ij = 1, Bij = 1 or Aπ

ij = 0, Bij = 0. See
Appendix B.3 for more discussion.

10 The fact that there even exists a well-defined ‘optimal’ algorithm may not be obvious a priori. We will define π∗

explicitly in the next section.
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2. Because the guarantee in Theorem 1 is additive, it would be meaningless if hypothetically the

optimal cost, costπ
∗
(XΩ), were itself vanishing quickly with m. This is not the case. Again, even

knowing (M ∗, α∗, p∗
A), there is a constant probability of misidentifying anomalies (we will make

this explicit in the next section), and so in fact costπ
∗
(XΩ) = Ω(1).

3. The rate in Theorem 1 is in fact minimax optimal, up to a logarithmic factor. This is captured

by our second main result, the following proposition:

Proposition 1. For any m ∈ N and algorithm π, there exists M ∗ ∈ R
m×m and an anomaly model,

with K, L, κ, µ, r = O(1) and pO, p∗
A = Ω(1), such that the following holds:

EXΩ

(

costπ(XΩ) − costπ
∗

(XΩ)
)

= Ω
(

1√
m

)

.

The proof of Proposition 4, which can be found in Appendix C, is by an explicit construction of a

randomized family of instances.

3. Our Entrywise (EW) Algorithm

We are now prepared to state our algorithm for the anomaly detection problem formulated in the

previous section. To understand the approach, it is worth first working out the ‘optimal’ algorithm

π∗ alluded to above, i.e. the optimal approach assuming that (M ∗, α∗, p∗
A) were known.

3.1. Preliminaries: Characterizing the Optimal Algorithm

The key observation (which we show in the following paragraph) is that for any entry (i, j) ∈ Ω, the

optimal decision of whether or not to identify the entry as anomalous is completely characterized by

the quantity

f∗
ij := P (Bij = 0 | XΩ) , (3)

i.e. the likelihood that entry (i, j) is not anomalous given observation XΩ. This quantity can be

calculated explicitly with (M ∗
ij , α

∗, p∗
A). We will show this calculation soon, but it is simply a statement

of Bayes’ Theorem. The precise optimal decision, given f∗
ij , is then a threshold rule:

Aπ∗

ij = 1

{

c
(1)
ij

c
(0)
ij + c

(1)
ij

≥ f∗
ij

}

. (4)

For intuition on Eq. (4), consider an extreme case: if the cost of a false negative (meaning Bij = 0,

but Aij = 1) is relatively high (meaning c
(1)
ij ≫ c

(0)
ij ), then Aπ∗

ij = 1, intuitively to avoid incurring this

high false negative cost. The reverse holds at the other extreme: a relatively high false positive cost

implies that Aπ∗

ij = 0. In between those extremes, the optimal decision is dictated by the ratio of the

two costs, along with f∗
ij : if the likelihood of an anomaly is sufficiently high (meaning f∗

ij small), then

Aπ∗

ij = 1, as we would expect.
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Finally, to show that Eq. (4) is indeed optimal, we can re-write the cost function as follows:

costπ(XΩ) =
1

|Ω|
∑

(i,j)∈Ω

{

c
(0)
ij P

(

Aπ
ij = 1, Bij = 0

∣

∣

∣XΩ

)

+ c
(1)
ij P

(

Aπ
ij = 0, Bij = 1

∣

∣

∣XΩ

)}

(5)

=
1

|Ω|
∑

(i,j)∈Ω

{

c
(0)
ij P

(

Aπ
ij = 1

∣

∣

∣XΩ

)

f∗
ij + c

(1)
ij P

(

Aπ
ij = 0

∣

∣

∣XΩ

)

(1 − f∗
ij)
}

=
1

|Ω|
∑

(i,j)∈Ω

{

c
(0)
ij f∗

ij +
(

c
(1)
ij − (c(0)

ij + c
(1)
ij )f∗

ij

)

P

(

Aπ
ij = 0

∣

∣

∣XΩ

)}

.

The first line above is by linearity of expectations. The second line is by conditional independence

between Aπ
ij and Bij with XΩ given (since π solely depends on XΩ). The third line follows from a

consolidation of terms, and reveals the threshold rule in Eq. (4).

3.2. Algorithm Overview

The previous discussion makes clear that given (M ∗, α∗, p∗
A), the optimal algorithm is a threshold

rule, as defined in Eq. (4), based on the quantity f∗
ij , as defined in Eq. (3). Naturally, our algorithm,

which we refer to as the entrywise (EW) algorithm, approximates π∗ by estimating f∗
ij . It is so-named

because it leverages an entrywise matrix completion guarantee for sub-exponential noise that we will

describe shortly. The crux of our algorithm is stated in Algorithm 1, with certain details left to be

defined in the next subsection.

Algorithm 1 Entrywise (EW) Algorithm πEW

Input: XΩ, γ ∈ (0, 1]

1: Compute

M̂ =
nm

|Ω| SVD(XΩ)r,

where SVD(XΩ)r := arg minrank(M)≤r ‖M − X ′‖F, and X ′ is obtained from XΩ by setting entries

outside of Ω to 0.

2: Estimate (α̂, p̂A), e.g. using the moment matching estimator in Eq. (7).

3: Estimate f̂ij for f∗
ij , for (i, j) ∈ Ω using the plug-in estimator in Eq. (9).

4: For every (i, j) ∈ Ω, set Aij = 1 if
c

(1)
ij

c
(0)
ij + c

(1)
ij

≥ f̂ij .

Otherwise, set Aij = 0.

Output: AΩ

On first read, it is perhaps easiest to parse through Algorithm 1 in backwards order. The last step,

Step 4, mimics the optimal decision rule in Eq. (4), but uses estimates f̂ij of each f∗
ij . These estimates
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are computed in Step 3 by taking the expression for f∗
ij (see Eq. (8) in the next subsection), which

depends on (M ∗
ij , α

∗, p∗
A), and ‘plugging-in’ estimates (M̂ij, α̂, p̂A) for these quantities. One critical

point to note here is that since Steps 3 and 4 are performed separately at each entry, each estimate

M̂ij of M ∗
ij must be sufficiently accurate: hence the need for an entrywise guarantee.

Steps 1 and 2 together produce these estimates (M̂, α̂, p̂A). Step 1 constructs a ‘de-noised’ estimate

M̂ of M ∗ via a simple SVD-based matrix completion algorithm. The fact that this relatively simple

algorithm works here is a substantial advantage in terms of scalability, and is not obvious in the

context of the matrix completion results preceding our work. In particular, previous guarantees either

(a) bound global (but not necessarily entrywise) errors, or (b) are specific to sub-Gaussian (but not

necessarily sub-exponential) distributions. This is our main technical contribution (Theorem 2).

Finally, M̂ is in fact not exactly an estimate of M ∗, but rather a linear scaling of M ∗ that depends

on α∗ and p∗
A. Here the entrywise guarantee is again vital, as it enables us in Step 2 to produce

accurate estimates α̂ and p̂A using any ‘standard’ parametric estimator (we will specify a concrete

estimator in Eq. (7), but this can largely be viewed as a black box), which then allows us to ‘undo’

the linear scaling. We will describe the entire algorithm in greater detail in the next subsection.

3.3. Algorithm Details

We conclude this section by ‘filling in’ the details of the description of our algorithm.

Step 1: De-noising with an Entrywise Guarantee: Our algorithm is initiated with an SVD-based

de-noising of XΩ:

M̂ =
nm

|Ω| SVD(XΩ)r,

where SVD(XΩ)r := arg minrank(M)≤r ‖M − X ′‖F,11 and X ′ is obtained from XΩ by setting entries

outside of Ω to 0. As mentioned previously, M̂ is not anticipated to be close to M ∗, but rather a

linear scaling of M ∗ that depends on α∗ and p∗
A. Indeed, a quick quick calculation shows that

E (Xij) = (p∗
Ag(α∗) + (1 − p∗

A))M ∗
ij ,

where g(·) is as defined in Eq. (2). To ease notation, let θ = (α, pA) and θ∗ = (α∗, p∗
A), so that

θ, θ∗ ∈ Θ := Γ × [0, 1),12 and let e(θ) denote the linear scaling, i.e. e(θ) := pAg(α) + (1 − pA). As a

sanity check, E (X) = e(θ∗)M ∗.

While the SVD-based de-noising algorithm used here is standard, the key result that drives the

rest of the algorithm (and its analysis) is the following new entrywise error bound, which is likely to

be of independent interest:

11 While phrased here as an optimization problem, the SVD(·)r of a matrix would in practice be computed by
calculating its top r singular vectors and values, a highly-efficient computation.

12 Recall that α∗ ∈ Γ ⊂ R
d, and p∗

A is assumed to be bounded away from one by a constant.
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Theorem 2. With probability 1 − O( 1
nm

),

∥

∥

∥M̂ − e(θ∗)M ∗
∥

∥

∥

max
≤ Cκ4µrL

√

log(m)

pOm
.

Theorem 2 can be viewed as the first entrywise guarantee result for Poisson matrix completion (in

fact, the proof also holds valid for sub-exponential noise). A proof sketch is provided in Section 5. As a

comparison, consider the recent results for aggregated error on matrix completion with Poisson noise

(McRae and Davenport 2019). Under carefully-selected hyperparameters, their results based on the

SVD provide the following Frobenius norm bound: ‖M̂ − M ∗‖F . m1/2. In contrast, our entrywise

guarantee states that ‖M̂ − M ∗‖max . m−1/2 log1/2(m). Therefore, our results show that the SVD

approach not only enjoys an aggregated error guarantee, but in fact the entrywise error is evenly

distributed among all entries up to a logarithmic factor.

Step 2: Recovering (α∗, p∗
A) with a Moment Matching Estimator: Step 1 yields an (entrywise)

accurate estimator M̂ of e(θ∗)M ∗, where θ∗ = (α∗, p∗
A). Now in Step 2, we use M̂ to accurately

estimate θ∗, and therefore M ∗ itself. Let θ̂ denote our estimator for θ∗. The accuracy we will require

on θ̂ (in order for Theorem 1 to hold) is the following:

∥

∥

∥θ̂ − θ∗
∥

∥

∥≤ C(K + L)κ4µrL

√

log(m)

pOm
. (6)

Now given the guarantee on M̂ in Theorem 2, there are a variety of ‘standard’ estimators that would

suffice, e.g. a maximum likelihood estimator would be quite natural. For concreteness, here we will

specify one estimator that satisfies Eq. (6), in the case of discrete distributions (such as the Poisson).

Our estimator works by ‘matching’ generalized moments of the cumulative distribution function,

at sufficiently many values for identifiability. Specifically, for any matrix M and any θ, consider the

observation model fully specified by M and θ (and technically pO as well), and let gt(θ, M ) denote

the proportion of entries of XΩ expected to be at most t:

gt(θ, M ) :=
E (|Xij ≤ t, (i, j) ∈ Ω|)

E (|Ω|) .

These values, namely gt(θ, M ) for various t ∈ N, are the generalized moments we are referring to.

Given that M ∗ ≈ M̂/e(θ∗) by Theorem 2, we choose θ̂ to be the minimizer of the following function

which seeks to match a set of T empirical moments to their expectations as closely as possible (in ℓ2

distance):

θ̂ := arg min
θ∈Θ

T−1
∑

t=0

(

gt(θ, M̂/e(θ)) − |Xij ≤ t, (i, j) ∈ Ω|
|Ω|

)2

, (7)

where T is a large enough constant for identifiability (T = d + 1 typically suffices).
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This estimator satisfies Eq. (6). To state this formally, let F = (F0, F1, . . . , FT−1) : Θ → R
T be

defined as Ft(θ) = gt(θ, M ∗e(θ∗)/e(θ)), and let

δ′ = κ4µrL

√

log m

pOm

be the entrywise bound on ‖M̂ − e(θ∗)M ∗‖max.

Lemma 1. Assume the following regularity conditions on F (θ):

• F : Θ →R
T is continuously differentiable and injective.

• Let δ̃ = δ′(K + L) logm. We require Bδ̃(θ
∗) ⊂ Θ, where Br(θ∗) = {θ : ‖θ∗ − θ‖ ≤ r}.

• For any θ ∈ Bδ̃(θ
∗), ‖JF (θ) − JF (θ∗)‖2 ≤ C

δ̃
‖θ − θ∗‖, where J is the Jacobian matrix.

• ‖JF (θ∗)−1‖2 ≤ C.

Then with probability 1 − O( 1
nm

), Eq. (6) holds.

The regularity conditions in Lemma 1 are among the typical set of conditions for methods involv-

ing generalized moments and are well justified in typical applications (Newey and McFadden 1994,

Imbens et al. 1995, Hall 2005, Hansen 1982). The net of this is that our moment matching estimator

is able to accurately estimate θ∗.

(Aside): Extending to continuous noise models: To extend Algorithm 1 to general (possibly continuous)

sub-exponential noise, the same steps work, except that the estimator for θ̂ in Step 2 needs to

be changed. For observation X with continuous values, one can use MLE estimator to solve θ̂ =

arg maxθ P (X|θ, M ∗) by plugging in M ∗ ≈ M̂/e(θ).

Step 3: A Plug-in Estimator for f∗
ij: Recall that f∗

ij , as defined in Eq. (8), is the key quantity

used by the ‘optimal’ algorithm. Although f∗
ij is not known, we can obtain an estimate f̂ij based on

the estimates (M̂, α̂, p̂A) derived in the previous steps. Specifically, by independence across entries,

for (i, j) ∈ Ω, we have

f∗
ij := P (Bij = 0 | XΩ)

= P (Bij = 0 | Xij)

(i)
=

P (Xij | Bij = 0)P (Bij = 0)
∑

k=0,1 P (Xij | Bij = k)P (Bij = k)

=
(1 − p∗

A)PPoisson(M∗
ij

) (Xij)

p∗
APAnom(α∗,M∗

ij
) (Xij) + (1 − p∗

A)PPoisson(M∗
ij

) (Xij)
, (8)

where (i) is due to Bayes’ Theorem. Thus, we can re-write f∗
ij as f∗

ij = y∗
ij/(x∗

ij + y∗
ij) by defining x∗

ij

and y∗
ij as follows:

x∗
ij := p∗

APAnom(α∗,M∗
ij

) (Xij)

y∗
ij := (1 − p∗

A)PPoisson(M∗
ij

) (Xij) .
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We estimate x∗
ij and y∗

ij via direct plug in:

x̂ij := [p̂APAnom(Xij |α̂, M̂ij/e(θ̂))],

ŷij := [(1 − p̂A)PPoisson(Xij|M̂ij/e(θ̂))],

where [x] denotes x ‘truncated’ to its nearest value in [0, 1], i.e. [x] = max(min(x, 1), 0). Naturally, we

then estimate f∗
ij as

f̂ij :=
ŷij

x̂ij + ŷij
. (9)

Step 4: Near-optimal Decision Rule: The final step is exactly as stated previously. The optimal

decision rule is applied with f̂ij as proxy for f∗
ij :

AπEW

ij = 1

{

c
(1)
ij

c
(0)
ij + c

(1)
ij

≥ f̂ij

}

.

4. Experiments

To evaluate the empirical performance of our EW algorithm, we compare it against various state-of-

the-art approaches. We first consider a synthetic setting, which has the advantage of an exact ground

truth, and then we measure performance on real-world data from a large retailer. The results show

that EW algorithm outperforms existing methods in both settings.

