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We develop an analytical framework to study experimental design in two-sided marketplaces. Many of these

experiments exhibit interference, where an intervention applied to one market participant influences the

behavior of another participant. This interference leads to biased estimates of the treatment effect of the

intervention. We develop a stochastic market model and associated mean field limit to capture dynamics in

such experiments, and use our model to investigate how the performance of different designs and estimators

is affected by marketplace interference effects. Platforms typically use two common experimental designs:

demand-side “customer” randomization (CR) and supply-side “listing” randomization (LR), along with their

associated estimators. We show that good experimental design depends on market balance: in highly demand-

constrained markets, CR is unbiased, while LR is biased; conversely, in highly supply-constrained markets, LR

is unbiased, while CR is biased. We also introduce and study a novel experimental design based on two-sided

randomization (TSR) where both customers and listings are randomized to treatment and control. We show

that appropriate choices of TSR designs can be unbiased in both extremes of market balance, while yielding

relatively low bias in intermediate regimes of market balance.

1. Introduction

We develop a framework to study experiments (also known as A/B tests) that two-sided platform

operators routinely employ to improve the platform. Platforms use experiments to test many

types of interventions that affect interactions between participants in the market; examples include

features that change the process by which buyers search for sellers or interventions that alter

the information the platform shares with buyers. The goal of the experiment is to introduce the

intervention to some fraction of the market and use the resulting outcomes to estimate the effect

if the intervention were introduced to the entire market. Platforms rely on these estimated effect

sizes to make decisions about whether or not to launch the intervention to the entire market.
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However, in marketplace experiments, these estimates are often biased due to interference

between market participants. Market participants interact and compete with each other and, as a

result, the treatment assigned to one individual may influence the behavior of another individual.

These interactions violate the Stable Unit Treatment Value Assumption (SUTVA) (Imbens and

Rubin (2015)) that guarantees unbiased estimates of the treatment effect. Previous work has shown

that the resulting bias can be quite large, and at times as large as the treatment effect itself (Blake

and Coey (2014), Fradkin (2015), Holtz et al. (2020)). In this work, we model the platform compe-

tition dynamics, investigate how they influence the performance of different canonical experimental

designs, and also introduce novel designs that can yield improved performance.

We are particularly motivated by marketplaces where customers do not purchase goods, but

rather book them for some amount of time. This covers a broad array of platforms, including

freelancing (e.g., Upwork), lodging (e.g., Airbnb and Booking.com), and many services (tutoring,

dogwalking, child care, etc.). While we explicitly model such a platform, the model we describe

also captures features of a platform where goods are bought and supply must be replenished for

future demand.

Our model consists of a fixed number of listings; customers arrive sequentially over (continuous)

time. For example, in an online labor platform, a freelancer offering work is a listing, and a client

looking to hire a freelancer is a customer. On a lodging site, listings include hotel rooms or private

rooms and customers are travelers wanting to book. Naturally, an arriving customer can only book

available listings (i.e., those not currently booked). The customer forms a consideration set from

the set of available listings and then, according to a choice model, chooses which listing to book

from this set (including an outside option). Once a listing is booked, it is occupied and becomes

unavailable until the end of its occupancy time.

We focus on interventions by the platform that change the parameters governing the choice

probability of the customer, such as those described above; we refer to the new choice parameters

as the treatment model and the baseline as the control model.1 We assume the platform wants to

use an experiment to assess the difference between the rate at which bookings would occur if all

choices were made according to the treatment parameters and the corresponding rate if all choices

were made according to the control parameters . This difference is the global treatment effect or

GTE. In particular, we assume that the quantity of interest is the steady-state (or long-run) GTE,

i.e., the long-run average difference in rental rates.2

1 The same modeling framework that we employ in this paper can be used to consider interventions that change other
parameters, such as customer arrival rates or the time that listings remain occupied when booked; such application
is outside the scope of our current work.

2 Our framework can also be used to evaluate other metrics of interest based on experimental outcomes; for simplicity
we focus on rate of booking in this work.
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Most platforms employ one of two simple designs for testing such an intervention: either

customer-side randomization (what we call the CR design) or listing-side randomization (what

we call the LR design). In the CR design, customers are randomized to treatment or control. All

customers in treatment make choices according to the treatment choice model and all customers

in control make choices according to the control choice model. In the LR design, listings are ran-

domized to treatment or control, and the utility of a listing is then determined by its treatment

condition. As a result, in the LR design, in general each arriving customer will consider some listings

in the treatment condition and some listings in the control condition. As an example, suppose the

platform decides to test an intervention that shows badges for certain listings. In the CR design,

all treatment customers see the badges and no control customers see the badges. In the LR design,

all customers see the badges on treated listings, and do not see them on control listings.

Each of these designs are associated with natural estimators. In the CR design, the platform

measures the difference in the rate of bookings between treatment and control customers; this is

what we call the naive CR estimator. In the LR design, the platform measures the difference in the

rate at which treatment and control listings are booked; this is what we call the naive LR estimator.

To develop some intuition for the potential biases, first consider an idealized static setting where

listings are instantly replenished upon being booked; in other words, every arriving customer sees

the full set of original listings as available. As a result, in the CR design there is no interference

between treatment and control customers, and consequently the CR estimator is unbiased for the

true GTE. On the other hand, in the LR design, every arriving customer considers both treatment

and control listings when choosing whether to book, creating a linkage across listings through

customer choice. In other words, in the LR design there is interference between treatment and

control, and in general the LR estimator will be biased for the true GTE.

Now return to a dynamic model where the inventory of listings is limited, and listings remain

unavailable for some time after being booked. In this case, observe that on top of the preceding

discussion, there is a dynamic linkage between customers: the set of listings available for consid-

eration by a customer is dependent on the listings considered and booked by previously arriving

customers. This dynamic effect introduces a new form of bias into estimation and is distinctly

unique to our work. In particular, because of this dynamic bias, in general the naive CR estimator

will be biased as well.

Our paper develops a dynamic model of two-sided markets with inventory dynamics, and uses

this framework to compare and contrast both the designs and estimators above. We also introduce

and study a novel class of more general designs based on two-sided randomization (of which the

two examples above are special cases). In more detail, our contributions and the organization of

the paper are as follows.



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
4

Benchmark model and formal mean field limit. Our first main contribution is to develop

a general, flexible theoretical model to capture the dynamics described above. In Section 3, we

present a model that yields a continuous-time Markov chain in which the state at any given time

is the number of currently available listings of each type. In Section 4, we propose a formal mean

field analog of this continuous-time Markov chain, by considering a limit where the number of

listings in the system and the arrival rate of customers both grow to infinity. Scaling by the number

of listings yields a continuum mass of listings in the limit. In the mean field model, the state

at a given time is the mass of available listings and this mass evolves via a system of ODEs.

Using a Lyapunov argument, we show that this system is globally asymptotically stable and give a

succinct characterization of the resulting asymptotic steady state of the system as the solution to

an optimization problem. We formally establish that the mean field limit arises as the fluid limit of

the corresponding finite market model, as market size grows; in other words, the mean field model

is a good approximation to large markets. The mean field model allows us to tractably analyze

different estimators, as well as to study their biases in the large market regime.

Designs and estimators: Two-sided, customer-side, and listing-side randomization. In

Section 5, we introduce a more general form of experimental design, called two-sided randomization

(TSR); an analogous idea was independently proposed recently by Bajari et al. (2019) (see also

Section 2). In a TSR design, both customers and listings are randomized to treatment and control.