4.1. Synthetic Data

Data Generation Process: We generated an ensemble of matrices M ∗ ∈ R
n×m. The varying param-

eters of the ensemble include (i) r: the rank of the matrix; (ii) M̄ ∗ = 1
nm

∑

ij M ∗
ij : the average value

of all entries; (iii) pO : the probability of an entry being observed; (iv) p∗
A: the probability of an

entry where an anomaly occurs; and (v) α∗: the anomaly parameter. When an anomaly occurs,

E (Anom(α∗, M )) = α∗M.

The parameters were sampled uniformly: r ∈ [1, 10], M̄ ∗ ∈ [1, 10], pO ∈ [0.5, 1], p∗
A ∈ [0, 0.3] and α∗ ∈

[0, 1]. Each instance was generated in the following steps: (i) Generate M ∗: for a given choice of r and

entrywise mean M̄ ∗, we set M ∗ = kUV T . U, V ∈ R
n×r are random with independent Gamma(1, 2)

entries and k is picked so that M̄ ∗ = 1
nm

∑

ij M ∗
ij . This is a typical way of generating M ∗ with

rank r and non-negative entries (Cemgil 2008). (ii) Observation: If (i, j) is observed, then with

probability 1−p∗
A, Xij ∼ Poisson(Mij); otherwise, Xij ∼ Poisson(Exp(α∗)Mij). Here Exp(α∗) models

the occurring time of the anomalous event. (iii) Costs: we generate each c
(0)
ij ∈ [0, 10], c(1)

ij ∈ [0, 10]

uniformly. Here c
(0)
ij and c

(1)
ij model the heterogeneous false negative costs and false positive costs

respectively.
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Existing Methods and Implementations: For practical considerations, we implemented a slight

variant of the EW algorithm where (i) the matrix completion step uses the typical soft-impute

algorithm (Mazumder et al. 2010), and (ii) the anomaly model estimation is done via maximum

likelihood estimation.

We compared our EW algorithm with three existing algorithms: (i) Stable-PCP (Zhou et al. 2010,

Chen et al. 2020b), (ii) Robust Matrix Completion (RMC) (Klopp et al. 2017), and (iii) Direct

Robust Matrix Factorization (DRMF) (Xiong et al. 2011). These three algorithms all recover the

matrices by decomposing X as X = M̂ + Â + Ê, and minimizing some objective f(M̂) + λ1g(Â) +

λ2h(Ê), where f, g, h are penalty functions with Lagrange multipliers λ1, λ2. For all algorithms, we

tuned the Lagrange multipliers corresponding to rank using knowledge of the true rank, and opti-

mized for costπ.

Results for Various Metrics: We generated 1000 instances with n = m = 100. The results are

summarized in Table 2. Table 2 reports the regret (i.e. cost above that of π∗), along with ‖M̂ − M‖F

and ‖M̂ − M‖max. all averaged over the 1000 instances (M̂ of EW is obtained after recovering from

the estimated scaling). The results show that EW outperforms all other algorithms significantly along

all metrics. The reduction in cost brought upon by EW is promising, suggesting the usefulness of

incorporating cost information and underlying entry-wise anomaly models.

Algorithm costπ − costπ
∗ ‖M̂ − M‖F ‖M̂ − M‖max

EW 0.06 237.1 27.4
Stable PCP 0.70 314.3 43.6
DRMF 0.69 391.2 60.4
RMC 0.90 1099.0 123.1

Table 2 Summary of results on synthetic data. Costs (relative to the idealized algorithm π∗, along with

‖M̂ − M‖F and ‖M̂ − M‖max, are averaged over 1000 instances. The evaluated algorithms include our algorithm

(EW), and three existing benchmarks.

Vanishing Regret When n Scales: To study the trend of the regret of EW when n increases, we

consider a representative setting with n = m, r = 3, M̄ ∗ = 5, pO = 0.8, p∗
A = 0.04, α∗ = 0.2. Fig. 1 shows

how the regret of EW scales with n. The result confirms Theorem 1: the regret will vanish when

n grows (in fact, the rate in this example is slightly faster than the upper bound Θ(1/
√

n)). This

illustrates the power of using cross-sectional data with more available stores and products.

Evaluation of Anomaly Detection as a Classification Task: Another interesting metric related to

anomaly detection, besides the average cost/benefits, is the rate of successfully detecting anomalies.

To make this precise, suppose the ‘goal’ of an algorithm π were to correctly classify the entries into

an ‘anomaly set’ and a ‘non-anomaly set’. This is precisely a classification task, in the statistical
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Figure 1 Synthetic data. The regret of costπ
EW

− costπ
∗

corresponds to n in a representative setting with

n = m, r = 3, M̄∗ = 5, pO = 0.8, p∗
A = 0.04, α∗ = 0.2.
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Figure 2 Synthetic data. (Left) Scatter plot showing AUC of (unachievable) ideal algorithm vs. that of EW

(blue points, above 45-degree line); and AUC of Stable PCP vs EW (green, mostly below 45 degree

line). (Right) ROC curve in a representative setting with n = m = 100, r = 3, M̄∗ = 5, pO = 0.8, p∗
A =

0.04, α∗ = 0.2.

learning sense, and as such we can measure performance via the standard true positive rates (TPR)

and false positive rates (FPR).

Our EW algorithm can easily be generalized to obtain (near) optimal TPR with a given constraint

on FPR (see Appendix E for details). To compare the performance, we measure the area under

receiver operating characteristic (ROC) curves, i.e., AUCs. For existing methods, we generate ROC

curves by varying the Lagrange multipliers. We also consider the idealized algorithm π∗ that knows

M ∗ and the anomaly model.

We generated 1000 ensembles with n = m = 100. Figure 2 (Left) shows the scatter plot of AUCs of

π∗, πEW and Stable-PCP. It confirms that our algorithm πEW achieves similar AUC to π∗, confirming
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Figure 3 Synthetic data. Histograms shows problem characteristics where EW performs worst relative to ideal

algorithm (20th percentile).

its the near-optimality. The results also show that we outperform existing methods uniformly over

the ensemble (we show our results vs. Stable-PCP, but the same holds true for the other two existing

algorithms in the experiments). Figure 2 (Right) shows the explicit ROC curve for a representative

setting.

We also studied the limitation of our algorithm, in which the performance starts to degrade. Fig-

ure 3 shows that the problem instances (in the experiment of the synthetic data) where the AUC

of EW was furthest away from the ideal AUC (20th percentile). The results show largely intuitive

characteristics: higher α∗ (so anomalies look similar to non-anomalous entires), lower pO, higher p∗
A

and higher r (so that M ∗ is harder to estimate). The behavior with respect to M̄ ∗ is surprising but

was consistently observed across other ensembles as well.

4.2. Real Data

We collected data XΩ, from a national retailer, consisting of weekly sales of m = 300 SKUs across

n = 30 stores with pO ∼ 0.23. Since there is no ground-truth for anomalies, we backed out the “real”

anomalies through the following process:

• Let S̄ij be the unit sales of (i, j) averaged over the 10 weeks surrounding the current week

(including the past 5 weeks and future 5 weeks).

• Treat (i, j) as anomalous if sales at the current week are less than one half of S̄ij , i.e., Bij = 1 if

and only if Xij ≤ S̄ij/2.
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Such anomalies are of practical interest, e.g., a sudden drop of sale might be due to the errors in

the inventory records. Even if no phantom inventory event occurs, these products may still warrant

a careful examination to understand why the drop in sales occurred. We simulated the cost model

by generating each c
(0)
ij ∈ [0, 500], c(1)

ij ∈ [0, 500] uniformly.

Algorithm costπ

EW 0.860 (± 0.302)
DRMF 2.294 (± 0.185)
Ignore 2.631 (± 0.198)

Table 3 Real Data. Regret of costs are averaged over 1000 instances.

We generated an ensemble of 1000 such instances (randomness is due to the cost model). Table 3

reports the results (we show EW vs. DRMF, the other two existing algorithms are significantly worse

and substantially slower in this experiment). The “Ignore” algorithm serves as the benchmark that

simply ignores the inconsistent inventory records (which is not uncommon in practice). The cost of

EW is roughly one third that of DRMF, suggesting its practical usefulness. It is also interesting to

note that here we are able to discover the sales drop using only the cross-sectional data. Furthermore,

the Ω and B in this experiment are in fact highly non-uniform due to the various correlations over

missingness and sales (such as store-correlation, SKU-correlation, and time-correlation) in the real

data. The results thus suggested the practical robustness of EW algorithm in the presence of non-

uniform missing patterns and anomaly patterns. More details about experiments can be found in

Appendix D.

Scalability: EW is also much faster than the competing algorithms, since our main computational

cost is a typical matrix completion procedure. Concretely, we can expect to solve a 70000 × 10000

matrix with 107 observed entries within minutes (Yao and Kwok 2018).

5. Proof Sketches

Before concluding, we sketch the proofs of Theorems 1 and 2. Complete proofs can be found in

Appendices B and A.

5.1. Proof Sketch of Theorem 1

Mirroring the algorithm itself, the following sketch is given in four parts: (i) an entrywise guarantee

for M̂ ; (ii) a moment matching estimator for (p̂A, α̂); (iii) a plug-in estimator for f∗
ij ; (iv) an analysis

of the cost incurred by the decision AπEW

ij .
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Step 1: The entrywise guarantee for M̂ , namely Theorem 2, is our key result, and we will sketch its

proof in the next subsection.

Step 2: The recovery guarantee for the moment matching estimator, namely Lemma 1, relies on an

intermediate step which is to show that Ft(θ̂) ≈ Ft(θ∗) by solving θ̂ from Eq. (7). In fact, we have

the following result:

Lemma 2. With probability 1 − O( 1
nm

),

∥

∥

∥F (θ̂) − F (θ∗)
∥

∥

∥≤ C(K + L)κ4µrL

√

log(m)

pOm
.

The additional regularity conditions then allow us to establish that θ̂ ≈ θ∗ from F (θ̂) ≈ F (θ∗).

Step 3: The following lemma translates the previously-established entrywise guarantees on ‖M̂ij −
e(θ∗)M ∗

ij‖ (Theorem 2), and θ∗ ≈ θ̂ (Lemma 1), into closeness between f̂ij and f∗
ij :

Lemma 3. Let

δ = (K + L)3κ4µrL2

√

log m

pOm
.

Then with probability 1 − O( 1
nm

), for every (i, j) ∈ Ω, we have

∣

∣

∣f∗
ij − f̂ij

∣

∣

∣≤ min

(

2δ

x∗
ij + y∗

ij

, 1

)

.

Step 4: The final step is to analyze the cost incurred by using f̂ij to replace f∗
ij in the optimal

decision rules. To simplify the notation, define auxiliary variables aij and bij :

aij := −c
(1)
ij +

(

c
(0)
ij + c

(1)
ij

)

f̂ij

bij := −c
(1)
ij +

(

c
(0)
ij + c

(1)
ij

)

f∗
ij .

Then, we can write the (excess) cost explicitly as the following:

costπ
EW

(XΩ) − costπ
∗

(XΩ) =
1

|Ω|
∑

(i,j)∈Ω

(1{aij ≤ 0} −1{bij ≤ 0})bij

≤ 1

|Ω|
∑

(i,j)∈Ω

|aij − bij |.

Here, the last inequality is simply due to algebra (one can check the four cases (i) aij ≥ 0, bij ≥ 0 (ii)

aij ≤ 0, bij ≤ 0 (iii) aij ≥ 0, bij ≤ 0 (iv) aij ≤ 0, bij ≥ 0 separately). This implies that

costπ
EW

(XΩ) − costπ
∗

(XΩ) ≤ 1

|Ω|
∑

(i,j)∈Ω

∣

∣

∣c
(0)
ij + c

(1)
ij

∣

∣

∣ |f̂ij − f∗
ij |

(i)

≤ 1

|Ω|
∑

(i,j)∈Ω

C min

(

2δ

x∗
ij + y∗

ij

, 1

)

,
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where (i) is due to Lemma 3 and taking C := max(|c(0)
ij + c

(1)
ij |).

We now construct random variables

zij := min

(

2δ

x∗
ij + y∗

ij

, 1

)

1{(i, j) ∈ Ω} .

The problem boils down to bound
∑

ij zij . Note that zij ∈ [0, 1]. Furthermore,

E (zij) = pO

∑

t=0,1,2...

min
(

2δ

P (Xij = t)
, 1
)

P (Xij = t)

≤ pO

k
∑

t=0

2δ + pO

∞
∑

t=k+1

P (Xij = t)

≤ pO(2kδ +P (Xij > k)).

We choose k = Θ(L log(1/δ)). By the sub-exponentiality of Xij , we have P (Xij > k) = O(δ). Then

E (zij) = O(pOδ log(1/δ)).

Finally, by the Chernoff bound (zij are independent from each other), with probability 1−O(1/(nm)),

costπ
EW

(XΩ) − costπ
∗
(XΩ)

(i)

≤ C

2nmpO

∑

i,j

zij = O

(

log1.5(m)√
m

)

,

where (i) uses that |Ω| ≤ 2nmpO with high probability and δ = O(log0.5(m)/
√

m). This completes

the proof.

5.2. Proof Sketch of Theorem 2:
Entrywise Guarantee for Sub-Exponential Random Matrices

In this subsection, we provide a proof sketch for Theorem 2 (the full proof can be found in

Appendix A). Our idea combines recently-developed techniques for entrywise analysis for ran-

dom matrices (Abbe et al. 2017) and recent matrix completion result for Poisson observations

(McRae and Davenport 2019).

The key difficulty is to generalize Abbe et al. (2017), which provided entrywise results for sub-

Gaussian noise to the scenario with sub-exponential noise. Although rich results for sub-Gaussian

noise are known, the bound in sub-exponential matrices that we required for generalizing Abbe et al.

(2017) is missing. Then we find that a lemma developed in McRae and Davenport (2019) that origi-

nally provided the result on aggregated error for Poisson matrix completion can be effectively used in

our proof. This observation with considerably more fine-tuned analysis leads us to show the entry-wise

guarantee result for matrix completion with Poisson noise (or sub-exponential noise, more generally).
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Since the main result in Abbe et al. (2017) is for the symmetric scenario, we consider X̄, M̄ ∗ that

are symmetrical under our anomaly model. In particular, let M̄ ∗ ∈ R
n×n
+ be a symmetric matrix. For

1 ≤ i ≤ j ≤ n, let











X̄ij ∼ Poisson(M̄ ∗
ij) with prob. (1 − p∗

A)pO

X̄ij ∼ Anom(α∗, M̄ ∗
ij) with prob. p∗

ApO

X̄ij = 0 with prob. 1 − pO.

Let X̄ji = X̄ij for 1 ≤ i ≤ j ≤ n. Let t = g(α∗)p∗
ApO + (1 − p∗

A)pO. It is easy to verify E

(

X̄/t
)

=

M̄ ∗. Furthermore, suppose max
(

M̄ ∗
ij + 1,

∥

∥

∥Anom(α∗, M̄ ∗
ij)
∥

∥

∥

ψ1

)

≤ L for (i, j) ∈ [n] × [n]. Denote the

eigenvalues of M̄ ∗ by λ∗
1 ≥ λ∗

2 ≥ . . . ≥ λ∗
n with their associated eigenvectors by {ū∗

j}nj=1. Denote the

eigenvalues of X̄ by λ1 ≥ λ2 ≥ . . . ≥ λn with their associated eigenvectors by {ūj}nj=1.