However, the intervention is only applied when a treatment customer considers a treatment listing;

otherwise, if the customer is in control or the listing is in control, the intervention is not seen

by the customer. (In the example above, a customer would see the badge on a listing only if the

customer were treated and the listing were treated.) Notably, the CR and LR designs are special

cases of TSR. We also define natural naive estimators for each design.

Analysis of bias: The role of market balance. In Section 6 we study the bias of the different

designs and estimators proposed. Our main theoretical results characterize how the bias depends

on the relative volumes of supply and demand in the market. In particular, in the highly demand-

constrained regime (where customers arrive slowly and/or listings replenish quickly): the naive CR

estimator becomes unbiased, while the naive LR estimator is biased. On the other hand, in the

highly supply-constrained regime (where customers arrive rapidly and/or listings replenish slowly)

we find that in fact the naive LR estimator becomes unbiased, while the naive CR estimator is

biased. These findings suggest that platforms can potentially reduce bias by choosing the type of

experiment based on knowledge of market balance.

Given the findings that CR and LR experiments offer benefits in different extremes, it is natural to

ask whether good performance can be achieved in moderately balanced markets by “interpolating”

between the naive CR and LR estimators. We define a naive TSR estimator that achieves this
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interpolation and has low bias in both market extremes, but still has large bias for moderate

market balance. We then define more sophisticated TSR estimators that explicitly aim to correct for

interference in regimes of moderate market balance. These latter estimators exhibit substantially

improved performance in simulations. Appendix C shows that these estimators perform well across

a wide range of market parameters.

Insights from simulations. In Section 7 we turn to simulations in the finite system to study the

variance of the estimators. The simulations corroborate the theoretical findings that TSR offers

benefits with respect to bias, albeit at the cost of moderate increases in variance. Among the

TSR estimators that we study, we find that those with smaller reductions in bias have smaller

increases in variance, while those with larger reductions in bias have larger increases in variance,

thus revealing a tradeoff between bias and variance for the TSR estimators.

In Section 8, we compare the TSR approach with cluster-randomized experiments, an existing

approach that platforms utilize to reduce bias. The simulations suggest that while both approaches

can reduce bias when the market is tightly clustered, TSR estimators can reduce bias in highly

interconnected markets where cluster randomized experiments cannot.

Taken together, our work sheds light on what experimental designs and associated estimators

should be used by two-sided platforms depending on market conditions, to alleviate the biases from

interference that arise in such contexts. We view our work as a starting point towards a compre-

hensive framework for experimental design in two-sided platforms; we discuss some directions for

future work in Section 9.

2. Related work

SUTVA. The types of interference described in these experiments are violations of the Stable

Unit Treatment Value Assumption (SUTVA) in causal inference (Imbens and Rubin 2015). SUTVA

requires that the (potential outcome) observation on one unit should be unaffected by the particular

assignment of treatments to the other units.t A large number of recent works have investigated

experiment design in the presence of interference, particularly in the context of markets and social

networks.

Interference in marketplaces. Biases from interference can be large: Blake and Coey (2014)

empirically show in an auction experiment that the presence of interference among bidders caused

the estimate of the treatment effect to be wrong by a factor of two. Fradkin (2019) finds through

simulations that a marketplace experiment changing search and recommendation algorithms can

overestimate the true effect by 50 percent. More recent work by Holtz et al. (2020) randomizes

clusters of similar listings to treatment or control, and finds the bias due to interference can be

almost 1/3 of the treatment effect. Interestingly, Holtz et al. (2020) also finds weak empirical
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evidence that the extent of interference depends on market balance; our paper provides strong

theoretical grounding for such a claim.

Inspired by the goal of reducing such bias, other work has developed approaches to bias char-

acterization and reduction both theoretically (e.g., Basse et al. (2016) in the context of auctions

with budgets), as well as via simulation (e.g., Holtz (2018) who explores the performance of LR

designs). Our work complements this line, by developing a mathematical framework for the study

of estimation bias in dynamic platforms. Key to our analysis is the use of a mean field model

to model both transient and steady-state behavior of experiments. A related approach is taken

in Wager and Xu (2019), where a mean field analysis is used to study equilibrium effects of an

experimental intervention where treatment is incrementally applied in a marketplace (e.g., through

small pricing changes).

Interference in social networks. A bulk of the literature in experimental design with interference

considers an interference that arises through some underlying social network: e.g., Manski (2013)

studies the identification of treatment responses under interference; Ugander et al. (2013) introduces

a graph cluster based randomization scheme and analyzes the bias and variance of the design;

and many other papers, including Athey et al. (2018), Basse et al. (2019), Saveski et al. (2017)

focus on estimating the spillover effects created by interference. In particular, Pouget-Abadie et al.

(2019) and Zigler and Papadogeorgou (2018) consider interference on a bipartite network, which is

closer to a two-sided marketplace setting. In general, this line of work considers a fixed interference

pattern (social network) over time. Our work is distinct because the interference caused by supply

and demand competition is endogenous to the experiment and dynamically evolving over time.

Other experimental designs. In practice, platforms currently mitigate the effects of interference

through either clustering techniques that change the unit of observation to reduce spillovers among

them (e.g., Chamandy (2016)), similar to some of the works mentioned above (e.g., Holtz (2018),

Ugander et al. (2013)); or by switchback testing (Sneider et al. 2019), in which the treatment is

turned on and off over time. Both cause a substantial increase in estimation variance due to a

reduction in effective sample size and thus the naive CR and LR designs remain popular workhorses

in the platform experimentation toolkit. In addition to these broad classes of experiments, other

work has also introduced modified experiment designs for specific types of interventions, such as

Ha-Thuc et al. (2020) for ranking experiments.

Two-sided randomization. Finally, a closely related paper is Bajari et al. (2019). Independently

of our own work, there the authors propose a more general multiple randomized design of which

TSR is a special case. They focus on a static model and provide an elegant and complete statistical

analysis under a local interference assumption. By contrast, we focus on a dynamic platform model

with market-wide interference patterns and focus on a mean field analysis of bias.
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3. A Markov chain model of platform dynamics

In this section, we first introduce the basic dynamic platform model that we study in this paper

with a finite number N of listings. In the next section, we describe a formal mean field limit

of the model inspired by the regime where N →∞. This mean field limit model then serves as

the framework within which we study the bias of different experimental designs and associated

estimators in the remainder of the paper.

We consider a two-sided platform where we refer to the supply side as listings and the demand

side as customers. Customers arrive over time and at the time of arrival, the customer forms a

consideration set from the set of available listings in the market and then decides whether to book

one of them. If the customer books, then the selected listing is occupied for a random length of

time during which it is unavailable for other customers. At the end of this booking, the listing

again becomes available for use for other customers.

The formal details of our model are as follows.

Time. The system evolves in continuous time t≥ 0.

Listings. The system consists of a fixed number N of listings. We refer to “the N ’th system”

as the instantiation of our model with N listings present. We use a superscript “N” to denote

quantities in the N ’th system where appropriate.

We allow for heterogeneity in the listings. Each listing ` has a type θ` ∈Θ, where Θ is a finite set

(the listing type space). Note that in general, the type may encode both observable and unobservable

covariates; in particular, our analysis does not presume that the platform is completely informed

about the type of each listing. For example, in a lodging site θ` may encode observed characteristics

of a house such as the number of bedrooms, but also characteristics that are unobserved by the

platform because they may be difficult or impossible to measure. Let m(N)(θ) denote the total num-

ber of listings of type θ in the N ’th system. For each θ ∈Θ, we assume that limN→∞m
(N)(θ)/N =

ρ(θ)> 0. Note that
∑

θ ρ(θ) = 1.