Suppose r is an integer such that 1 ≤ r < n. Assume M̄ ∗ satisfies λ∗
1 ≥ λ∗

2 ≥ . . . ≥ λ∗
r ≥ 0 and

λ∗
r+1 ≤ 0. Let Ū ∗ = (u∗

1, u∗
2, . . . , u∗

r) ∈ R
n×r, Ū = (u1, u2, . . . , ur) ∈ R

n×r. We aim to show that Ū is

a good estimation of Ū ∗ in the entry-wise manner under some proper rotation. In particular, let

H̄ := ŪT Ū ∗ ∈R
r×r. Suppose the SVD decomposition of H̄ is H̄ = U ′Σ′V ′T . The matrix sign function

of H̄ is denoted by sgn(H̄) := U ′V ′T . In fact, sgn(H̄) = arg minO
∥

∥

∥ŪO − Ū ∗
∥

∥

∥

F
subject to OOT = I.13

We aim to show an upper bound on
∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
. Let ∆∗ := tλ∗

r, κ := λ∗
1
λ∗
r
. We rephrase the

Theorem 2.1 in Abbe et al. (2017) for the above scenario and rewrite it as the following lemma.

Lemma 4 (Theorem 2.1 Abbe et al. (2017)). Suppose γ ∈ R≥0. Let φ(x) : R≥0 → R≥0 be a

continuous and non-decreasing function with φ(0) = 0 and φ(x)/x non-increasing in R>0. Let δ0, δ1 ∈
(0, 1). With the above quantities, consider the following four assumptions:

A1.
∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
≤ γ∆∗.

A2. For any m ∈ [n], the entries in the mth row and column of X̄ are independent with others.

A3. P

(∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ γ∆∗

)

≥ 1 − δ0.

A4. For any m ∈ [n] and any W ∈ R
n×r,

P

(

∥

∥

∥

∥

(

X̄ − tM̄ ∗
)

m,·
W

∥

∥

∥

∥

2

≤ ∆∗ ‖W ‖2,∞ φ

(

‖W ‖F√
n‖W ‖2,∞

))

≥ 1 − δ1

n

If 32κmax(γ, φ(γ)) ≤ 1, under above Assumptions A1–A4, with probability 1 − δ0 − 2δ1, the following

hold:

∥

∥

∥Ū
∥

∥

∥

2,∞
. (κ + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗

∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
. (κ(κ + φ(1))(γ + φ(γ)) + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗.

13 See Gross (2011) for more details about the matrix sign function.
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To obtain useful results from Lemma 6, one need to find proper γ and φ(x) and show that the

Assumptions A1–A4 hold. For sub-gaussian noise, these assumptions can be easily verified. We inves-

tigate the scenario for sub-exponential noise. We define γ̄ and φ̄(x) as the proper form for γ and φ(x)

respectively in the following.

Definition 1. Let γ̄ :=
√
n

∆∗ L, φ̄(x) :=
√
n

∆∗ L log(2n3r)x.

Under γ̄ and φ̄(x), we will show that Assumption A3 holds based on Lemma 11, Assumption A4 holds

based on Lemma 13. Note that Assumption A2 naturally holds since each element of X̄ is independent

of each other. Assumption A1 holds due to that
∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
= maxi

√

∑

j t2M̄ ∗2
ij ≤ t

√
nL ≤ γ̄∆∗. First,

we observe that X̄ij − tM̄ ∗
ij is a sub-exponential random matrix.

Lemma 5. For any (i, j) ∈ [n] × [n],
∥

∥

∥X̄ij − tM̄ ∗
ij

∥

∥

∥

ψ1

≤ 6L.

To show that Assumption A3 holds, we introduce a result in McRae and Davenport (2019) that

helps to control the operator norm of X̄ − tM̄ ∗.

Lemma 6 (Lemma 4 in McRae and Davenport (2019)). Let Y be a random n1 × n2 matrix

whose entries are independent and centered, and suppose that for some v, t0 > 0, we have, for all

t1 ≥ t0, P (|Yij | ≥ t1) ≤ 2e−t1/v. Let ǫ ∈ (0, 1/2), and let K = max{t0, v log(2mn/ǫ)}. Then,

P

(

‖Y ‖2 ≥ 2σ +
ǫv√
n1n2

+ t1

)

≤ max(n1, n2) exp(−t2
1/(C0(2K)2)) + ǫ,

where C0 is a constant and σ = maxi
√

∑

j E
(

Y 2
ij

)

+ maxj
√

∑

iE
(

Y 2
ij

)

.

In order to use Lemma 7 for Assumption A3, we need to convert the asymmetrical results into

symmetric scenario. In particular, we have

Lemma 7. P

(∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ Cγ̄∆∗

)

≥ 1 − 1
n2 for some constant C.

Proof. Denote Y ∈ R
n×n by

Yij =











2(X̄ij − tM̄ ∗
ij) i < j

(X̄ij − tM̄ ∗
ij) i = j

0 i > j

.

Note that ‖Yij‖ψ1
≤ 2

∥

∥

∥X̄ij − tM̄ ∗
ij

∥

∥

∥

ψ1

≤ 12L by Lemma 10. By the property of subexponential

random variable, we have E

(

Y 2
ij

)

≤ C1L2 and for all t′ ≥ 0, P (|Yij | ≥ t′) ≤ 2 exp(−t′/C2L) where

C1, C2 are two constants.

Consider applying Lemma 7 to X with n1 = n2 = n. Let ǫ = 1
2n2 . Then K = C2L log(4n2). Take t′ =

√
C03 lnn2K + ln2. Then max(n1, n2) exp(−t′2/(C0(2K)2)) + ǫ = 1

n2 . Furthermore 2σ + ǫv√
n1n2

+ t′ ≤
C3

√
nL for some constant C3.

Therefore, ‖Y ‖2 ≤ C3

√
nL with probability 1− 1

n2 . Note that X̄ − tM̄ ∗ = (Y +Y T )/2. Hence, with

probability 1 − 1
n2 ,

∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ (‖Y ‖2 + ‖Y T ‖2)/2 ≤ C3

√
nL ≤ C3γ̄∆∗.
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Next, we will show that Assumption A4 holds based on the Bernstein-type inequalities to control

the tail bound of sum of sub-exponential random variables.

Lemma 8. For any m ∈ [n] and any W ∈ R
n×r, the following holds

P

(

∥

∥

∥(X̄ − tM̄ ∗)m,·W
∥

∥

∥

2
≤ C∆∗ ‖W ‖2,∞ φ̄

(

‖W ‖F√
n‖W ‖2,∞

))

≥ 1 − 1

n3
,

where C is a constant.

Proof. First, consider a special case with r = 1, w ∈ R
n×1. Let Yj = X̄ij − tM̄ ∗

ij . By Lemma 10,

we have maxj∈[n] ‖Yj‖φ1
≤ 6L =: K. Then, by Bernstein’s inequality, P

(

|∑N
i=1 wiYi| ≥ t

)

≤
2 exp

{

−C2

(

t2

K2‖w‖2
2

∨ t
K‖w‖∞

)}

.

Take t = ( 1
C2

+ 1) ‖w‖2 K log(2n3r), then C2
t2

K2‖w‖2
2

= ( 1
C2

+ 1)(1 + C2) log(2n3r) log(2n3r) ≥
log(2n3r) and C2

t
K‖w‖∞

= (1 + C2) ‖w‖2
‖w‖∞

log(2n3r) ≥ log(2n3r). Therefore,

P

(

|
N
∑

i=1

wiYi| ≥ (
1

C2

+ 1) ‖w‖2 K log(2n3r)

)

≤ 1

n3r
.

This idea can be generalized to the scenario with r > 1.

After showing that Assumptions A1–A4 hold, we can prove the following result.

Proposition 2. Let t := (g(α∗)p∗
A + (1 − p∗

A))pO. Suppose
√

nL log(n)κ2 ≤ Ctλ∗
1 for some known

constant C. Then, with probability 1 − O(n−2), the following hold:

∥

∥

∥Ū
∥

∥

∥

2,∞
. κ(

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+
∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1)

∥

∥

∥Ūsgn(H) − Ū ∗
∥

∥

∥

2,∞
.

√
n log(n)

tλ∗
1

κ3L
∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ κ

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1.

Next we need to convert Proposition 2 back to our asymmetric scenario. We use the “symmetric

dilation” technique (Paulsen 2002, Abbe et al. 2017, Ma et al. 2019, Chen et al. 2020a) to generalize

the result to accommodate our asymmetric model. Let M ∗ = U ∗Σ∗V ∗, SVD(XΩ)r = UΣV be the SVD

decomposition of M ∗ and SVD(XΩ)r respectively. Some fine-tuned analysis leads to the following

result.

Proposition 3. Let H = 1
2
(UTU ∗ + V TV ∗), µ = max

(

n‖U ∗‖2

2,∞ , m ‖V ∗‖2

2,∞

)

/r, κ = σ∗
1/σ∗

r , t =

(p∗
Ag(α∗) + 1 − p∗

A)pO. Suppose
√

mL log(m)κ2 ≤ Ctσ∗
1 for some known constant C. Then, with prob-

ability 1 − O((nm)−1), the following hold:

(‖U ‖2,∞ ∨ ‖V ‖2,∞). κ

√

µr

n

(‖Usgn(H) − U ∗‖2,∞ ∨ ‖V sgn(H) − V ∗‖2,∞).

√
m log(m)κ3L

√
µr

tσ∗
1

√
n

‖SVD(XΩ)r − tM ∗‖max . κ4µr log(m)L

√
m

n
.
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Finally, a concentration bound implying that |Ω| ≈ nmpO provides us
∥

∥

∥

∥

SVD(XΩ)r
nm

|Ω| − e(θ∗)M ∗
∥

∥

∥

∥

max

.
(κ4µr)L

pO

log m
√

m

n
,

which completes the proof (sketch).

6. Conclusion

We proposed a simple statistical model for anomaly detection in low-rank matrices that is motivated

by fixing inventory inconsistency in retail. We proved a new entrywise bound for matrix completion

with sub-exponential noise, and used this to motivate a simple policy for the anomaly detection prob-

lem. We proved matching upper and lower bounds on the anomaly detection costs of our algorithm,

and demonstrated in experiments that our approach provides substantial improvements over existing

approaches.

While our results are somewhat encouraging, they by no means cover the most general settings of

practical interest. There are many possible extensions that merit future investigation, to name a few,

• Dependency on K and L. Our current regret likely scales sub-optimal with K amd L. A

more refined analysis may lead to the improvement for such dependency.

• Incorporating Longitudinal Information. In this paper, we focus on exploring the benefits

brought by utilizing the cross-sectional data in a dynamic environment. But if the environment

is relatively stable, one can expect that both longitudinal information and cross-sectional shall

help. The combination of such tensor-type information is a promising future direction to study.
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A. Entry-wise Bound and Proof of Theorem 2

In this section, we will prove Theorem 2 based on recent results on entry-wise analysis for random

matrices (Abbe et al. 2017) and matrix completion with Poisson observation (McRae and Davenport

2019). The proof idea can be viewed as a generalization from Gaussian noise in Theorem 3.4 of

Abbe et al. (2017) to subexponential noise. In particular, we will proceed with the proof in two steps:

(i) consider the symmetric scenario where M ∗, noises, and anomalies have symmetries; (ii) generalize

the results to the asymmetric scenario.

A.1. Symmetric Case

Consider a symmetric scenario. Let M̄ ∗ ∈ R
n×n
+ be a symmetric matrix. For 1 ≤ i ≤ j ≤ n, let











X̄ij ∼ Poisson(M̄ ∗
ij) with prob. (1 − p∗

A)pO

X̄ij ∼ Anom(α∗, M̄ ∗
ij) with prob. p∗

ApO

X̄ij = 0 with prob. 1 − pO.

(10)

Let X̄ji = X̄ij for 1 ≤ i ≤ j ≤ n. Let t = g(α∗)p∗
ApO + (1 − p∗

A)pO. It is easy to verify E

(

X̄/t
)

= M̄ ∗.

Furthermore, suppose max
(

M̄ ∗
ij + 1,

∥

∥

∥Anom(α∗, M̄ ∗
ij)
∥

∥

∥

ψ1

)

≤ L for (i, j) ∈ [n] × [n].

Denote the eigenvalues of M̄ ∗ by λ∗
1 ≥ λ∗

2 ≥ . . . ≥ λ∗
n with their associated eigenvectors by {ū∗

j}nj=1.

Denote the eigenvalues of X̄ by λ1 ≥ λ2 ≥ . . . ≥ λn with their associated eigenvectors by {ūj}nj=1.

Suppose r is an integer such that 1 ≤ r < n. Assume M̄ ∗ satisfies λ∗
1 ≥ λ∗

2 ≥ . . . ≥ λ∗
r ≥ 0 and

λ∗
r+1 ≤ 0. Let Ū ∗ = (u∗

1, u∗
2, . . . , u∗

r) ∈ R
n×r, Ū = (u1, u2, . . . , ur) ∈ R

n×r. We aim to show that Ū is

a good estimation of Ū ∗ in the entry-wise manner under some proper rotation. In particular, let

H̄ := ŪT Ū ∗ ∈ R
r×r. Suppose the SVD decomposition of H̄ is H̄ = U ′Σ′V ′T where U ′, V ′ ∈ R

r×r are

orthonormal matrices and Σ′ ∈ R
r×r is a diagonal matrix. The matrix sign function of H̄ is denoted

by sgn(H̄) := U ′V ′T . In fact, sgn(H̄) = arg minO
∥

∥

∥ŪO − Ū ∗
∥

∥

∥

F
subject to OOT = I.14 We aim to show

an upper bound on
∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
.

Let ∆∗ := tλ∗
r , κ := λ∗

1
λ∗
r
. We rephrase the Theorem 2.1 in Abbe et al. (2017) for the above scenario

and rewrite it as the following lemma.

Lemma 6 (Theorem 2.1 Abbe et al. (2017)). Suppose γ ∈ R≥0. Let φ(x) : R≥0 → R≥0 be a

continuous and non-decreasing function with φ(0) = 0 and φ(x)/x non-increasing in R>0. Let δ0, δ1 ∈
(0, 1). With the above quantities, consider the following four assumptions:

A1.
∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
≤ γ∆∗.

A2. For any m ∈ [n], the entries in the mth row and column of X̄ are independent with others.

A3. P

(∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ γ∆∗

)

≥ 1 − δ0.

14 See Gross (2011) for more details about the matrix sign function.
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A4. For any m ∈ [n] and any W ∈ R
n×r,

P

(

∥

∥

∥

∥

(

X̄ − tM̄ ∗
)

m,·
W

∥

∥

∥

∥

2

≤ ∆∗ ‖W ‖2,∞ φ

(

‖W ‖F√
n‖W ‖2,∞

))

≥ 1 − δ1

n

If 32κmax(γ, φ(γ)) ≤ 1, under above Assumptions A1–A4, with probability 1−δ0 −2δ1, the followings

hold,

∥

∥

∥Ū
∥

∥

∥

2,∞
. (κ + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗

∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
. (κ(κ + φ(1))(γ + φ(γ)) + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗.

To obtain useful results from Lemma 6, one need to find proper γ and φ(x) and show that the

Assumptions A1–A4 hold. We define γ̄ and φ̄(x) as the proper form for γ and φ(x) respectively in

the following.

Definition 2. Let γ̄ :=
√
npO

∆∗ L, φ̄(x) :=
√
n

∆∗ L log(2n3r)x.