State description. At each time t, each listing ` can be either available or occupied (i.e.,

occupied by a customer who previously booked it). The system state at time t in the N ’th system

is described by σ
(N)
t = (σ

(N)
t (θ)), where σ

(N)
t (θ) denotes the number of listings of type θ available

in the system at time t. Let S
(N)
t =

∑
θ σ

(N)
t (θ) be the total number of listings available at time t.

In our subsequent development, we develop a model that makes σ
(N)
t a continuous-time Markov

process.

Customers. Customers arrive to the platform sequentially and decide whether to book, and if

so, which listing to book. Each customer j has a type γj ∈ Γ, where Γ is a finite set (the customer

type space) that represents customer heterogeneity. As with listings, the type may encode both

observable and unobservable covariates, and again, our analysis does not presume that the platform
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is completely informed about the type of each customer. Customers of type γ arrive according to

a Poisson process of rate λ(N)
γ ; these processes are independent across types. Let λ(N) =

∑
γ λ

(N)
γ

be the total arrival rate of customers. Let Tj denote the arrival time of the j’th customer.

We assume that limN→∞ λ
(N)/N = λ> 0, i.e., the arrival rate of customers grows proportionally

with the number of listings when we take the large market limit. Further, we assume that for each

γ ∈ Γ, we have limN→∞ λ
(N)
γ /λ(N) = φγ > 0. Note that

∑
γ φγ = 1.

Consideration sets. In practice, when customers arrive to a platform, they typically form a

consideration set of possible listings to book; the initial formation of the consideration set may

depend on various aspects of the search and recommendation algorithms employed by the platform.

To simplify the model, we capture this process by assuming that on arrival, each listing of type θ

that is available at time t is included in the arriving customer’s consideration set independently

with probability αγ(θ)> 0 for a customer of type γ. For example, αγ(θ) can capture the possibility

that the platform’s search ranking is more likely to highlight available listings of type θ that are

more attractive for a customer of type γ, making these listings more likely to be part of the

customer’s consideration set; this effect is made clear via our choice model presented below. After

the consideration set is formed, a choice model is then applied to the consideration set to determine

whether a booking (if any) is made.

Formally, the customer choice process unfolds as follows. Suppose that customer j arrives at

time Tj. For each listing `, let Cj` = 0 if the listing is unavailable at Tj. Otherwise, if listing ` is

available, then let Cj` = 1 with probability αγj (θ`), and let Cj` = 0 with probability 1− αγj (θ`),

independently of all other randomness. Then the consideration set of customer j is {` :Cj` = 1}.

Our theoretical results in this paper are developed with this model of consideration set forma-

tion. Other models of consideration set formation are also reasonable, however. As one example,

customers might sample a consideration set of a fixed size, regardless of total number of listings

available. We explore such a consideration set model through simulations in Appendix C and show

that similar insights hold.

Customer choice. Customers choose at most one listing to book and can choose not to book

at all. We assume that customers have a utility for each listing that depends on both customer

and listing types: a type γ customer has utility vγ(θ)> 0 for a type θ listing. Let qj` denote the

probability that arriving customer j of type γj books listing ` of type θ`.

In this paper we assume that customers make choices according to the well-known multinomial

logit choice model. In particular, given the realization of Cj, we have:

qj` =
Cj`vγj (θ`)

ε
(N)
γj +

∑N

`′=1Cj`′vγj (θ`′)
. (1)
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Here ε(N)
γ > 0 is the value of the outside option for type γ customers in the N ’th system. The

probability that customer j does not book any listing at all grows with ε(N)
γ . We let the outside

option scale with N ; this is motivated by the observation that in practical settings, the probability

a customer does not book should remain bounded away from zero even for very large systems. In

particular, we assume that limN→∞ ε
(N)
γ /N = εγ > 0.

We note that this specification of choice model, although it relies on the multinomial logit model,

can be quite flexible because we allow for arbitrary heterogeneity of listings and customers.

For later reference, we define:

qj(θ) =E

 ∑
`:θ`=θ

qj`

 , (2)

where the expectation is over the randomness in Cj. With this definition, qj(θ) is the probability

that customer j books an available listing of type θ, where the probability is computed prior to

realization of the consideration set.

Dynamics: A continuous-time Markov chain. The system evolves as follows. Initially all

listings are available.3 Every time a customer arrives, the choice process described above unfolds.

An occupied listing remains occupied, independent of all other randomness, for an exponential time

that is allowed to depend on the type of the listing.4 More formally, let τ > 0 and for each type θ

define ν(θ) such that, once booked, a listing of this type will remain occupied for an exponential

time with parameter τν(θ). We overload notation and define τ(θ) = τν(θ). Once this time expires,

the listing returns to being available.

When fixing ν = (ν(θ), θ ∈Θ) and all system parameters except for τ , increasing τ will make the

system less supply constrained and decreasing τ will make the system more supply constrained,

while preserving the relative occupancy times of each listing type.

Our preceding specification turns σ
(N)
t into a continuous-time Markov process on a finite state

space S(N) = {σ : 0 ≤ σ(θ) ≤m(N)(θ), ∀θ}. We now describe the transition rates of this Markov

process. For a state σ ∈ S(N), σ(θ) represents the number of available listings of type θ.

There are only two types of transitions possible: either (i) a listing that is currently occupied

becomes available, or (ii) a customer arrives, and books a listing that is currently available. (If a

customer arrives but does not book anything, the state of the system is unchanged.) Let eθ denote

the unit basis vector in the direction θ, i.e., eθ(θ) = 1, and eθ(θ
′) = 0 for θ′ 6= θ. The rate of the first

type of transition is:

R(σ,σ+eθ) = (m(N)(θ)−σ(θ))τ(θ), (3)

3 As the system we study is irreducible and we analyze its steady state behavior, it would not matter if we chose a
different initial condition.

4 An even more general model might allow the occupancy time to depend on both listing type and the type of the
customer who made the booking; such a generalization remains an interesting open direction.
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since there are m(N)(θ)− σ(θ) booked listings of type θ, and each remains occupied for an expo-

nential time with mean 1/τ(θ), independently of all other randomness.

The second type of transition requires some more steps to formulate. In principle, our choice

model suggests that the identity of both the arriving guest and individual listings affect system

dynamics; however, our state description only tracks the aggregate number of listings of each type

available at each time t. The key here is that our entire specification depends on customers only

through their type, and depends on listings only through their type.

Formally, suppose a customer j of type γj = γ arrives to find the system in state σ. For each

θ let Dγ(θ|σ) be a Binomial(σ(θ), αγ(θ)) random variable, independently across θ. Recall that for

each available listing `, each Cj` is a Bernoulli(αγ(θl)) random variable. Recalling qj(θ) as defined

in (2), it is straightforward to check that:

qj(θ) = rγ(θ|σ),E

[
Dγ(θ|σ)vγ(θ)

ε
(N)
γ +

∑
θ′Dγ(θ′|σ)vγ(θ′)

]
. (4)

In other words, the probability an arriving customer of type γ books a listing of type θ when the

state is σ is given by rγ(θ|σ); and this probability depends on the past history only through the

state σ (ensuring the Markov property holds).

With this definition at hand, for states σ with σ(θ)> 0, the rate of the second type of transition

is:

R(σ,σ−eθ) =
∑
γ

λ(N)
γ rγ(θ|σ). (5)

Note that the resulting Markov chain is irreducible, since customers have positive probability of

sampling into, and booking from, their consideration set, and every listing in the consideration set

has positive probability of being booked.

Steady state. Since the Markov process defined above is irreducible on a finite state space,

there is a unique steady state distribution π(N) on S(N) for the process.

4. A mean field model of platform dynamics

The continuous-time Markov process described in the preceding section is challenging to analyze

directly because the customers’ choices and consideration sets induce complex dynamics. Instead,

to make progress we consider a formal mean field limit motivated by the regime where N →∞,

in which the evolution of the system becomes deterministic. We first present a formal mean field

analogue of the Markov process introduced in the previous section and provide intuition for its

derivation. We then formally prove that the sequence of Markov processes converges to this mean

field model as N →∞. The mean field model provides tractable expressions in the large market

regime for the different estimators we consider, allowing us to study and compare their bias.
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The mean field model we study consists of a continuum unit mass of listings. The total mass of

listings of type θ in the system is ρ(θ)> 0 (recall that
∑

θ ρ(θ) = 1). We represent the state at time

t by st = (s(θ), θ ∈Θ); st(θ) represents the mass of listings of type θ available at time t. The state

space for this model is:

S = {s : 0≤ s(θ)≤ ρ(θ)}. (6)

We first present the intuition behind our mean field model. Consider a state s∈ S with s(θ)> 0

for all θ. We view this state as analogous to a state σ ≈Ns in the N ’th system. We consider the

system dynamics defined by (3)-(5). Note that the rate at which occupied listings of type θ become

available is (m(N)(θ) − σ(θ))τ(θ), from (3). If we divide by N , then this rate becomes (ρ(θ) −

s(θ))τ(θ) as N →∞. On the other hand, note that for large N , if Dγ(θ|σ) is Binomial(σ(θ), αγ(θ)),

then Dγ(θ|σ)/N concentrates on αγ(θ)s(θ). Thus the choice probability rγ(θ|σ) is approximately:

pγ(θ|s),
αγ(θ)vγ(θ)s(θ)

εγ +
∑

θ′ αγ(θ
′)vγ(θ′)s(θ′)

. (7)

(Here we use the fact that ε(N)
γ /N → εγ as N →∞.) This is the mean field multinomial logit choice

model for our system. In the finite model, the rate at which listings of type θ become occupied is∑
γ λ

(N)
γ rγ(θ|σ), from (5). If we divide by N , this rate becomes λ

∑
γ φγpγ(θ|s) as N →∞.

Inspired by the preceding observations, we define the following system of differential equations

for the evolution of st:

d

dt
st(θ) = (ρ(θ)− st(θ))τ(θ)−λ

∑
γ

φγpγ(θ|st), θ ∈Θ. (8)

This is our formal mean field model. In the remainder of this section, we first show that this

system has a unique solution for any initial condition. Then we characterize the behavior of the

system. By constructing an appropriate Lyapunov function, we show that the mean field model

has a unique limit point to which all trajectories converge (regardless of initial condition). This

limit point is the unique steady state of the mean field limit. Finally, we prove that the sequence

of Markov processes indeed converges to this mean field model (in an appropriate sense). Hence,

the mean field model provides a close approximation to the evolution of large finite markets.

4.1. Existence and uniqueness of mean field trajectory

First, we show the straightforward result that the system of ODEs defined in (8) possesses a unique

solution. This follows by an elementary application of the Picard-Lindelöf theorem from the theory

of differential equations. The proof is in Appendix A.

Proposition 1. Fix an initial state ŝ ∈ S. The system (8) has a unique solution {st : t ≥ 0}

satisfying 0≤ st(θ)≤ ρ(θ) and for all t and θ, and s0 = ŝ.
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4.2. Existence and uniqueness of mean field steady state

Now we characterize the behavior of the mean field limit. We show that the system of ODEs in

(8) has a unique limit point, to which all trajectories converge regardless of the initial condition.

We refer to this as the steady state of the mean field system. We prove the result via the use of

a convex optimization problem; the objective function of this problem is a Lyapunov function for

the mean field dynamics that guarantees global asymptotic stability of the steady state.

Formally, we have the following result. The proof is in Appendix A.

Theorem 1. There exists a unique steady state s∗ ∈ S for (8), i.e., a unique vector s∗ ∈ S

solving the following system of equations:

(ρ(θ)− s∗(θ))τ(θ) = λ
∑
γ

φγpγ(θ|s∗), θ ∈Θ. (9)

This limit point has the property that 0 < s∗(θ) < ρ(θ) for all θ, i.e., it is in the interior of S.

Further, this limit point is globally asymptotically stable, i.e., all trajectories of (8) converge to s∗

as t→∞, for any initial condition s0 ∈ S.

The limit point s∗ is the unique solution to the following optimization problem:

minimize W (s),
∑
γ

(
λγ log

(
εγ +

∑
θ

αγ(θ)vγ(θ)s(θ)

))
− τ(θ)

∑
θ

ρ(θ) log s(θ) + τ(θ)
∑
θ

s(θ) (10)

subject to 0≤ s(θ)≤ ρ(θ), θ ∈Θ. (11)

The function W appearing in the proposition statement is not convex; our proof proceeds by

first noting that it suffices to restrict attention to s such that s(θ)> 0 for all θ, then making the

transformation y(θ) = log(s(θ)). The objective function redefined in terms of these transformed

variables is strictly convex, and this allows us to establish the desired result.

4.3. Convergence to the mean field limit

Finally, we formally describe the sense in which our system converges to the system in (8). We

first move from analyzing the number of listings available in the N ’th system to analyzing the

proportion of listings available. To this end, define the normalized process Y
(N)
t where

Y
(N)
t (θ) = σ

(N)
t (θ)/N, θ ∈Θ.

Note that under this definition, Y
(N)
t is also a continuous time Markov process with dynamics

induced by the dynamics of σ
(N)
t ; in particular, the chain Y

(N)
t has the same transition rates as

σ
(N)
t , but increments are of size 1/N . The following theorem establishes the convergence of Y

(N)
t

to the solution of the ODE described in (8) as N →∞.
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Theorem 2. Assume that ε(N)
γ /N → εγ for all γ and λ(N)

γ /N → λγ for all γ as N →∞. Fix

ŝ ∈ S and assume that Y
(N)
0 is deterministic, with Y

(N)
0 (θ)→ ŝ(θ) for all θ. Let st denote the

unique solution to the system defined in (8), with initial condition s0 = ŝ.

Then for all δ > 0 and for all times u> 0,

P
[

sup
0≤t≤u

‖Y (N)
t − st‖> δ

]
=O

(
1

N

)
. (12)

The proof for this result relies on an application of Kurtz’s Theorem for the convergence of pure

jump Markov processes; full details are in Appendix A. We note that this result holds for any

sequence of initial conditions Y
(N)
0 , as long as the proportion of available listings at time t = 0

converges to a constant vector ŝ as N →∞; further, the vector ŝ can be any (feasible) initial state

in the mean field model.

We now utilize the mean field model to study experimental designs and interference.

5. Experiments: Designs and estimators

In this section, we leverage the framework developed in the previous section to undertake a study

of experimental designs a platform might employ to test interventions in the marketplace. For

simplicity, we focus on interventions that change the choice probability of one or more types of

customers for one or more types of listings, and we assume the platform is interested in estimating

the resulting rate at which bookings take place. However, we believe the same approach we employ

here can be applied to study other types of interventions and platform objectives as well.

Formally, the platform’s goal is to design experiments with associated estimators to assess the

performance of the intervention (the treatment), relative to the status quo (the control). In par-

ticular, the platform is interested in determining the steady-state rate of booking when the entire

market is in the treatment condition (i.e., global treatment), compared to the steady-state rate of

booking when the entire market is in the control condition (i.e., global control). We refer to the

difference of these two rates as the global treatment effect (GTE). We focus on these steady-state

quantities as a platform is typically interested in the long-run effect of an intervention.