Under γ̄ and φ̄(x), we will show that Assumption A3 holds based on Lemma 11, Assumption A4 holds

based on Lemma 13. Note that Assumption A2 naturally holds since each element of X̄ is independent

of each other. Assumption A1 holds due to that
∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
= maxi

√

∑

j t2M̄ ∗2
ij ≤ t

√
nL ≤ γ̄∆∗.

To show that Assumption A3 holds, we introduce a result in McRae and Davenport (2019) that

helps to control the operator norm of X̄ − tM̄ ∗.

Lemma 7 (Lemma 4 in McRae and Davenport (2019)). Let Y be a random n1 × n2 matrix

whose entries are independent and centered, and suppose that for some v, t0 > 0, we have, for all

t1 ≥ t0, P (|Yij | ≥ t1) ≤ 2e−t1/v. Let ǫ ∈ (0, 1/2), and let K = max{t0, v log(2mn/ǫ)}. Then,

P

(

‖Y ‖2 ≥ 2σ +
ǫv√
n1n2

+ t1

)

≤ max(n1, n2) exp(−t2
1/(C0(2K)2)) + ǫ,

where C0 is a constant and σ = maxi
√

∑

j E
(

Y 2
ij

)

+ maxj
√

∑

iE
(

Y 2
ij

)

.

In order to use Lemma 7, we show that every entry of X̄ − tM̄ ∗ is a sub-exponential random

variable based on Lemmas 8 to 10.

Lemma 8. Let Y ∼ Poisson(λ). Then ‖Y ‖ψ1
≤ 4λ + 1.

N ote that for any t1 > 0,

E

(

e|Y |/t1
)

= E

(

eY/t1
)

=
∞
∑

k=0

ek/t1
λk

k!
e−λ = e−λ

∞
∑

k=0

(e1/t1λ)k

k!
= e−λee

1/t1λ = eλ(e1/t1 −1).

Note that 1/(4λ + 1) ≤ 1, hence e1/(4λ+1) − 1 = 1
4λ+1

es ≤ 1
4λ+1

e where s ∈ [0, 1/(4λ + 1)] by Taylor

expansion. Therefore

E

(

e|Y |/(4λ+1)
)

≤ e
λ

4λ+1
e ≤ ee/4 ≈ 1.973 < 2.

By the definition of ‖·‖ψ1
, we have ‖Y ‖ψ1

≤ 4λ + 1.
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Lemma 9. Let Y1, Y2 . . . Yq be q subexponential random variables with ‖Yi‖ψ1
≤ Lmax. Let c ∈

{1, 2, . . . , q} be a random variable. Then ‖Yc‖ψ1
≤ Lmax.

Proof. This is because E
(

e|Yc|/Lmax
)

=
∑

1≤i≤q P (c = i)E
(

e|Yi|/Lmax
)

≤∑

1≤i≤q 2P (c = i) = 2.

Lemma 10. For any (i, j) ∈ [n] × [n],
∥

∥

∥X̄ij − tM̄ ∗
ij

∥

∥

∥

ψ1

≤ 6L.

Proof. Note that
∥

∥

∥Poisson(M̄ ∗
ij)
∥

∥

∥

ψ1

≤ 4L by Lemma 8 and
∥

∥

∥Anom(α∗, M̄ ∗
ij)
∥

∥

∥ ≤ L by the defi-

nition of L. We have
∥

∥

∥X̄ij

∥

∥

∥

ψ1

≤ 4L by Eq. (10) and Lemma 9. Then, by the triangle inequality,
∥

∥

∥X̄ij − tM̄ ∗
ij

∥

∥

∥

ψ1

≤
∥

∥

∥X̄ij

∥

∥

∥

ψ1

+
∥

∥

∥M̄ ∗
ij

∥

∥

∥

ψ1

≤ 4L + 2L = 6L.

Next we show that Assumption A3 holds.

Lemma 11. Suppose pO ≥ log3 n
n

. P
(∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ Cγ̄∆∗

)

≥ 1 − 1
n2 for some constant C.

Proof. Denote Y ∈ R
n×n by

Yij =











2(X̄ij − tM̄ ∗
ij) i < j

(X̄ij − tM̄ ∗
ij) i = j

0 i > j

.

Note that ‖Yij‖ψ1
≤ 2

∥

∥

∥X̄ij − tM̄ ∗
ij

∥

∥

∥

ψ1

≤ 12L by Lemma 10. By the property of subexponential ran-

dom variable, for all t′ ≥ 0, P (|Yij | ≥ t′) ≤ 2 exp(−t′/C1L) where C1 is a constant. By the construction

of Y , we also have

E (Yij) = 0 and E

(

Y 2
ij

)

≤ 2E[X̄2
ij ] ≤ C2pOL2 (11)

for some constant C2.

Consider applying Lemma 7 to X with n1 = n2 = n. Let ǫ = 1
2n2 . Then K = C1L log(4n2). Take

t′ =
√

C03 lnn2K + ln 2. Then max(n1, n2) exp(−t′2/(C0(2K)2)) + ǫ = 1
n2 . Furthermore, by Eq. (11)

and npO ≥ log3(n), one can verify that

2σ +
ǫv√
n1n2

+ t′ ≤ C3

√
npOL

for some constant C3.

Therefore, ‖Y ‖2 ≤ C3
√

npOL with probability 1 − 1
n2 . Note that X̄ − tM̄ ∗ = (Y + Y T )/2. Hence,

with probability 1 − 1
n2 ,

∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ (‖Y ‖2 + ‖Y T ‖2)/2 ≤ C3

√
npOL ≤ C3γ̄∆∗.

Next, we will show that Assumption A4 holds based on the matrix Bernstein’s inequality to control

the tail bound of sum of sub-exponential random variables.

Lemma 12 (Matrix Bernstein’s inequality). Given n independent random m1 × m2 matrices

X1, X2, . . . , Xn with E[Xi] = 0. Let

V , max

(∥

∥

∥

∥

∥

n
∑

i=1

E[XiX
T
i ]

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

n
∑

i=1

E[XT
i Xi]

∥

∥

∥

∥

∥

)

. (12)
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Suppose ‖‖Xi‖‖ψ1
≤ L for i ∈ [n]. Then,

‖X1 + X2 + . . . + Xn‖.
√

V log(n(m1 + m2)) + L log(n(m1 + m2)) log(n) (13)

with probability 1 − O(n−c) for any constant c.

Proof. Let Yi = Xi1{‖Xi‖ ≤ B} be the truncated version of Xi. We have,

‖E (Yi)‖ ≤
∥

∥

∥

∥

∫

Xi1{‖Xi‖ > B}df(Xi)
∥

∥

∥

∥

(i)

≤
∫

‖Xi‖1{‖Xi‖ > B}df(Xi)

≤ BP (‖Xi‖ > B) +
∫ ∞

B

P (‖Xi‖ > t)dt

(ii)

≤ Be−B/CL + CLe−B/CL (14)

where (i) is due to the convexity of ‖·‖ and (ii) is due to the subexponential property of ‖Xi‖ and

C is a constant. Meanwhile, we have
∥

∥

∥

∥

∥

n
∑

i=1

E
(

(Yi −E (Yi))(Yi −E (Yi))
T
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

E
(

YiY
T
i

)

−E (Yi)E (Yi)
T

∥

∥

∥

∥

∥

(i)

≤
∥

∥

∥

∥

∥

n
∑

i=1

E
(

YiY
T
i

)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

E
(

XiX
T
i

)

−E
(

XiX
T
i 1{‖Xi‖ > B}

)

∥

∥

∥

∥

∥

(ii)

≤
∥

∥

∥

∥

∥

n
∑

i=1

E
(

XiX
T
i

)

∥

∥

∥

∥

∥

≤ V

where (i) is due to the positive-semidefinite property of E (Yi)E (Yi)
T and E (YiY T

i ) −E (Yi)E (Yi)
T ,

(ii) is due to the positive-semidefinite property of E (XiX
T
i 1{‖Xi‖ > B}) and E (YiY T

i ) . Similarly,

‖∑n
i=1 E ((Yi −E (Yi))T (Yi −E (Yi)))‖ ≤ V.

Then, by Theorem 6.1.1 Tropp et al. (2015), we have

P

(∥

∥

∥

∥

∥

N
∑

i=1

(Yi −E (Yi))

∥

∥

∥

∥

∥

≥ t

)

≤ 2 exp
(

− t2/2

V + 2Bt/3

)

.

Then, with probability 1 − O(n−c) for some constant c,
∥

∥

∥

∥

∥

N
∑

i=1

(Yi −E (Yi))

∥

∥

∥

∥

∥

.
√

V log(n(m1 + m2)) + B log(n(m1 + m2)).

Take B = L log(n)C ′ for a proper constant C ′, by Eq. (14), we have
∥

∥

∥

∥

∥

N
∑

i=1

Yi

∥

∥

∥

∥

∥

.
√

V log(n) + L log2(n) + nL log(n)O(n−C′/C)

.
√

V log(n(m1 + m2)) + L log(n(m1 + m2)) log(n).
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By the union bound on the event ‖Xi‖ ≤ B for all i, we can conclude that, with probability 1−O(n−c′
)

for some constant c′,
∥

∥

∥

∥

∥

N
∑

i=1

Xi

∥

∥

∥

∥

∥

.
√

V log(n(m1 + m2)) + L log(n(m1 + m2)) log(n).

Consider the Assumption A4.

Lemma 13. For any m ∈ [n] and any W ∈ R
n×r, the following holds

P

(

∥

∥

∥(X̄ − tM̄ ∗)m,·W
∥

∥

∥

2
≤ C∆∗ ‖W ‖2,∞ φ̄

(

‖W ‖F√
n‖W ‖2,∞

))

≥ 1 − O(n−3)

where C is a constant.

Proof. Let Yj = X̄ij − tM̄ ∗
ij and Zj = YjWj,· ∈ R

1×r. Note that

∥

∥

∥

∥

(

X̄ − tM̄ ∗
)

m,·
W

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

n
∑

j=1

Zj

∥

∥

∥

∥

∥

∥

2

.

We aim to invoke the Lemma 12 for Z1, Z2, . . . , Zn. Note that E (Zj) = 0 since E (Yj) = 0 and Zj are

independent since Yj are independent. Also, for the subexponential norm, we have

∥

∥‖Zj‖2

∥

∥

ψ1
≤ ‖|Yj|‖ψ1

‖Wj,·‖2

≤ ‖|Yj|‖ψ1
‖W ‖2,∞

.L ‖W ‖2,∞

where the last inequality is due to Lemma 10. Then, one can check
∥

∥

∥

∥

∥

∥

n
∑

j=1

E

(

ZT
j Zj

)

∥

∥

∥

∥

∥

∥

≤
n
∑

j=1

∥

∥

∥E

(

ZT
j Zj

)∥

∥

∥

≤
n
∑

j=1

E

(

Y 2
j

)

‖Wj,·‖2

2

.
n
∑

j=1

L2pO ‖Wj,·‖2

2

. L2pO ‖W ‖2

F .

Similarly, one can show that
∥

∥

∥

∑n
j=1 E

(

ZT
j Zj

)∥

∥

∥. L2pO ‖W ‖2

F . Then, we can invoke Lemma 12 and

obtain, with probability 1 − O(n−3),
∥

∥

∥

∥

(

X̄ − tM̄ ∗
)

m,·
W

∥

∥

∥

∥

2

. L
√

pO ‖W ‖F

√

log(n) + L ‖W ‖2,∞ log2(n).

Since φ̄(x) =
√

log(n)L
√
npO

∆∗ x + L log2 n
∆∗ , we have

L
√

pO ‖W ‖F

√

log(n) + L ‖W ‖2,∞ log2(n) . ∆∗ ‖W ‖2,∞ φ̄

(

‖W ‖F√
n‖W ‖2,∞

)

.

This finishes the proof.
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After showing that Assumptions A1–A4 hold, we can prove the following theorem.

Proposition 2. Let t := (g(α∗)p∗
A +(1−p∗

A))pO. Suppose pO ≥ log3 n
n

and
√

npO log(n)Lκ2 ≤ Ctλ∗
1

for some known constant C. Then, with probability 1 − O(n−2), the following holds

∥

∥

∥Ū
∥

∥

∥

2,∞
. κ

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+

√
npOκL

λ∗
1t

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1

∥

∥

∥Ūsgn(H) − Ū ∗
∥

∥

∥

2,∞
.

√

npO log(n)

tλ∗
1

κ3L
∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+

√
npOκL

λ∗
1t

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1.

Proof. Let γ = (C1 + 1)γ̄, φ(x) = C2φ̄(x) where C1, C2 are constants defined in Lemmas 11 and 13

respectively. One can verify that γ = (C1 +1)
√
npOκL

λ∗
1
t

, φ(x) = C2
(
√
npO log(n)x+log2 n)κL

λ∗
1
t

. In order to apply

Lemma 6, we still need to show that 32κmax(γ, φ(γ)) ≤ 1. Because pO ≥ log3 n
n

and
√

npO log(n)Lκ2 ≤
Ctλ∗

1, one can verify that 32κmax(γ, φ(γ)) ≤ 1 by choosing a sufficient small C. Based on Lemma 11,

Lemma 13, we can apply Lemma 6 and obtain that, with probability 1 − O(n−2),
∥

∥

∥Ū
∥

∥

∥

2,∞
. (κ + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗

∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
. (κ(κ + φ(1))(γ + φ(γ)) + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥tM̄ ∗
∥

∥

∥

2,∞
/∆∗.

Using the fact ∆∗ = tλ∗
1/κ, φ(1) ≤ 1 ≤ κ, we have

∥

∥

∥Ū
∥

∥

∥

2,∞
. κ

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1
∥

∥

∥Ūsgn(H̄) − Ū ∗
∥

∥

∥

2,∞
. (κ2(γ + φ(γ)) + φ(1))

∥

∥

∥Ū ∗
∥

∥

∥

2,∞
+ γ

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
/λ∗

1.

Plug in the definition of γ and φ, we complete the proof.

A.2. Asymmetric Case

Let XΩ associated with M ∗, p∗
A, α∗, pO be the observation generated by the model described in the

Section 2. Let t = (p∗
Ag(α∗) + (1 − p∗

A))pO. Let M ∗ = U ∗Σ∗V ∗T , M = UΣV T be the singular decompo-

sition of M ∗ and M , where M = arg minrank(M ′)≤r ‖X ′ − M ′‖F and X ′ is obtained from XΩ by setting

unobserved entries to 0. We construct the following: M̄ ∗ :=
(

0n×n M ∗

M ∗T 0m×m

)

. One can verify that the

spectral decomposition of M̄ ∗ is

M̄ ∗ =
1√
2

(

U ∗ U ∗

V ∗ −V ∗

)

·
(

Σ∗

−Σ∗

)

· 1√
2

(

U ∗ U ∗

V ∗ −V ∗

)T

.

Note that the largest r singular values, σ∗
1 ≥ σ∗

2 ≥ . . . ≥ σ∗
r , of M ∗ are the same as the largest

r eigenvalues of M̄ ∗. The (r + 1)-th eigenvalue of M̄ ∗ is non-positive. Let Ū ∗ = 1√
2

(

U ∗

V ∗

)

be the

eigenvectors associated with the largest r singular values of M̄ ∗. Similarly, let X̄ :=
(

0n×n X
XT 0m×m

)

.

Let Ū = 1√
2

(

U
V

)

be the eigenvectors associated with the largest r singular values of X̄.