Two types of canonical experimental designs are typically employed in practice: listing-side

randomization (denoted LR) and customer-side randomization (denoted CR). In the former design,

listings are randomized to treatment or control; in the latter design, customers are randomized

to treatment or control. Each design also has an associated natural “naive” estimator of booking

rates, that is, a (scaled) difference in means estimators for the two groups. As we discuss, these

estimators will typically be biased, due to interference effects.

The LR and CR designs are special cases of a novel, more general two-sided randomization

(TSR) design that we introduce in this work, where both listings and customers are randomized to
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treatment and control simultaneously. As we discuss, this type of experiment can be combined with

design and analysis techniques to reduce bias. On the design side, TSR designs allow us to construct

experiments that interpolate between LR and CR designs in such a way that bias is reduced. On

the analysis side, TSR designs allow us to observe different competition effects, that we can use to

heuristically debias our estimators. (TSR designs were also independently introduced and studied in

recent work by Bajari et al. (2019); see Section 2 for discussion.) In the next subsection we develop

the relevant formalism for these designs; we then subsequently define natural “naive” estimators

that are commonly used for the LR and CR designs, as well as an estimator for a TSR design. In the

remainder of the paper we study the bias of these different designs and estimators under different

market conditions.

5.1. Experimental design

Since CR and LR are special cases of a TSR design, we first describe how to embed TSR experimental

designs into our model, and then subsequently describe CR and LR designs in our model.

Treatment condition. We consider a binary treatment: every customer and listing in the

market will either be in treatment or control. (Generalization of our model to more than two

treatment conditions is relatively straightforward.) We model the treatment condition by expanding

the set of customer and listing types. For every customer type γ ∈ Γ, we create two new customer

types (γ,0), (γ,1); and for every listing type θ ∈Θ, we create a two new listing types (θ,0), (θ,1).

The types (γ,0), (θ,0) are control types; the types (γ,1), (θ,1) are treatment types.

Two-sided randomization. In this design, randomization takes place on both sides of the

market simultaneously. We assume that a fraction aC of customers are randomized to treatment,

and a fraction 1− aC to control, independently; and we assume that a fraction aL of listings are

randomized to treatment, and a fraction 1− aL to control, independently.

Treatment as a choice probability shift. Examples of interventions that platforms may

wish to test include the introduction of higher quality photos for a hotel listing on a lodging site,

showing previous job completion rates of a freelancer on an online labor market, or reducing the

friction for an item in the checkout flow. Such interventions change the choice probability of listings

by customers either through the consideration probabilities or perceived utility for a listing. In

particular, we continue to assume the multinomial logit choice model, and we assume that for a

type γ customer and a type θ listing that have been given the intervention, the utility becomes

ṽγ(θ) > 0 and the probability of inclusion in the consideration set becomes α̃γ(θ) > 0. Since we

focus on changes in choice probabilities, we assume that the holding time parameter of a listing of

type θ is ν(θ), regardless of whether it is assigned to treatment or control.5

5 Our current work allows us to relatively easily incorporate ν depending on treatment condition of the listing, and
as such we can extend our results to study LR designs where ν varies with treatment condition. In general, however,
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In the TSR designs that we consider, a key feature is that the intervention is applied only when

a treated customer interacts with a treated listing. For example, when an online labor marketplace

decides to show previous job completion rates of a freelancer as an intervention, only treated

customers can see these rates, and they only see them when they consider treated freelancers. We

model this by redefining quantities in the experiment as follows:

vγ,0(θ,0) = vγ,1(θ,0) = vγ,0(θ,1) = vγ(θ); vγ,1(θ,1) = ṽγ(θ); (13)

αγ,0(θ,0) = αγ,1(θ,0) = αγ,0(θ,1) = αγ(θ); αγ,1(θ,1) = α̃γ(θ); (14)

εγ,0 = εγ,1 = εγ ; (15)

ν(θ,0) = ν(θ,1) = ν(θ). (16)

This definition is a natural way to incorporate randomization on each side of the market. However,

we remark here that it is not necessarily canonical; for example, an alternate design would be

one where the intervention is applied when either the customer has been treated or the listing

has been treated. Even more generally, the design might randomize whether the intervention is

applied, based on the treatment condition of the customer and the listing. In all likelihood, the

relative advantages of these designs would depend not only on the bias they yield in any resulting

estimators, but also in the variance characteristics of those estimators. We leave further study and

comparison of these designs to future work.

Customer-side and listing-side randomization. Two canonical special cases of the TSR

design are as follows. When aL = 1, all listings are in the treatment condition; in this case, random-

ization only takes place on the customer side of the market. This is the customer-side randomization

(CR) design. When aC = 1, all customers are in the treatment condition and randomization only

takes place on the listing side of the market. This is the listing-side randomization (LR) design.

System dynamics. With the specification above, it is straightforward to adapt our mean field

system of ODEs, cf. (8), and the associated choice model (7), to this setting. The key changes are

as follows:

1. The mass of control (resp., treatment) listings of type (θ,0) (resp., (θ,1)) becomes (1−aL)ρ(θ)

(resp., aLρ(θ)). In other words, abusing notation, we define ρ(θ,0) = (1−aL)ρ(θ), and ρ(θ,1) =

aLρ(θ).

2. The arrival rate of control (resp., treatment) customers of type (γ,0) (resp., (γ,1)) becomes

(1− aC)λφγ (resp., aCλφγ). Thus we define φγ,0 = (1− aC)φγ , and φγ,1 = aCφγ .

when customers are also randomized to treatment or control, the holding time parameter of a listing should also
depend on the treatment condition of the customer who booked that listing. Adapting our framework to incorporate
this possibility remains an interesting direction for future work.
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3. The choice probabilities are defined as in (7), with the relevant quantities defined in (13)-(15).

Using Proposition 1 and Theorems 1, we know that there exists a unique solution to the resulting

system of ODEs; and that there exists a unique limit point to which all trajectories converge,

regardless of initial condition. This limit point is the steady state for a given experimental design.

For a TSR experiment with treatment customer fraction aC , and treatment listing fraction aL, we

use the notation st(aC , aL) = (st(θ, j)|aC , aL), θ ∈Θ, j ∈ {0,1}) to denote the ODE trajectory, and

we use s∗(aC , aL) = (s∗(θ, j)|aC , aL), θ ∈Θ, j ∈ {0,1}) to denote the steady state.

Rate of booking. In our subsequent development, it will be useful to have a shorthand notation

for the rate at which bookings of listings of treatment condition j ∈ {0,1} are made by customers

of treatment condition i∈ {0,1}, in the interval [0, T ]. In particular, we define:

Qij(T |aC , aL) =
λ

T

∫ T

0

∑
θ

∑
γ

φγ,ipγ,i(θ, j|st(aC , aL)) dt. (17)

Since st(aC , aL) is globally asymptotically stable, bounded, and converges to s∗(aC , aL) as t→∞,

we have:

Qij(∞|aC , aL), lim
T→∞

Qij(T |aC , aL) = λ
∑
θ

∑
γ

φγ,ipγ,i(θ, j|s∗(aC , aL)). (18)

Global treatment effect. Recall we assume the steady-state rate of booking is the quantity of

interest to the platform. In particular, the platform is interested in the change in this rate from

the global control condition (aC = 0, aL = 0) to the global treatment condition (aC = 1, aL = 1).

In the global control condition, the steady state rate at which customers book is: QGC =

Q00(∞|0,0), and in the global treatment condition, the steady state rate at which customers book

is QGT =Q11(∞|1,1). Under these definitions, the global treatment effect is GTE=QGT−QGC.

We remark that the rate of booking decisions made by arriving customers will change over

time, even if the market parameters are constant over time (including the arrival rates of different

customer types, as well as the utilities that customers have for each listing type). This transient

change in booking rates is driven by changes in the state st; in general, such fluctuations will

lead the transient rate of booking to differ from the steady-state rate, for all values of aC and

aL (including global treatment and global control). In this work, we focus on the steady state

quantities to capture, informally, the long run change in behavior due to an intervention. 6

6 Note that in two-sided markets, certain types of interventions will also cause long-run economic equilibration due
to strategic responses on the part of market participants; for example, if prices are lowered during an experiment,
this may affect entry decisions of both buyers and sellers, and thus the long-run market equilibrium. While our
model allows the choice probabilities to change due to treatment, a more complete analysis of long run economic
equilibration due to interventions remains a direction for future work.
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5.2. Estimators: Transient and steady state

The goal of the platform is to use the experiment to estimate GTE. In this section we consider

estimators the platform might use to estimate this quantity. We first consider the CR and LR

designs, and we define “naive” estimators that the platform might use to estimate the global

treatment effect. These designs and estimators are those most commonly used in practice. We

define these estimators during the transient phase of the experiment and then define the associated

steady-state versions of these estimators. Finally, we combine these estimation approaches in a

natural heuristic that can be employed for any general TSR design.

Estimators for the CR design. We start by considering the CR design, i.e., where aL = 1 and

aC ∈ (0,1). A simple naive estimate of the rate of booking is to measure the rate at which bookings

are made in a given interval of time by control customers, and compare this to the analogous

rate for treatment customers. Formally, suppose the platform runs the experiment for the interval

t∈ [0, T ], with a fraction aC of customers in treatment. The rate at which customers of treatment

condition i ∈ {0,1} book in this period is Qi1(T |aC ,1). The naive CR estimator is the difference

between treatment and control rates, where we correct for differences in the size of the control and

treatment groups, by scaling with the respective masses:

ĜTE
CR

(T |aC) =
Q11(T |aC ,1)

aC
− Q01(T |aC ,1)

1− aC
. (19)

We let ĜTE
CR

(∞|aC) =Q11(∞|aC ,1)/aC−Q01(∞|aC ,1)/(1−aC) denote the steady-state naive CR

estimator.

Estimators for the LR design. Analogously, we can define a naive estimator for the LR

design, i.e., where aC = 1 and aL ∈ (0,1). Formally, suppose the platform runs the experiment for

the interval t ∈ [0, T ], with fraction aL of listings in treatment. The rate at which listings with

treatment condition j ∈ {0,1} are booked in this period is Q1j(T |1, aL). The naive LR estimator is

the difference between treatment and control rates, scaled by the mass of listings in each group:

ĜTE
LR

(T |aL) =
Q11(T |1, aL)

aL
− Q10(T |1, aL)

1− aL
. (20)

We let ĜTE
LR

(∞|aL) =Q11(∞|1, aL)/aL−Q10(∞|1, aL)/(1−aL) denote the corresponding steady-

state naive LR estimator.

Estimators for the TSR design. As with the LR and CR designs, it is possible to design a

natural naive estimator for the TSR design as well. In particular, we have the following definition

of the naive TSR estimator:

ĜTE
TSRN

(T |aC , aL) =
Q11(T |aC , aL)

aCaL
− Q01(T |aC , aL) +Q10(T |aC , aL) +Q00(T |aC , aL)

1− aCaL
. (21)
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To interpret this estimator, observe that the first term is the normalized rate at which treatment

customers booked treatment listings in the experiment; we normalize this by aCaL, since a mass aC

of customers are in treatment, and a mass aL of listings are in treatment. This first term estimates

the global treatment rate of booking. The sum Q01(T |aC , aL) +Q10(T |aC , aL) +Q00(T |aC , aL) is

the total rate at which control bookings took place: either because the customer was in the control

group, or because the listing was in the control group, or both. (Recall that in the TSR design, the

intervention is only seen when treatment customers interact with treatment listings.) This is nor-

malized by the complementary mass, 1−aCaL. This second term estimates the global control rate

of booking. As before, we can define a steady-state version of this estimator as ĜTE
TSRN

(∞|aC , aL),

with the steady-state versions of the respective quantities on the right hand side of (21).

It is straightforward to check that as aL→ 1, we have ĜTE
TSRN

(T |aC , aL)→ ĜTE
CR

(T |aC), the

naive CR estimator. Similarly, as aC → 1, we have ĜTE
TSRN

(T |aC , aL)→ ĜTE
LR

(T |aL), the naive

LR estimator. In this sense, the naive TSR estimator naturally “interpolates” between the naive

LR and CR estimators. In the next section, we exploit this interpolation to choose aC and aL as a

function of market conditions in such a way as to reduce bias.

More generally, the TSR design also contains much more information about competition in the

marketplace, and the resulting interference effects, than either the CR or LR designs. Inspired by

this observation, together with the idea of interpolating between the naive CR estimator and the

naive LR estimator, in Section 6.3 we explore alternative, more sophisticated TSR estimators that

heuristically debias interference due to competition effects. As we show, these estimators can offer

substantial bias reduction over the naive TSRN estimator above.

6. Analysis of bias

We now utilize the framework defined to analyze the bias of two common experiment types, LR

experiments and CR experiments. Recall from Section 1 that, in a setting where listings are imme-

diately replenished, all customers see the full set of original listings as available. There is no

competition between customers but there is still competition between listings, and so, intuitively,

we expect CR to be unbiased and LR to be biased. Meanwhile, in a setting where listings remain

unavailable for some amount of time, the resulting dynamic linkage across customers creates a bias

in CR as well. Now, consider the extreme where the market is highly supply-constrained: most

customers who arrive see no available listings, but some customers arrive just as a booked listing

becomes available and see a single available listing. Such customers compare the listing against the

outside option, but, since no other listings are available, do not compare listings against each other.

In this regime, there is no competition across listings but there is competition between customers,

and so we expect LR to be unbiased and CR to be biased.
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In this section, we formalize this intuition about the behavior of the estimators in the extremes of

market balance. We establish two key theoretical results: in the limit of a highly supply-constrained

market (where λ/τ →∞), the naive LR estimator becomes an unbiased estimator of the GTE, while

the naive CR estimator is biased. On the other hand, in the limit of a highly demand-constrained

market (where λ/τ → 0), the naive CR estimator becomes an unbiased estimator of the GTE, while

the naive LR estimator is biased. In other words, each of the two naive designs is respectively

unbiased in the limits of extreme market imbalance. At the same time, we find empirically that

neither estimator performs well in the region of moderate market balance.

Inspired by this finding, we consider TSR and associated estimators that naturally interpolate

between the two naive designs depending on market balance. Given the findings above, we show

that a simple approach to adjusting aC and aL as a function of market balance yields performance

that balances between the naive LR estimator and the naive CR estimator. Nevertheless, we show

there is significant room for improvement, by adjusting for the types of interference that arise

using observations from the TSR experiment. In particular, we propose a heuristic for a novel

interpolating estimator for the TSR design that aims to correct these biases, and yields surprisingly

good numerical performance.