We can apply Proposition 2 to the M̄ ∗ and X̄ constructed in this subsection. This gives us the

following result.
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Proposition 3. Let H = 1
2
(UTU ∗ + V TV ∗), N = n + m, µ =

max
(

N ‖U ∗‖2

2,∞ , N ‖V ∗‖2

2,∞

)

/r, κ = σ∗
1/σ∗

r , t = (p∗
Ag(α∗) + 1 − p∗

A)pO. Suppose pO ≥ log3m
m

and
√

mpO log(m)Lκ2 ≤ Ctσ∗
1 for some known small constant C. Then, with probability 1 − O((nm)−1),

the followings hold

(‖U ‖2,∞ ∨ ‖V ‖2,∞) . κ

√

µr

m
(15)

(‖Usgn(H) − U ∗‖2,∞ ∨ ‖V sgn(H) − V ∗‖2,∞) .

√

pO log(m)κ3L
√

µr

tσ∗
1

(16)

‖M ′ − tM ∗‖max . κ4µrL

√

pO log(m)

m
. (17)

Proof. Note that
√

2
∥

∥

∥Ū ∗
∥

∥

∥

2,∞
= (‖U ∗‖2,∞ ∨ ‖V ∗‖2,∞) ≤

√

µr/N. Furthermore, we have

∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
= ‖M ∗‖2,∞ ≤ ‖U ∗‖2,∞ ‖Σ∗V ∗‖2 ≤ ‖U ∗‖2,∞ σ∗

1 ≤
√

µr/Nσ∗
1 .

Apply Proposition 2 on M̄ ∗ and X̄ along with the bound on
∥

∥

∥Ū ∗
∥

∥

∥

2,∞
,
∥

∥

∥M̄ ∗
∥

∥

∥

2,∞
, we can obtain, with

probability 1 − O(N−2),
∥

∥

∥Ū
∥

∥

∥

2,∞
. κ

√

µr

N
(18)

∥

∥

∥Ūsgn(H) − Ū ∗
∥

∥

∥

2,∞
.

√

NpO log(N)

tσ∗
1

κ3L
√

µr/N =

√

pO log(N)κ3L
√

µr

tσ∗
1

. (19)

This completes the proof of Eq. (15) and Eq. (16). Next we proceed to the proof of Eq. (17).

Let Ũ = Usgn(H), Ṽ = V sgn(H), Σ̃ = sgn(H)TΣsgn(H). Note that M ′
ij = Ui,·ΣV T

j,· = Ũi,·Σ̃Ṽ T
j,· and

M ∗
ij = U ∗

i,·Σ
∗V ∗T

j,· . Then,

|M ′
ij − tM ∗

ij | = |tr(Ũi,·Σ̃Ṽ T
j,·) − ttr(U ∗

i,·Σ
∗V ∗T

j,· )|

= |tr(Σ̃Ṽ T
j,·Ũi,·) − ttr(Σ∗V ∗T

j,· U ∗
i,·)|

= |tr((Σ̃ − tΣ∗)(Ṽ T
j,·Ũi,·)) + tr(tΣ∗(Ṽ T

j,·Ũi,· − V ∗T
j,· U ∗

i,·))|

≤
∥

∥

∥Σ̃ − tΣ∗
∥

∥

∥

2

∥

∥

∥Ṽ T
j,·Ũi,·

∥

∥

∥

∗
+ t‖Σ∗‖2

∥

∥

∥Ṽ T
j,·Ũi,· − V ∗T

j,· U ∗
i,·

∥

∥

∥

∗
(20)

where Eq. (20) is due to the triangle inequality and |tr(AB)| ≤ ‖A‖2 ‖B‖∗ by the Von Neumann’s

trace inequality. We derive the bound on the term
∥

∥

∥Ṽ T
j,·Ũi,· − V ∗T

j,· U ∗
i,·

∥

∥

∥

∗
. Let γ̂ = κ

√
npOL/(σ∗

1t). Note

that
∥

∥

∥Ṽ T
j,·Ũi,· − V ∗T

j,· U ∗
i,·

∥

∥

∥

∗
=
∥

∥

∥(Ṽ T
j,· − V ∗T

j,· )Ũi,· + V ∗T
j,· (Ũi,· − U ∗

i,·)
∥

∥

∥

∗

≤
∥

∥

∥(Ṽ T
j,· − V ∗T

j,· )Ũi,·
∥

∥

∥

∗
+
∥

∥

∥V ∗T
j,· (Ũi,· − U ∗

i,·)
∥

∥

∥

∗

≤
∥

∥

∥Ṽ T
j,· − V ∗T

j,·

∥

∥

∥

2

∥

∥

∥Ũi,·
∥

∥

∥

2
+
∥

∥

∥V ∗T
j,·

∥

∥

∥

2

∥

∥

∥Ũi,· − U ∗
i,·

∥

∥

∥

2
(21)

. κ2
√

log(N)γ̂
√

µr/N
(∥

∥

∥Ũi,·
∥

∥

∥

2
+
∥

∥

∥V ∗
j,·

∥

∥

∥

2

)

(22)

. κ3
√

log(N)γ̂µr/N (23)
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where Eq. (21) is due to ‖abT ‖∗ = ‖abT ‖2 ≤ ‖a‖2 ‖b‖2 for any vector a, b, Eq. (22) is due to Eq. (19),

and Eq. (23) is due to Eq. (18). We then bound
∥

∥

∥Ṽ T
j,·Ũi,·

∥

∥

∥

∗
,

∥

∥

∥Ṽ T
j,·Ũi,·

∥

∥

∥

∗
≤
∥

∥

∥V ∗T
j,· U ∗

i,·

∥

∥

∥

∗
+
∥

∥

∥Ṽ T
j,·Ũi,· − V ∗T

j,· U ∗
i,·

∥

∥

∥

∗

.
∥

∥

∥V ∗T
j,· U ∗

i,·

∥

∥

∥

∗
+ κ3

√

log(N)γ̂
µr

N
(24)

. ‖V ∗‖2,∞ ‖U ∗‖2,∞ + κ3
√

log(N)γ̂
µr

N

.
µr

N
+ κ3

√

log(N)γ̂
µr

N

. κ2 µr

N
(25)

where Eq. (24) is due to Eq. (23) and Eq. (25) is due to κ
√

log(N)γ̂ . 1. Next we bound
∥

∥

∥Σ̃ − tΣ∗
∥

∥

∥

2
.

Note that

∥

∥

∥Σ̃ − Σ
∥

∥

∥

2
=
∥

∥sgn(H)T (Σsgn(H) − sgn(H)Σ)
∥

∥

2

≤ ‖Σsgn(H) − sgn(H)Σ‖2

= ‖(ΣH − HΣ) + Σ(sgn(H) − H) + (H − sgn(H))Σ‖2

≤ ‖ΣH − HΣ‖2 + 2 ‖Σ‖2 ‖sgn(H) − H‖2 . (26)

By Lemma 2 in Abbe et al. (2017), we have

‖sgn(H) − H‖2 . (
∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
/(tσ∗

r))
2 . γ̂2 (27)

‖ΣH − HΣ‖2 ≤ 2
∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
. tγ̂σ∗

r (28)

where
∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
≤ γ̂tσ∗

r by Lemma 11. By Weyl’s inequality, we also have ‖Σ − tΣ∗‖2 ≤
∥

∥

∥X̄ − tM̄ ∗
∥

∥

∥

2
. tγ̂σ∗

r . Hence,

‖Σ‖2 ≤ ‖tΣ∗‖2 + ‖Σ − tΣ∗‖2 . tσ∗
1 + tγ̂σ∗

r . tσ∗
1 . (29)

Plugging Eqs. (27) to (29) into Eq. (26), we have
∥

∥

∥Σ̃ − Σ
∥

∥

∥

2
. tγ̂σ∗

r + tγ̂2σ∗
1 . tγ̂σ∗

1 . Therefore,

∥

∥

∥Σ̃ − tΣ∗
∥

∥

∥

2
≤
∥

∥

∥Σ̃ − Σ
∥

∥

∥

2
+ ‖Σ − tΣ∗‖2 . tγ̂σ∗

1 . (30)

Plugging Eqs. (23), (25) and (30) into Eq. (20), we arrive at

∥

∥

∥M
′ − tM ∗

∥

∥

∥

max
. tκ3

√

log(N)γ̂
µr

N
σ∗

1 . tκ3
√

log(N)
µr

N
σ∗

1

κL
√

NpO

tσ∗
1

. κ4µrL

√

pO log(N)

N
.

Next, we provide a lemma for the concentration bound of the sum over Ω.
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Lemma 14. Let Ω = {(i, j)|Oij = 1} ⊂ [n] × [m] where Oij ∼ Ber(pO) are i.i.d random vari-

ables. Let {Tij ∈ [0, 1]|(i, j) ∈ [n] × [m]} be independent random variables with E (Tij) = pij . Let S =
∑

(i,j)∈[n]×[m] pOpij . Then, with probability 1 − 1/(nm),
∣

∣

∣

∣

∣

∣

∑

(i,j)∈Ω

Tij − S

∣

∣

∣

∣

∣

∣

≤ C

(

√

S log(mn) + log(mn)
)

where C is a constant. In particular, if S & log(nm), then
∣

∣

∣

∣

∣

∣

∑

(i,j)∈Ω

Tij − S

∣

∣

∣

∣

∣

∣

≤ C1S

where C1 is a constant.

Proof. Let Zij = TijOij . Then Zij ∈ [0, 1],E (Zij) = pOpij . By the Bernstein’s inequality Bernstein

(1946), we have

P





∣

∣

∣

∣

∣

∣

∑

ij

Zij −
∑

ij

pOpij

∣

∣

∣

∣

∣

∣

> t



≤ 2e
− t2/2
∑

ij
E((Zij−pOpij )2)+ t

3 ≤ 2e
− t2/2

S+ t
3

due to

E
(

(Zij − pOpij)
2
)

≤ E

(

Z2
ij

)

≤ E (Zij) = pOpij .

Take t = C2

(

√

S log(nm) + log(nm)
)

where C2 is a constant. Then we have

P





∣

∣

∣

∣

∣

∣

∑

(i,j)∈Ω

Tij −
∑

(i,j)∈[n]×[m]

S

∣

∣

∣

∣

∣

∣

> t



≤ 1

nm

for a proper C2.

Proof of Theorem 2:

Next we proceed to the proof of Theorem 2 based on Proposition 3. By the assumption in Section 2,

log1.5(m)µrLκ2/(‖M ∗‖max

√
m) .

√
pO and 1 − p∗

A & 1. Note that ‖M ∗‖max . σ∗
1µr/m, this implies

that
√

log(m)
√

mLκ2 .
√

pOσ∗
1 and

√
pO & log1.5(m)√

m
, which is the condition required by Proposition 3.

Also, by taking Tij = 1 in Lemma 14 and noting that pO & log3(m)

n
, we have, with probability 1 −

O( 1
nm

),

|nmpO − |Ω|| < C
√

log(nm)pOnm

where C is a constant. Then
∣

∣

∣

∣

nm

|Ω| − 1

pO

∣

∣

∣

∣

=
|nmpO − |Ω||

|Ω|pO

≤ C
√

log(nm)pOnm

|Ω|pO

≤ C ′√log(nm)√
pOnmpO
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where C ′ is a constant. Finally, we can obtain
∥

∥

∥

∥

M
′ nm

|Ω| − t

pO

M ∗
∥

∥

∥

∥

max

=
∥

∥

∥

∥

M
′ nm

|Ω| − M
′ 1

pO

+ M
′ 1

pO

− t

pO

M ∗
∥

∥

∥

∥

max

.
∥

∥

∥

∥

1

pO

(M
′ − tM ∗)

∥

∥

∥

∥

max

+
∥

∥

∥M
′
∥

∥

∥

max

√

log(nm)/pOnm

pO

.
κ4µrL

pO

√

log(m)pO

m
+ L

√

log(nm)

pOnm

. κ4µrL

√

log(m)

pOm
. (31)

This completes the proof.

B. Analysis of πEW and Proof of Theorem 1

To prove Theorem 1, it is sufficient to prove Lemmas 1 to 3.

B.1. Moment Matching Estimator (Proof of Lemma 2 and 1)

B.1.1. Proof of Lemma 2 Recall that

gt(θ, M ) =
1

nm

∑

(i,j)∈[n]×[m]

(pAPAnom (Xij ≤ t|α, Mij) + (1 − pA)PPoisson (Xij ≤ t|Mij)) .

Let δ′ = κ4µrL
√

log(m)

pOm
and

h(θ) =
T−1
∑

t=0

(

gt(θ, M̂/e(θ)) − |Xij = t, (i, j) ∈ Ω|
|Ω|

)2

.

We have the following result.

Lemma 15. With probability 1 − O( 1
nm

), for any θ ∈ Θ and t = 0, 1, . . . , T ,

|gt(θ, M ∗e(θ∗)/e(θ)) − gt(θ, M̂/e(θ))|. (K + L)δ′.

Proof. Note that PAnom (Xij = t|α, M ) is K-lipschitz on M . One also can verify that

PPoisson (Xij = t|M ) is L-Lipschitz on M . Hence

(pAPAnom (Xij ≤ t|α, Mij) + (1 − pA)PPoisson (Xij ≤ t|Mij))

is (K + L)-Lipschitz on Mij . Let C1, C2 be two constants. By Theorem 2, with probability 1 −
O((nm)−1), |M̂ij/e(θ∗) − M ∗

ij| ≤ C1δ′. This implies that
∣

∣

∣

∣

∣

M ∗
ije(θ∗)

e(θ)
− M̂ij

e(θ)

∣

∣

∣

∣

∣

≤ C1δ′

e(θ)
≤ C2δ′

where we use that e(θ) ≥ (1 − pA) ≥ c for some constant c. This implies that
∣

∣

∣

∣

∣

gt

(

θ,
M ∗e(θ∗)

e(θ)

)

− gt

(

θ,
M̂

e(θ)

)∣

∣

∣

∣

∣

≤ 1

nm

∑

ij

∣

∣

∣

∣

∣

M ∗
ije(θ∗)

e(θ)
− M̂ij

e(θ)

∣

∣

∣

∣

∣

(K + L)

. (K + L)δ′.
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Lemma 16. With probability 1 − O((nm)−1), h(θ∗) . (K + L)2(δ′)2.

Proof. Set C1, C2, C3, C4, C5 be proper constants.

Note that by Lemma 14, with probability 1 − O((nm)−1),

||Xij ≤ t, (i, j) ∈ Ω| − pOnmgt(θ
∗, M ∗)| ≤ C2

√

pOnmgt(θ∗, M ∗) log(nm) + C2 log(nm)

Also, we can similarly obtain ||Ω| − pOnm| ≤ C3

√

pOnm log(nm) by Lemma 14. Then, one can verify

that

∣

∣

∣

∣

|Xij = t, (i, j) ∈ Ω|
|Ω| − gt(θ

∗, M ∗)

∣

∣

∣

∣

=

∣

∣

∣

∣

|Xij = t, (i, j) ∈ Ω| − |Ω|gt(θ∗, M ∗)

|Ω|

∣

∣

∣

∣

≤ 1

|Ω|

(

C2

√

pOnmgt(θ∗, M ∗) log(nm) + C3

√

pOnm log(nm)gt(θ
∗, M ∗) + C2 log(nm)

)

≤ C4

√
pOnm log(nm)

nmpO

≤ C4

log(nm)√
nmpO

.