6.1. Theory: Stead-state bias of CR and LR in unbalanced markets

In this subsection, we study theoretically the bias of the steady-state naive CR and LR esti-

mators in the limits where the market is extremely unbalanced (either demand-constrained or

supply-constrained). The key tool we employ is a characterization of the asymptotic behavior of

Qij(∞|aC , aL) as defined in (18) in the limits where λ/τ → 0 and λ/τ →∞. We use this charac-

terization in turn to quantify the asymptotic bias of the naive estimators relative to the GTE. We

derive these results in the next two subsections and provide a simple example in Section 6.1.3 to

illustrate the effects.

6.1.1. Highly demand-constrained markets. We start by considering the behavior of naive

estimators in the limit where λ/τ → 0. We start with the following proposition that characterizes

behavior of Qij(∞|aC , aL) as λ/τ → 0. The proof is in Appendix A.

Proposition 2. Fix all system parameters except λ and τ , and consider a sequence of systems

in which λ/τ → 0. Then along this sequence,

1

λ
Qij(∞|aC , aL)→

∑
θ

∑
γ

φγ,ipγ,i(θ, j|ρ). (22)

The expression on the right hand side depends on both aC and aL through φγ,i and ρ respectively. In

particular, we recall that φγ,1 = aCφγ , φγ,0 = (1−aC)φγ , and ρ(θ,1) = aLρ(θ), ρ(θ,0) = (1−aL)ρ(θ).
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In our subsequent discussion in this regime, to emphasize the dependence of ρ on aL below, we

will write ρ(aL) = (ρ(θ, j|aL), θ ∈ Θ, j = 0,1). With this definition, we have ρ(θ,1|aL) = aLρ(θ),

ρ(θ,0|aL) = (1− aL)ρ(θ).

This proposition allows us to characterize the bias of both CR and LR estimators in the demand

constrained limit. Note that Proposition 2 shows that, in this limit, the (scaled) rate of booking

behaves as if the available listings of type (θ, j) was exactly ρ(θ, j|aL) for every θ and treatment

condition j = 0,1. That is, it is as if every arriving customer sees the entire mass of listings as

being available, and so bookings are immediately replenished. This observation drives our first

main result, that in the demand constrained limit the CR estimator is unbiased and LR estimator

is biased.

Theorem 3. Consider a sequence of systems where λ/τ → 0. Then for all aC such that 0<aC <

1, ĜTE
CR

(∞|aC)/λ−GTE/λ→ 0. However, for 0< aL < 1, generically over parameter values7 we

have lim ĜTE
LR

(∞|aC)/λ−GTE/λ 6= 0.

The full proof can be found in Appendix A. The key insight is that as the market becomes more

demand constrained, there is a weakening of the competition between arriving customers, which

leads to less interference in a CR experiment. In the limit, the CR estimator becomes unbiased.

On the other hand, in an LR experiment there is a positive mass of control and treatment listings

available in steady state, leading to competition between listings and bias in the LR estimator.

6.1.2. Heavily supply-constrained markets. We now characterize the behavior of naive

estimators in the limit where λ/τ →∞. We start with the next proposition, where we study the

behavior of Qij as λ/τ →∞. The proof is in Appendix A. To state the proposition, we define:

gγ,i(θ, j) =
αγ,i(θ, j)vγ,i(θ, j)

εγ,i
.

Proposition 3. Fix all system parameters except λ and τ , and consider a sequence of systems

in which λ/τ →∞. Along this sequence, the following limit holds:

1

τ
Qij(∞|aC , aL)→

∑
θ

( ∑
γ φγ,igγ,i(θ, j)∑

i′=0,1

∑
γ φγ,i′gγ,i′(θ, j)

)
ρ(θ, j)ν(θ). (23)

As before, the expression on the right hand side depends on both aC and aL through φγ,i and

ρ respectively. In particular, we recall that φγ,1 = aCφγ , φγ,0 = (1− aC)φγ , and ρ(θ,1) = aLρ(θ),

ρ(θ,0) = (1− aL)ρ(θ).

A key intermediate result we employ is to demonstrate that in the steady-state in this limit,

s∗(θ, j|aC , aL)→ 0 for all θ, j. We know that in the steady state of the mean field limit, the rate at

7 Here ”generically” means for all parameter values, except possibly for a set of parameter values of Lebesgue measure
zero.



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
21

which occupied listings become available must match the rate at which available listings become

occupied (flow conservation). We use this fact to show that to first order in λ/τ , in the limit where

λ/τ →∞ we have:

s∗(θ, j|aC , aL)≈ 1

λ/τ
· ρ(θ, j)ν(θ)∑

γ

∑
i=0,1 φγ,igγ,i(θ, j)

.

The proposition follows by using this limit to characterize the choice probabilities.

The proof of the preceding proposition reveals that in the limit where λ/τ →∞, we have:

pγ,i(θ, j|s∗(aC , aL))≈ gγ,i(θ, j)s∗(θ, j|aC , aL) =
αγ,i(θ, j)vγ,i(θ, j)s

∗(θ, j|aC , aL)

εγ,i
.

This preceding expression is the formalization of our intuition that, in the limit where the market

is heavily supply-constrained, it is as if each arriving customer seeing an available listing compares

only that listing to the outside option; there is no longer any competition between listings.

We can use the preceding proposition to understand the behavior of the GTE, the naive LR

estimator, and the naive CR estimator in steady-state, as λ/τ →∞. For simplicity, we hold τ

constant and take the limit λ→∞. In this case, the preceding proposition shows that:

Q11(∞|1,1)→ τ
∑
θ

ρ(θ)ν(θ); Q00(∞|0,0)→ τ
∑
θ

ρ(θ)ν(θ).

The global treatment effect GTE→ 0 in this limit. Bookings occur essentially instantaneously after

a listing becomes available, which happens at rate τ
∑

θ ρ(θ)ν(θ).

We also note that:

Q11(∞|1, aL)→ aLτ
∑
θ

ρ(θ)ν(θ); Q10(∞|1, aL)→ (1− aL)τ
∑
θ

ρ(θ)ν(θ).

The preceding two expressions reveal that the steady-state naive LR estimator ĜTE
LR

(∞|aL) in

this setting approaches zero, matching the GTE; thus it is asymptotically unbiased.

It is also now straightforward to see why the CR design will be biased. Note that:

Q11(∞|aC ,1)→ aCτ
∑
θ

( ∑
γ φγgγ,1(θ,1)∑

γ

∑
i′=0,1 φγ,i′gγ,i′(θ,1)

)
ρ(θ)ν(θ).

An analogous expression holds for Q01(∞|aC ,1). We see that the right hand side reflects the

dynamic interference created between treatment and control customers: just as in our simple exam-

ple, whether or not an available listing is seen by, e.g., a control customer depends on whether it

has previously been booked by a treatment customer. That is, customers compete for listings. As

in the example, the naive CR estimator will remain nonzero in general in the limit, even though

the GTE approaches zero.

We summarize our discussion in the following theorem.
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Theorem 4. Consider a sequence of systems where λ/τ →∞. Then GTE/τ → 0, and for all aL

such that 0 < aL < 1, there also holds ĜTE
LR

(∞|aL)/τ → 0. However, for 0 < aC < 1, generically

over parameter values we have lim ĜTE
CR

(∞|aC)/τ −GTE/τ 6= 0.

Although the preceding theorem shows that the absolute bias of the naive LR estimator

approaches zero, in fact in general the relative bias (ĜTE
LR

(∞|aL)−GTE)/GTE will not generally

approach zero; this is because the GTE is also approaching zero, and so the second-order behavior

of the naive LR estimator matters. This is in contrast to the behavior of the naive CR estimator in

the demand-constrained limit: in that limit, the GTE remains nonzero in general, and so the naive

CR estimator is both absolutely and relatively unbiased. Nevertheless, note that relative bias of

the naive LR estimator will be significantly smaller than the relative bias of the naive CR estimator

in the supply-constrained limit, since the naive CR estimator has a nonzero absolute bias in this

limit while the GTE approaches zero.