Then, taking θ = θ∗ in Lemma 15, we have

h(θ∗) =
T
∑

t=0

(

gt(θ
∗, M̂/e(θ∗)) − |Xij = t, (i, j) ∈ Ω|/|Ω|

)2

≤
T
∑

t=0

(

|gt(θ∗, M̂/e(θ∗)) − gt(θ
∗, M ∗)| + C5 log(nm)/

√
nmpO

)2

. (K + L)2(δ′)2 + log(nm) log(nm)/(nmpO)

. (K + L)2(δ′)2

due to the fact that δ′ &
√

log(m)

pOm
and pO & log3(m)

m
.

Proof of Lemma 2:

By Lemma 16, with probability 1 − O((nm)−1), h(θ̂) ≤ h(θ∗) . (K + L)2(δ′)2. This implies, for

each t < T , |gt(θ̂, M̂/e(θ̂)) − |Xij=t,(i,j)∈Ω|
|Ω| | . (K + L)δ′. Combining with Lemma 16, we have, for each

t < T ,

|gt(θ̂, M̂/e(θ̂)) − gt(θ
∗, M̂/e(θ∗))|. (K + L)δ′. (32)

Note that

|gt(θ∗, M ∗) − gt(θ̂, M ∗e(θ∗)/e(θ̂))|

≤ |gt(θ∗, M ∗) − gt(θ̂, M̂/e(θ̂))| + |gt(θ̂, M̂/e(θ̂)) − gt(θ̂, M ∗e(θ∗)/e(θ̂))|.
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By Lemma 15, |gt(θ̂, M̂/e(θ̂)) − gt(θ̂, M ∗e(θ∗)/e(θ̂))|. (K + L)δ′. Also we have

|gt(θ∗, M ∗) − gt(θ̂, M̂/e(θ̂))| ≤ |gt(θ∗, M ∗) − gt(θ
∗, M̂/e(θ∗))| + |gt(θ̂, M̂/e(θ̂)) − gt(θ

∗, M̂/e(θ∗))|.

By Lemma 15 agian, we have |gt(θ∗, M ∗) − gt(θ∗, M̂/e(θ∗))| . (K + L)δ′. By Eq. (32), we have

|gt(θ̂, M̂/e(θ̂)) − gt(θ∗, M̂/e(θ∗))|. (K + L)δ′. In conclusion,

|gt(θ∗, M ∗) − gt(θ̂, M̂/e(θ̂))|. (K + L)δ′.

Therefore,
∥

∥

∥F (θ̂) − F (θ∗)
∥

∥

∥. (K + L)δ′ since T is a constant.

B.1.2. Proof of Lemma 1

Lemma 17. Suppose F satisfies the following condition:

• F : Θ ⊂ R
d1 →R

d2 is continuously differentiable and injective.

• B2C2δ(θ
∗) ⊂ Θ where Br(θ∗) = {θ : ‖θ − θ∗‖ ≤ r}.

• ‖JF (θ) − JF (θ∗)‖max ≤ C1 ‖θ − θ∗‖ for θ ∈ B2C2δ(θ
∗).

• ‖JF (θ∗)−1‖2 ≤ C2.

Suppose 2
√

d1d2C1(C2)2δ < 1/2. For any θ ∈ Θ,

‖F (θ) − F (θ∗)‖ ≤ δ =⇒ ‖θ − θ∗‖ ≤ 2C2δ. (33)

Proof. Suppose ‖F (θ) − F (θ∗)‖ ≤ δ. We construct a sequence of θi such that limi→∞ F (θi) = F (θ)

while ‖θi − θ∗‖ is well bounded for every i. Let θ1 − θ∗ = J−1
F (θ∗)(F (θ) − F (θ∗)). Note that

‖θ1 − θ∗‖ ≤
∥

∥J−1
F (θ∗)

∥

∥

2
‖F (θ) − F (θ∗)‖ ≤ C2δ.

Furthermore, by multivariate Taylor theorem,

F (θ1) = F (θ∗) + A(θ1 − θ∗)T

where the i-th row Ai = (∇Fi(xi))T such that xi = θ∗ + c(θ1 − θ∗) for some c ∈ [0, 1]. Hence, F (θ1) =

F (θ∗) + JF (θ∗)(θ1 − θ∗)T + (A − JF (θ∗))(θ1 − θ∗)T . Note that F (θ∗) + JF (θ∗)(θ1 − θ∗)T = F (θ) by the

definition of θ1. Therefore,

F (θ1) = F (θ) + (A − JF (θ∗))(θ1 − θ∗)T

=⇒ ‖F (θ1) − F (θ)‖ ≤ ‖A − JF (θ∗)‖2 ‖θ1 − θ∗‖

=⇒ ‖F (θ1) − F (θ)‖ ≤ ‖A − JF (θ∗)‖max

√

d1d2 ‖θ1 − θ∗‖

=⇒ ‖F (θ1) − F (θ)‖ ≤ C1

√

d1d2 ‖θ1 − θ∗‖2

=⇒ ‖F (θ1) − F (θ)‖ ≤ C1

√

d1d2C2
2 δ2.
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We can use the similar idea to the successive construction. In particular, let t = 2
√

d1d2(C1)(C2)2δ <

1/2, a = 2C1C2

√
d1d2, θ0 = θ∗. Suppose

‖θk − θk−1‖ ≤ 1

a
tk, ‖θk − θ∗‖ ≤ 1

a
(2t − tk), ‖F (θk) − F (θ)‖ ≤ 1

aC2

tk+1.

It is easy to verify that the above conditions are satisfied for k = 1. Then let θk+1 − θk =

J−1
F (θ∗)(F (θ) − F (θk)) for k > 1.

Then, we have ‖θk+1 − θk‖ ≤ C2
tk+1

aC2
≤ tk+1

a
. Also, ‖θk+1 − θ∗‖ ≤ ‖θk+1 − θk‖ + ‖θk − θ∗‖ ≤

2t−tk+tk+1

a
≤ 2t−tk+1

a
. Furthermore,

F (θk+1) = F (θk) + JF (θ∗)(θk+1 − θk)
T + (A − JF (θ∗))(θk+1 − θk)

T

=⇒ F (θk+1) = F (θ) + (A − JF (θ∗))(θk+1 − θk)
T

=⇒ ‖F (θk+1) − F (θ)‖ ≤ ‖A − JF (θ∗)‖2 ‖θk+1 − θk‖

=⇒ ‖F (θk+1) − F (θ)‖ ≤ ‖A − JF (θ∗)‖max

√

d1d2 ‖θk+1 − θk‖

=⇒ ‖F (θk+1) − F (θ)‖ ≤ C1

√

d1d2(‖θk − θ∗‖ + ‖θk+1 − θk‖) ‖θk+1 − θk‖

=⇒ ‖F (θk+1) − F (θ)‖ ≤ C1

√

d1d2

2(t)

a

tk+1

a

=⇒ ‖F (θk+1) − F (θ)‖ ≤ C1C2

√
d1d22

a

tk+2

aC2

≤ tk+2

aC2

.

Note that ‖θk − θ∗‖ ≤ 2t
a

. Therefore θk ∈ Θ is well-defined. Furthermore, we can conclude for any

ǫ > 0, there exists N , if k1, k2 > N , ‖θk1
− θk2

‖ ≤ ǫ. Therefore, the sequence converges. Suppose

limk θk = θ′. Note that ‖θ′ − θ∗‖ ≤ 2t
a

due to ‖θk − θ∗‖ ≤ 2t
a

. Also note that ‖JF (θ)‖ is bounded for

‖θ − θ∗‖ ≤ 2t
a

. This implies that limk F (θk) = F (θ′). On the other hand, due to the convergence of

F (θk), limk F (θk) = F (θ). By injectivity, θ = θ′ and ‖θ − θ∗‖ ≤ 2t/a. This completes the proof.

Proof of Lemma 1. Lemma 1 is then a simple combination Lemma 2 and Lemma 17. In par-

ticular, Lemma 2 implies ‖F (θ) − F (θ∗)‖ . (K + L)δ′ and Lemma 17 implies ‖F (θ) − F (θ∗)‖ .

(K + L)δ′ =⇒ ‖θ − θ∗‖ . (K + L)δ′. This finishes the proof.

B.2. Plug-in estimator and Proof of Lemma 3

Let δ′ = (K + L)κ4µrL
√

log(m)

pOm
. Let

x̂ij := [p̂APAnom(Xij |α̂, M̂ij/e(θ̂))]

ŷij := [(1 − p̂A)PPoisson(Xij|M̂ij/e(θ̂))].

Let xij = p∗
APAnom

(

Xij |α∗, M ∗
ij

)

, yij = (1 − p∗
A)PPoisson

(

Xij |M ∗
ij

)

. We have the following result.

Lemma 18. With probability 1 − O(1/(nm)), max(|x̂ij − xij|, |ŷij − yij|) ≤ C(L + K)2Lδ′ for any

(i, j) ∈ Ω.
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Proof. By Lemma 1, with probability 1 − O(1/(nm)), we have
∥

∥

∥θ̂ − θ∗
∥

∥

∥. δ′.

Note that g(θ) is K-Lipschitz in θ and e(θ) = pAg(θ) + (1 − pA). Hence

|e(θ̂) − e(θ∗)| ≤ |p̂A − p∗
A|(1 − g(θ̂)) + p∗

A|g(θ̂) − g(θ∗)|

. (K + 1)δ′.

Furthermore
∣

∣

∣

∣

∣

M̂ij

e(θ̂)
− M ∗

∣

∣

∣

∣

∣

=
1

e(θ̂)
|M̂ − M ∗e(θ̂)|

≤ 1

e(θ̂)

(

|M̂ − M ∗e(θ∗)| + M ∗|e(θ∗) − e(θ̂)|
)

.
δ′

K + L
+ L(K + 1)δ′

. L(K + 1)δ′.

Note that PAnom (α, M ) is K-Lipschitz in α and M . The implies that

|x̂ij − xij| ≤ |p̂APAnom

(

Xij |α̂, M̂ij

)

− p∗
APAnom

(

Xij|α∗, M ∗
ij

)

|

≤ |p̂A − p∗
A|PAnom

(

Xij |α∗, M ∗
ij

)

+ |PAnom

(

Xij|α∗, M ∗
ij

)

−PAnom

(

Xij |α̂, M̂ij

)

|p̂A

. δ′ + KL(K + 1)δ′

. KL(K + 1)δ′.

Similarly, one can obtain |ŷij − yij|. L2(K + 1)δ′. In conclusion,

max(|x̂ij − xij |, |ŷij − yij |) . (L + K)2L.

Lemma 19. Suppose |x̂−x| ≤ δ, |ŷ−y| ≤ δ where x, y, x̂, ŷ ∈ [0, 1], x+y > 0. Let ŝ = x̂
x̂+ŷ

if x̂+ ŷ > 0

otherwise ŝ = 0. Then,

∣

∣

∣

∣

ŝ − x

x + y

∣

∣

∣

∣

≤ min
(

δ

x + y
,

δ

x̂ + ŷ
, 1
)

. (34)

Proof. Note that
∣

∣

∣ŝ − x
x+y

∣

∣

∣≤ 1 is trivial since ŝ ∈ [0, 1] and x
x+y

∈ [0, 1].

When x̂ = ŷ = 0, x
x+y

≤ δ
x+y

due to x ≤ δ.

When x̂ + ŷ > 0,
∣

∣

∣

∣

ŝ − x

x + y

∣

∣

∣

∣

=

∣

∣

∣

∣

x̂(x + y) − x(x̂ + ŷ)

(x̂ + ŷ)(x + y)

∣

∣

∣

∣

=
∣

∣

∣

∣

x̂y − xŷ

(x̂ + ŷ)(x + y)

∣

∣

∣

∣

=
∣

∣

∣

∣

x̂(ŷ − (ŷ − y)) − (x̂ − (x̂ − x))ŷ

(x̂ + ŷ)(x + y)

∣

∣

∣

∣
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=

∣

∣

∣

∣

−x̂(ŷ − y) + (x̂ − x)ŷ

(x̂ + ŷ)(x + y)

∣

∣

∣

∣

≤ x̂

x̂ + ŷ

|ŷ − y|
x + y

+
ŷ

x̂ + ŷ

|x̂ − x|
x + y

≤ x̂

x̂ + ŷ

δ

x + y
+

ŷ

x̂ + ŷ

δ

x + y

=
δ

x + y
.

By symmetry,
∣

∣

∣ŝ − x
x+y

∣

∣

∣≤ δ
x̂+ŷ

, which completes the proof.

Proof of Lemma 3 The result of Lemma 3 is a simple corollary of Lemma 18 and Lemma 19.

B.3. General cost model

In practice, one may also want to incorporate the rewards when Aπ
ij = 1 and Bij = 1 (the anomaly

is detected correctly). In general, consider the costs (or rewards) associated with the following four

scenarios:

• c
(01)
ij : Aπ

ij = 0 and Bij = 1.

• c
(11)
ij : Aπ

ij = 1 and Bij = 1.

• c
(00)
ij : Aπ

ij = 0 and Bij = 0.

• c
(10)
ij : Aπ

ij = 1 and Bij = 0.

The costs of the algorithm in such a general model can be defined as

costπ(XΩ) :=
1

|Ω|E




∑

(i,j)∈Ω

cij
∣

∣

∣XΩ



 ,

where cij is the cost incurred at entry (i, j) given by

cij := c
(10)
ij 1

{

Aπ
ij = 1, Bij = 0

}

+ c
(01)
ij 1

{

Aπ
ij = 0, Bij = 1

}

+ c
(00)
ij 1

{

Aπ
ij = 0, Bij = 0

}

+ c
(11)
ij 1

{

Aπ
ij = 1, Bij = 1

}

.

Reduction. To minimize the cost in such a generalized model, one can simply let c(0)
ij := c(10)

ij − c(00)
ij

and c
(1)
ij := c

(01)
ij −c

(11)
ij and reduce it to the original model with only two types of costs. One can easily

show that the solution provided by EW for such constructed {c
(0)
ij , c

(1)
ij } will also achieve the (near)

optimal regret Õ(1/
√

m) in the general model. The proof is simply by rewriting the cost formula and

hence omitted for simplicity.

C. Proof of Proposition 1

We consider the following special model: let pO = 1 and p∗
A = 1

2
, and when Bij = 1, let Xij = 0. We

refer to this in notational form as X ∼ H(M ∗).

We construct Mn = {M b ∈ R
n×n, b ∈ {0, 1}n/2} as follows. Fix a constant c∗ ≤ 1

2e
. Consider b ∈

{0, 1}n/2. For any i ∈ [n/2], j ∈ [n], if bi = 0, M b
2i,j = 1 and M b

2i+1,j = 1 − c∗
√
n
; if bi = 1, M b

2i,j = 1 − c∗
√
n
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and M b
2i+1,j = 1. Let M b be drawn uniformly form Mn and X ∼ H(M b). For convenience, we let

M − := 1 − c∗
√
n

and M + := 1.

We write
∑

(i,j)∈[n]×[n] as
∑

ij if there is no ambiguity. Note that anomaly can only occur when

Xij = 0. One can verify that

f∗
ij =

1/2e−M∗
ij

1/2 + 1/2e
−M∗

ij
1{Xij = 0} +1{Xij > 0}

=
e−M∗

ij

1 + e
−M∗

ij
1{Xij = 0} +1{Xij > 0}

=
1

e
M∗
ij + 1

1{Xij = 0} +1{Xij > 0}

We set c(1)
ij = 1

2

(

1

eM
+

+1
+ 1

eM
−

+1

)

, c(0)
ij = 1 − c(1)

ij . Then one can verify that the following policy

π∗ with {t∗
ij} is optimal: t∗

ij = 1 if Xij = 0 and M ∗
ij = M +; otherwise t∗

ij = 0. For any policy π, let

tij(X) := P (Aπ
ij = 1|X).

Let δ = 1
2
( 1

eM
−

+1
− 1

eM
+

+1
). Then the regret of π is

n2(costπ(X) − costπ
∗

(X)) =
∑

ij

(tij(X) − t∗
ij)(−c

(1)
ij + f∗

ij)

(i)

≥
∑

ij

(tij(X) − t∗
ij)(−c

(1)
ij + f∗

ij)1{Xij = 0}

=
∑

ij

((tij(X) − 1)(−δ)1
{

Mij = M +
}

+ tij(X)δ1
{

Mij = M −})1{Xij = 0} .

Here (i) is due to the non-negativity of (tij(X) − t∗
ij)(−c

(1)
ij + f∗

ij) (since t∗
ij minimizes t∗

ij(−c
(1)
ij + f∗

ij)).

Next, let pij(M ) = EX|M (tij(X)1{Xij = 0}) . Then

EX|M (n2(costπ(X) − costπ
∗

(X)))

≥ δ
∑

ij

{

1
{

Mij = M +
}

P (Xij = 0) + pij(M )(1
{

Mij = M −}−1
{

Mij = M +
}

)
}

= δ
∑

ij

{

1
{

Mij = M +
}

e−Mij + pij(M )(1
{

Mij = M −}−1
{

Mij = M +
}

)
}

This further implies

EM∼MnEX|M (n2(costπ(X) − costπ
∗

(X)))

≥ δ

2n/2

∑

M∈Mn

∑

ij

{

1
{

Mij = M +
}

e−Mij + pij(M )(1
{

Mij = M −}−1
{

Mij = M +
}

)
}

=
δ

2n/2

∑

ij

∑

M∈Mn

{

1
{

Mij = M +
}

e−Mij + pij(M )(1
{

Mij = M −}−1
{

Mij = M +
}

)
}

(35)

Next, for any fixing (i, j), let’s consider two matrices Ma, M b where a ∈ {0, 1}n/2 and b ∈ {0, 1}n/2

are only different in the ⌊ i
2
⌋-th bit (a⌊ i2 ⌋ = 0, b⌊ i2 ⌋ = 1). There are 2n/2−1 pair of such matrices in Mn.

Then
{

1

{

Ma
ij = M +

}

e−Ma
ij + pij(M

a)(1
{

Ma
ij = M −

}

−1

{

Ma
ij = M +

}

)
}
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+
{

1

{

M b
ij = M +

}

e−Mb
ij + pij(M

b)(1
{

M b
ij = M −

}

−1

{

M b
ij = M +

}

)
}

= e−M+

+ pij(M
a) − pij(M

b)

≥ e−M+ − |pij(Ma) − pij(M
b)|

≥ 1

2
e−M+

(36)

where is the last inequality is due to following lemma to bound |pij(Ma) − pij(M b)|.

Lemma 20.

|pij(Ma) − pij(M
b)| ≤ 1

2
e−M+

.

Proof. Let X(M ) be X ∼ H(M ), δ(X||Y ) be the total variation distance between X and Y ,

DKL(X||Y ) be the KL-divergence between X and Y . By definition of pij(M ), we have

|pij(Ma) − pij(M
b)| =

∑

X

P (Aπ
ij = 1|X)1{Xij = 0}

(

P (X|Ma) − P (X|M b)
)

≤
∑

X

|P (X|Ma) − P (X|M b)|

= δ(X(Ma)||X(M b)) total variation distance

≤
√

1

2
DKL(X(Ma)||X(M b)) Pinsker’s inequality

=

√

√

√

√

1

2

∑

ij

DKL(X(Ma)ij||X(M b)ij) Xij are independent.

Note that there are only two rows that are different between Ma and M b. Let X+ be the observation

of the entry with value M + and X− be the observation of the entry with the value M −. Then we

have

∑

ij

DKL(X(Ma)ij||X(M b)ij) = nDKL(X+||X−) + nDKL(X−||X+).

Note that X+ = Y +b, X− = Y −b where Y + = Poisson(M +), Y − = Poisson(M −), and b indicates

whether the anomaly occurs. Hence by the data processing inequality and formula of KL-divergence

of Poisson random variables,

DKL(X+||X−) ≤ DKL(Y +||Y −)

= (M + log(M +/M −) + M − − M +)

= − log(1 − c∗
√

n
) − c∗

√
n

=
c∗

√
n

+
(c∗)2

2n
+

∞
∑

k=3

1

k
(

c∗
√

n
)k − c∗

√
n

≤ (c∗)2

2n
+

1

3
(

c∗
√

n
)3

∞
∑

k=0

(
c∗

√
n

)k

≤ (c∗)2

2n
+

2c∗

3

(c∗)2

n2
≤ (c∗)2

n
.
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where c∗ < 1
2
. Similarly,

DKL(X−||X+) ≤ DKL(Y +||Y −)

= (M − log(M −/M +) + M + − M −)

= (1 − c∗
√

n
) log(1 − c∗

√
n

) +
c∗

√
n

≤ (1 − c∗
√

n
)(− c∗

√
n

) +
c∗

√
n

≤ (c∗)2

n
.

Hence,

|pij(Ma) − pij(M
b)| ≤ c∗ =

1

2
e−M+

.

Plug Eq. (36) into Eq. (35), we then have

EM∼MnEX|M (costπ(X) − costπ
∗

(X)) ≥ δ

2

1

2
e−M+

= Ω
(

1√
n

)

.

This completes the proof.

D. Additional Experimental Details

In this section, we provide further implementation details of the experiments.

Computing Infrastructure. all experiments are done in a personal laptop equipped with 2.6

GHz 6-Core Intel Core i7 and 16 GB 2667 MHz DDR4. The operating system is macOS Catalina.

For each instance, the running time is within seconds for our algorithm.

We present the implementation details of our algorithm and three state-of-the-arts. For practical

consideration, we implemented a slight variant of the EW algorithm where (i) the matrix completion

step used the typical soft impute algorithm (Mazumder et al. 2010); (ii) the anomaly model estima-

tion used MLE; and (iii) solving PEW by replacing f∗
ij directly by

ŷij
x̂ij+ŷij

when AUC curve is needed

to generate. Given the observation XΩ, the soft impute algorithm solves the optimization problem

minM ‖PΩ(X − M )‖2

F + λ ‖M ‖∗ where λ is a hyper-parameter. To tune λ, we start with a small λ

and gradually increase it until the rank of the solution fits the true rank of M ∗ (all other algorithms

also use the knowledge of the true rank). In order to generate the AUC curve for each instance, we

vary γ in our algorithm. In the real data, the rank is identified through cross-validation.

In the implementation of Stable-PCP, we solve the following optimization problem (M̂, Â) =

arg minM,A ‖M ‖∗ +λ ‖A‖1 +µ ‖PΩ(M + A − X)‖2

F by alternating optimization (Ma and Aybat 2018).

The set of anomalies is identified from {(i, j) | Âij 6= 0}. In order to choose suitable (λ, µ) and generate

the AUC curve, note that when M̂ fixed, the ratio of λ/µ decides the portion that will be classified
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as anomalies (i.e., different points on the AUC curve). Hence, we iterate the ratio λ/µ and then tune

λ (accordingly, µ) such that the solution M̂ fits the true rank of M ∗. This provides an AUC curve.

In the DRMF algorithm, we implement the Algorithm 1 in Xiong et al. (2011) to solve the fol-

lowing optimization problem (M̂, Â) = arg min‖PΩ(X − A − M )‖F with the constraints rank(M̂) ≤
r, ‖A‖0 ≤ e (although Xiong et al. (2011) does not consider the partial observation scenario, but the

generalization to address missing entries is straightforward). The set of anomalies is identified from

{(i, j) | Âij 6= 0}. Here, we provide the true rank r and vary e for the DRMF algorithm to generate

the AUC curve.

For the RMC algorithm Klopp et al. (2017), the authors propose the following optimization

problem (M̂, Â) = arg minM,A ‖M ‖∗ + λ ‖A‖1 + µ ‖PΩ(M + A − X)‖2

F with constraints ‖M ‖max ≤
a, ‖A‖max ≤ a. This is effectively the Stable-PCP algorithm with the max norm constraints. We

choose a = k ‖M ∗‖max for some constant scale k > 1. Then we implement RMC based on Stable-PCP

and a projection of (M, A) into the set with max norm constraints in every iteration during the

alternating optimization.

E. Generalization to Detection Rate Optimization

Another interesting metric related to anomaly detection in inventory management, other than the

average cost/benefits, is the rate of successfully detecting anomalies. In this section, we will generalize

the results in the previous sections to the detection rate optimization problem and show that a variant

of Algorithm 1 can achieve the optimal detection rate up to logarithmic factors.

To make this precise, consider the goal of an algorithm π is to correctly classify the entries into

“anomaly set” and “non-anomaly set”. This effectively amounts to a classification task, and as such

we can measure performance via the standard true positive and false positive rates. Specifically, we

will call an entry (i, j) positive if Bij = 1, and negative if Bij = 0. Furthermore, an entry (i, j) is called

“true positive” if Aπ
ij = 1 and Bij = 1; “false positive” if Aπ

ij = 1 and Bij = 0.

Consider the following definition for true positive and false positive rates.

Definition 3. The true positive rate (TPR) of an algorithm π given an observation XΩ is denoted

by

TPRπ(XΩ) :=
E

(

∑

(i,j)∈Ω 1

{

Aπ
ij = 1, Bij = 1

} ∣

∣

∣XΩ

)

E

(

∑

(i,j)∈Ω1{Bij = 1}
∣

∣XΩ

) , (37)

i.e., the ratio between the expected number of true positive samples over the expected number of

positive samples. Similarly, the false positive rate (FPR) of an algorithm π given an observation XΩ

is denoted by

FPRπ(XΩ) :=
E

(

∑

(i,j)∈Ω 1

{

Aπ
ij = 1, Bij = 0

} ∣

∣

∣XΩ

)

E

(

∑

(i,j)∈Ω 1{Bij = 0}
∣

∣XΩ

) , (38)
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i.e., the ratio between the expected number of false positive samples over the expected number of

negative samples.15

By the linearity of expectation, one can simplify Eq. (38):

FPRπ(XΩ) =

∑

(i,j)∈Ω P

(

Aπ
ij = 1, Bij = 0

∣

∣

∣ XΩ

)

∑

(i,j)∈Ω P (Bij = 0 | XΩ)
.

Note that the output of π solely depends on XΩ. Therefore, conditioned on XΩ, the variables Aπ
ij

and Bij are independent. This implies that

FPRπ(XΩ) =

∑

(i,j)∈Ω P

(

Aπ
ij = 1 | XΩ

)

P (Bij = 0 | XΩ)
∑

(i,j)∈Ω P (Bij = 0 | XΩ)
.

Let f∗
ij := P (Bij = 0 | XΩ) be the probability that an entry (i, j) does not have an anomaly given the

observation XΩ. This provides a succinct characterization for FPR defined in Eq. (38):

FPRπ(XΩ) =

∑

(i,j)∈Ω P

(

Aπ
ij = 1 | XΩ

)

f∗
ij

∑

(i,j)∈Ω f∗
ij

. (39)

Similarly, one can simplify TPR given in Eq. (37) into:

TPRπ(XΩ) =

∑

(i,j)∈Ω P

(

Aπ
ij = 1, Bij = 1

∣

∣

∣ XΩ

)

∑

(i,j)∈Ω P (Bij = 1 | XΩ)

=

∑

(i,j)∈Ω P

(

Aπ
ij = 1 | XΩ

)

P (Bij = 1 | XΩ)
∑

(i,j)∈Ω P (Bij = 1 | XΩ)

=

∑

(i,j)∈Ω P

(

Aπ
ij = 1 | XΩ

)

(1 − f∗
ij)

∑

(i,j)∈Ω(1 − f∗
ij)

. (40)

Our goal will be to maximize TPR for some bound on FPR. In establishing the quality of our

algorithm we will compare, for a given constraint on FPR, the TPR achieved under our algorithm

to that achieved under the the (clairvoyant) optimal estimator that knows M ∗, p∗
A, and α∗. We will

show that in large matrices this gap grows negligibly small at a min-max optimal rate.

Besides the observed data XΩ, the only other input into the EW algorithm is a target FPR which

we denote as γ. We propose Algorithm 2 to maximize the TPR with a target FPR constraint. One

can view Algorithm 2 as a generalized version of Algorithm 1 with constraints in optimizing the

decision rules.

Step 1 and 2 in Algorithm 2 are the same as Algorithm 1. Step 3 uses plug-in confidence interval

estimators instead point estimators (the full details will be specified in Eq. (41)). Step 4 solves an

constrained optimization problem PEW to determine the decision rules.

15 We suppose TPRπ(XΩ) = 0 if E
(

∑

(i,j)∈Ω
1{Bij = 1}

)

= 0; FPRπ(XΩ) = 0 if E
(

∑

(i,j)∈Ω
1{Bij = 0}

)

= 0.



53

Algorithm 2 Entrywise Rate Optimization Algorithm πEW(γ)

Input: XΩ, γ ∈ (0, 1]

1: Set

M̂ =
nm

|Ω| SVD(XΩ)r.

Here, SVD(XΩ)r := arg minrank(M)≤r ‖M − X ′‖F, where X ′ is obtained from XΩ by setting unob-

served entries to 0.

2: Estimate (p̂A, α̂) based on a moment matching estimator.

3: Estimate a confidence interval [fL
ij , f

R
ij ] for f∗

ij for (i, j) ∈ Ω.

4: Let {tEW
ij } be an optimal solution to the following optimization problem:

PEW : max
{0≤tij≤1,(i,j)∈Ω}

∑

(i,j)∈Ω

tij

subject to
∑

(i,j)∈Ω

tijf
R
ij ≤ γ

∑

(i,j)∈Ω

fL
ij

For every (i, j) ∈ Ω, generate Aij ∼ Ber(tEW
ij ) independently.

Output: AΩ
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The goal of the Algorithm 2 is to maximize the TPR subject to a FPR below the input target value

of γ. Our result is the following guarantee, which states that (a) the ‘hard’ constraint on the FPR is

satisfied with high probability, and (b) the TPR is within an additive regret of a certain unachievable

policy we use as a proxy for the best achievable policy. Specifically, for any γ ∈ (0, 1], let π∗(γ) denote

the optimal policy when M ∗, p∗
A, and α∗ are known (this policy is described later in this section).

One can verify that, for any γ, XΩ and policy π, TPRπ∗(γ)(XΩ) ≥ TPRπ(XΩ) if FPRπ(XΩ) ≤ γ.

Theorem 3. Assume that the regularity conditions (RC) hold. With probability 1 − O( 1
nm

), for

any 0 < γ ≤ 1,

FPRπEW(γ)(XΩ) ≤ γ,

TPRπEW(γ)(XΩ) ≥ TPRπ∗(γ)(XΩ) − C
(K + L)3L3κ4µr

p∗
Aγ

log1.5(m)√
pOm

.

To parse this result, consider that in a typical application, we can expect the problem parameters

to fall in the following scaling regime: K, L, κ, r, µ = O(1), pO, p∗
A, γ = Ω(1), and m/n = Θ(1). For

this regime, the regret is O
(

n−1/2 log1.5 n
)

, which is in fact optimal up to logarithmic factors. To be

precise, we fix a particular value of γ for which the following proposition states that, for any n, there

exists a family of anomaly models Mn for which no algorithm can achieve a regret on TPR lower

than O(n−1/2) across all models within the family. To allow for direct comparison to Theorem 1, let

Πγ denote the set of all policies π such that

PXΩ|M∗ (FPRπ(XΩ) ≤ γ) ≥ 1 − C/n2 for all M ∗ ∈ Mn.

Proposition 4. For any algorithm π ∈ Πγ, there exists M ∗ ∈ Mn such that

EXΩ|M∗

(

TPRπ∗(γ)(XΩ) − TPRπ(XΩ)
)

≥ C/
√

n.

The proof of Proposition 4 uses the same construction as the proof of Proposition 1, which is omitted

for simplicity.

E.1. Steps 3–4: Confidence Intervals and the Optimization Problem PEW

Recall that the plug-in point estimator f̂ij has been used for f∗
ij in Section 3.3

f̂ij =
ŷij

x̂ij + ŷij
.

We construct the confidence interval by simply finding a small interval that centers at f̂ij , as shown

below.
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Lemma 21. Let

δ = (K + L)3κ4µrL2

√

log m

pOm
.

There exists a (known) constant C1 such that, if

fL
ij :=

[

ŷij − C1δ

x̂ij + ŷij

]

and fR
ij :=

[

ŷij + C1δ

x̂ij + ŷij

]

, (41)

then with probability 1 − O( 1
nm

), for every (i, j) ∈ Ω, we have

fL
ij ≤ f∗

ij ≤ fL
ij + ǫij and fR

ij − ǫij ≤ f∗
ij ≤ fR

ij ,

where ǫij = min(4C1δ/(x∗
ij + y∗

ij), 1).

The final step involves solving PEW. To motivate its particular form, consider the ‘ideal’ anomaly

detection algorithm if the f∗
ij ’s were known. Intuitively, one should identify anomalies at entries with

the smallest values of f∗
ij . This leads to the following idealized algorithm, which we will call π∗(γ):

1. Let {t∗
ij} be an optimal solution to the following optimization problem.

P∗ : max
{0≤tij≤1,(i,j)∈Ω}

∑

(i,j)∈Ω

tij

subject to
∑

(i,j)∈Ω

tijf
∗
ij ≤ γ

∑

(i,j)∈Ω

f∗
ij

2. For every (i, j) ∈ Ω, generate Aij ∼ Ber(t∗
ij) independently.

The following claim establishes the optimality of π∗(γ).

Claim 1. For any π, γ, and XΩ, if FPRπ(XΩ) ≤ γ, then TPRπ(XΩ) ≤ TPRπ∗(γ)(XΩ).

Now notice that PEW is obtained from P∗ by replacing f∗
ij with the confidence interval estimators

fL
ij and fR

ij defined in the previous step. Intuitively, we could expect that PEW ≈ P∗, and therefore the

algorithm πEW should achieve the desired performance. In fact, FPRπEW(γ)(X) ≤ γ holds immediately

because fL
ij ≤ f∗

ij ≤ fR
ij and so {tEW

ij } is a feasible solution of P∗. The guarantee for TPRπEW(X) can

be established based on a fine-tuned analysis of Lemma 21. See the Appendix for the formal proof.

F. Proof of Theorem 3

F.1. Analysis of the optimization problem PEW

Note that PEW is obtained from P∗ by replacing f∗
ij with the confidence interval estimators fL

ij and

fR
ij . Intuitively, we could expect that PEW ≈ P∗, and therefore the algorithm πEW should achieve

the desired performance. We first have the following lemma to show that FPRπEW(γ)(X) ≤ γ since

fL
ij ≤ f∗

ij ≤ fR
ij and so {tEW

ij } is a feasible solution of P∗.

Lemma 22. With probability 1 − O(1/(nm)), for any 0 < γ ≤ 1

FPRπEW(γ)(XΩ) ≤ γ.
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Proof. This is because

∑

(i,j)∈Ω

tEW
ij f∗

ij ≤
∑

(i,j)∈Ω

tEW
ij fR

ij ≤ γ
∑

(i,j)∈Ω

fL
ij ≤ γ

∑

(i,j)∈Ω

f∗
ij .

due to that fL
ij ≤ f∗

ij ≤ fR
ij and the constraint of tEW

ij .

To show the desired performance guarantee for TPRπEW(X), we provide the following Lemma

that characterizes how fL
ij and fR

ij are close to f∗
ij in an accumulated manner (the proof is shown

momentarily):

Lemma 23. Let δ = (K + L)3κ4µrL2
√

log(m)

pOm
. With probability 1 − O( 1

nm
),

∑

(i,j)∈Ω

(

|fL
ij − f∗

ij | + |fR
ij − f∗

ij |
)

≤ CL log(m)δpOnm.

Next we proceed to the analysis of PEW. For a fixed η, let {t′
ij} be the optimal solution of π∗(γ′)

for some γ′ such that

∑

(i,j)∈Ω
t′ij

∑

(i,j)∈Ω
t∗
ij

= η < 1. The key idea is to find some η such that {t′
ij} is a feasible

solution of PEW, while maintaining good TPR performance compared to π∗(γ). Indeed, a sufficiently

large η can be achieved by Lemma 23. In particular, we have (the proof is shown momentarily):

Lemma 24. Let δ = (K + L)3κ4µrL2
√

log(m)

pOm
, η = 1 − CLδ log(m)/γ. Then {t′

ij} is a feasible solu-

tion of PEW. Furthermore, min
(

1,

∑

(i,j)∈Ω
t∗ij−
∑

(i,j)∈Ω
t′ij

∑

(i,j)∈Ω
(1−f∗

ij
)

)

≤ C1
Lδ log(m)

γp∗
A

for a constant C1.

F.1.1. Proof of Lemma 23 Next, we prove Lemma 23, i.e., show that the accumulated error

induced by the approximation of f∗
ij by fL

ij and fR
ij has the desired bound.

Proof of Lemma 23 Let xij := p∗
APAnom

(

Xij |α∗, M ∗
ij

)

, yij := (1 − p∗
A)PPoisson

(

Xij |M ∗
ij

)

. By

Lemma 21,

max(|fL
ij − f∗

ij |, |fR
ij − f∗

ij|) ≤ ǫij

where ǫij := min
(

4Cδ
xij+yij

, 1
)

for some constant C and δ = (K + L)3κ4µrL2
√

log(m)

pOm
.

Note that when Xij = t,

xij + yij = P (Xij = t) .

Note that ‖Xij‖ψ1
. L is a sub-exponential random variable by Lemmas 8 and 9. Then, we have

P (Xij > t) ≤ exp−t/C′L

=⇒ P

(

X ′
ij > C ′L log(1/δ)

)

≤ δ
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where C ′ is a proper constant. Let zij = min
(

δ

P(Xij=t)
, 1
)

. Then,

E (zij) =
∞
∑

t=0

min(1, δ/P (Xij = t))P (Xij = t)

≤
C′L log(1/δ)
∑

t=0

δ +
∞
∑

t=C′L log(1/δ)+1

P (Xij = t)

≤ C ′L log(1/δ)δ + δ.

Note that zij ∈ [0, 1] are independent random variables. Then, by Lemma 14, with probability

1 − O( 1
nm

),

∑

(i,j)∈Ω

zij . L log(1/δ)δpOnm +
√

pOnm log(nm)

. L log(m)δpOnm

given that δ &
√

log(m)

pOm
.

Therefore,

∑

(i,j)∈Ω

max(|fL
ij − f∗

ij |, |fR
ij − f∗

ij|) ≤
∑

(i,j)∈Ω

ǫij .
∑

(i,j)∈Ω

zij . L log(m)δpOnm.

F.1.2. Proof of Lemma 24 Consider a concentration bound

Lemma 25. Let C1, C2, C3 be constants. With probability 1 − O( 1
nm

),

∑

(i,j)∈Ω

f∗
ij ≥ C1nmpO

|Ω| ≤ C2nmpO.

Furthermore, if p∗
ApOnm & log(nm),

∑

(i,j)∈Ω

1 − f∗
ij ≥ C3p∗

ApOnm.

Proof. Let Zij = P (Bij = 1|Xij). Then
∑

(i,j)∈Ω 1 − f∗
ij =

∑

(i,j)∈Ω Zij . Note that E (Zij) = p∗
A and

Zij ∈ [0, 1] are independent. Hence, by Lemma 14, with probability 1 − O( 1
nm

),
∑

(i,j)∈Ω 1 − f∗
ij ≥

Cp∗
ApOnm where C is a constant given that p∗

ApOnm & log(nm) Similar results for
∑

(i,j)∈Ω f∗
ij (with

1 − p∗
A ≥ c for some constant c) and |Ω| can also be obtained.

Proof of Lemma 24 Let {t′
ij , (i, j) ∈ Ω} be the optimal solution of the algorithm π∗(γ′). Let

{t∗
ij , (i, j) ∈ Ω} be the optimal solution of π∗(γ). Suppose

∑

(i,j)∈Ω t′
ij

∑

(i,j)∈Ω t∗
ij

= η < 1.
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Order f∗
ij by f∗

a1b1
≤ f∗

a2b2
≤ . . . ≤ f∗

a|Ω|b|Ω|
. One can easily verify that t′

a1b1
≤ t∗

a1b1
, t′
a2b2

≤
t∗
a2b2

, . . . , t′
a|Ω|b|Ω|

≤ t∗
a|Ω|b|Ω|

. Furthermore, for any k and l such that t
′

akbk
> 0 and t∗

albl
− t′

albl
> 0, we

have f∗
akbk

≤ f∗
albl

. Let A =
∑

ij t′
ij , B =

∑

ij t∗
ij − t′

ij , C =
∑

ij t′
ijf

∗
ij , D =

∑

ij(t
∗
ij − t′

ij)f
∗
ij . Then the

following weighted average inequality holds: C
A

≤ D
B

. This implies that C
A

≤ C+D
A+B

, i.e.,

1
∑

(i,j)∈Ω t′
ij

∑

(i,j)∈Ω

t′
ijf

∗
ij ≤ 1

∑

(i,j)∈Ω t∗
ij

∑

(i,j)∈Ω

t∗
ijf

∗
ij . (42)

This implies that
∑

(i,j)∈Ω t′
ijf

∗
ij ≤ η

∑

(i,j)∈Ω t∗
ijf

∗
ij . Then, we have,

∑

(i,j)∈Ω

t′
ijf

R
ij ≤

∑

(i,j)∈Ω

t′
ij(f

∗
ij + |fR

ij − f∗
ij |)

≤


η
∑

(i,j)∈Ω

t∗
ijf

∗
ij



+
∑

(i,j)∈Ω

|fR
ij − f∗

ij | by Eq. (42) and 0 ≤ t′
ij ≤ 1

≤


γη
∑

(i,j)∈Ω

f∗
ij



+
∑

(i,j)∈Ω

|fR
ij − f∗

ij |
∑

(i,j)∈Ω

t∗
ijf

∗
ij ≤ γ

∑

(i,j)∈Ω

f∗
ij

≤ γ
∑

(i,j)∈Ω

f∗
ij +

∑

(i,j)∈Ω

|fR
ij − f∗

ij | − γ(1 − η)
∑

(i,j)∈Ω

f∗
ij .

Note that

γ
∑

(i,j)∈Ω

f∗
ij ≤ γ

∑

(i,j)∈Ω

fL
ij +

∑

(i,j)∈Ω

|f∗
ij − fL

ij |.

Therefore, we have

∑

(i,j)∈Ω

t′
ijf

R
ij ≤ γ

∑

(i,j)∈Ω

fL
ij +





∑

(i,j)∈Ω

(

|f∗
ij − fL

ij | + |f∗
ij − fR

ij |
)



− γ(1 − η)
∑

(i,j)∈Ω

f∗
ij .

By Lemma 23, we have
(

∑

(i,j)∈Ω

(

|f∗
ij − fL

ij | + |f∗
ij − fR

ij |
))

≤ C1L log(m)δpOnm. By Lemma 25, we

have γ(1 − η)
∑

(i,j)∈Ω f∗
ij ≥ C2γ(1 − η)pOnm. Take η = 1 − C1

C2γ
L log(m)δ. We then have {t′

ij} is a

feasible solution of PEW:

∑

(i,j)∈Ω

t′
ijf

R
ij ≤ γ

∑

(i,j)∈Ω

fL
ij .

Furthermore, for any 0 < γ ≤ 1, we can get
∑

(i,j)∈Ω(t∗
ij − t′

ij)
∑

(i,j)∈Ω(1 − f∗
ij)

=
(1 − η)

∑

(i,j)∈Ω t∗
ij

∑

(i,j)∈Ω(1 − f∗
ij)

.

By Lemma 25,
∑

(i,j)∈Ω t∗
ij ≤ |Ω| . nmpO. Suppose p∗

ApOnm & log(nm), then by Lemma 25,
∑

(i,j)∈Ω(1 − f∗
ij) & nmpOp∗

A. This leads to

∑

(i,j)∈Ω(t∗
ij − t′

ij)
∑

(i,j)∈Ω(1 − f∗
ij)

.
(1 − η)pOnm

pOp∗
Anm

.
L log(m)δ

γp∗
A

. (43)
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Note that δ & 1√
pOm

. Suppose p∗
ApOnm . log(nm), then

L log(n)δ

γp∗
A

&
1

p∗
A

√
pOm

&
nm

√
pO

log(nm)
√

m
& 1.

This completes the proof.

F.2. Proof of Theorem 3

Proof of Theorem 3 Finally, we proceed the proof of Theorem 3. Note that

TPRπ∗(γ)(XΩ) − TPRπEW(γ)(XΩ)

=

∑

(i,j)∈Ω t∗
ij(1 − f∗

ij) −∑(i,j)∈Ω tEW
ij (1 − f∗

ij)
∑

(i,j)∈Ω(1 − f∗
ij)

≤
∑

(i,j)∈Ω(t∗
ij − tEW

ij ) + (
∑

(i,j)∈Ω tEW
ij f∗

ij −∑(i,j)∈Ω t∗
ijf

∗
ij)

∑

(i,j)∈Ω(1 − f∗
ij)

.

Note that
∑

(i,j)∈Ω t∗
ijf

∗
ij = γ

∑

(i,j)∈Ω f∗
ij and

∑

(i,j)∈Ω tEW
ij f∗

ij ≤ γ
∑

(i,j)∈Ω f∗
ij by Lemma 22. Further-

more,
∑

(i,j)∈Ω tEW
ij ≥∑

(i,j)∈Ω t′
ij since {t′

ij} is a feasible solution of PEW and the objective function

of PEW maximizes
∑

(i,j)∈Ω tEW
ij given the constraint. Hence,

TPRπ∗(γ)(XΩ) − TPRπEW(γ)(XΩ) ≤
∑

(i,j)∈Ω(t∗
ij − tEW

ij )
∑

(i,j)∈Ω(1 − f∗
ij)

≤
∑

(i,j)∈Ω(t∗
ij − t

′

ij)
∑

(i,j)∈Ω(1 − f∗
ij)

.

Also, note that TPRπ∗(γ)(XΩ) − TPRπEW(γ)(XΩ) ≤ 1 since TPR ≤ 1 by definition. By Lemma 24,

TPRπ∗(γ)(XΩ) − TPRπEW(γ)(XΩ) .
L log(m)δ

γp∗
A

,

which completes the proof.
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