We finish this subsection by noting Theorems 3 and 4 are driven by fundamental competition

dynamics in the respective limiting regimes, and therefore, we believe they hold under a much

more general class of models than the ones considered here. We leave this for future investigation.

6.1.3. An example: Homogeneous customers and listings. To more clearly understand

the behavior of the bias, in this section we apply Propositions 2 and 3 to a simpler setting where

both listings and customers are homogeneous, i.e., there is only one type of customer and one type

of listing. This example illustrates the symmetry between the two sides of the market and the

resulting implications for bias in marketplace experiments.

Let v denote the control utility and ṽ the treatment utility of a customer for a listing. Let ε

denote the outside option value of both control and treatment customers, α0(0) = α1(1) = 1, and

ν(0) = ν(1) = 1. In this example, we consider two limits: one where λ is fixed and τ →∞ (the

demand-constrained regime), and one where τ is fixed and λ→∞ (the supply-constrained regime).

In the first case, when τ →∞ with λ fixed, if we apply Proposition 2, we obtain:

Q00(∞|aC , aL)→λ · (1− aC)(1− aL)ρv

ε+ ρv
;

Q10(∞|aC , aL)→λ · aC(1− aL)ρv

ε+ (1− aL)ρv+ aLρṽ
;

Q01(∞|aC , aL)→λ · (1− aC)aLρv

ε+ ρv
;

Q11(∞|aC , aL)→λ · aCaLρṽ

ε+ (1− aL)ρv+ aLρṽ
.

(24)

In this limit,

GTE→ λ ·
(

ρṽ

ε+ ρṽ
− ρv

ε+ ρv

)
.

From these expressions it is clear that the naive CR estimator is unbiased, while the naive LR esti-

mator is biased. Further, the expressions reveal that listing-side randomization creates interference

across listings.



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
23

In the second case, when λ→∞ with τ fixed, if we apply Proposition 3, we obtain:

Q00(∞|aC , aL)→τ(1− aC)(1− aL)ρ;

Q10(∞|aC , aL)→τaC(1− aL)ρ;

Q01(∞|aC , aL)→τ · (1− aC)v

(1− aC)v+ aC ṽ
aLρ;

Q11(∞|aC , aL)→τ · aC ṽ

(1− aC)v+ aC ṽ
aLρ.

(25)

In this limit, GTE→ 0. From these expressions it is clear that the naive CR estimator is biased,

while the naive LR estimator is unbiased. Further, these expressions also reveal that customer-side

randomization creates interference across customers.

Interestingly, these expressions highlight a remarkable symmetry. As expected, in the limit of

a highly demand-constrained market, customers choose among listings; thus there is competition

for customers among listings, and this is the source of potential interference in LR designs. The

expressions reveal that in the limit of a highly supply-constrained market, it is as if listings choose

among customers; thus there is competition among customers, and this is the source of potential

interference in CR designs. Indeed, the expressions for Q01 and Q11 in (25) take the form of a

multinomial logit choice model of listings for customers. We believe this type of symmetry provides

important insight into the nature of experimental design in two-sided markets, and in particular

the roots of the interference typically observed in such settings.

6.1.4. Sign of the bias in CR and LR estimates. Theorems 3 and 4 state that the LR

estimate is biased in the demand constrained limit and the CR estimate is biased in the supply

constrained limit, but make no claim as to whether the estimators overestimate or underestimate

the GTE. In general, we cannot provide guarantees for the sign of the bias, as it depends on the

distribution of listings, the rates at which listing replenish, and the lift on the individual αγ(θ) and

vγ(θ) induced by the interventions. However, for a broad class of interventions, we can show that

the LR estimate overestimates in the demand constrained limit and CR overestimates in the supply

constrained limit. In such cases where we know the bias to be positive, CR and LR experiments

can be used to bound the size of the GTE.

We call an intervention positive if α̃γ(θ)ṽγ(θ)>αγ(θ)vγ(θ) for all γ and θ. Such an intervention

can be viewed as an improvement on the platform for all customer and listing type pairs, since for

each pair at least one of the customer’s consideration probability or utility for the listing type must

increase. Note that this class of interventions is broad enough to allow for heterogeneous treatment

effects across different (γ, θ) pairs.8

For positive interventions, straightforward applications of Propositions 2 and 3 show that ĜTE
LR

overestimates the GTE in the demand constraint limit and ĜTE
CR

overestimates the GTE in the

8 A symmetric analysis can be applied for “negative” interventions, where α̃γ(θ)ṽγ(θ)< αγ(θ)vγ(θ) for all γ and θ;
though, of course, interventions known to be negative in advance are less likely to be desirable from the platform’s
perspective.
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supply constrained limit. The result follows from the fact that in a customer-side (resp., listing-

side) experiment in a supply constrained (resp., demand-constrained) setting, the individuals in

the treatment group face less competition than they would in the global treatment setting, whereas

the individuals in the control group face more competition than in the global control setting.

Proposition 4. Suppose that the treatment is positive, i.e., α̃γ(θ)ṽγ(θ)>αγ(θ)vγ(θ) for all γ, θ.

Then we have the following.

1. LR bias when demand constrained: Consider a sequence of systems where λ/τ → 0. For any

0<aL < 1, we have lim ĜTE
LR

(∞|aC)/λ−GTE/λ> 0.

2. CR bias when supply constrained: Consider a sequence of systems where λ/τ →∞. For any

0<aC < 1, we have lim ĜTE
CR

(∞|aC)/τ −GTE/τ > 0.

Further, we find through simulations that CR and LR overestimate the GTE with positive treatments

in intermediate ranges of market balance, for all parameter regimes that we study in the examples

in this section (see Figure 3 as well as Appendix C). We do find in some cases that the TSRI

estimators underestimate the GTE, and so, since we plot bias on a log scale, we report the absolute

value of the bias.

6.2. Discussion: Violation of SUTVA

Our results on the bias of the naive CR and LR experiments can be interpreted through the lens

of the classical potential outcomes model. An important result from this literature is that when

the stable unit treatment value assumption (SUTVA) holds, then naive estimators of the sort

we consider will be unbiased for the true treatment effect. SUTVA requires that the treatment

condition of units other than a given customer or listing should not influence the potential outcomes

of that given customer or listing. The discussion above illustrates that in the limit where λ→ 0,

there is no interference across customers in the CR design; this is why the naive CR estimator is

unbiased. Similarly, in the limit where λ→∞, there is no interference across listings in the LR

design; this is why the naive LR estimator is unbiased. On the other hand, the cases where each

estimator is biased involve interference across experimental units.

6.3. Estimation with the TSR design

The preceding sections reveal that each of the naive LR and CR estimators has its virtues, depending

on market balance conditions. In this section, we explore whether we can develop TSR designs and

estimators in which aC and aL are chosen as a function of λ/τ , to obtain the beneficial asymptotic

performance of the naive CR estimator in the highly-demand constrained regime, as well as the LR

estimator in the highly supply-constrained regime. We also expect that an appropriate interpolation

should yield a bias for TSR that is comparable to, if not lower than, CR and LR in intermediate

regimes of market balance.
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Recall the naive TSRN estimator defined in (21), and in particular the steady-state version of

this estimator. Suppose the platform observes λ/τ ; note that this is reasonable from a practical

standpoint as this is a measure of market imbalance involving only the overall arrival rate of

customers and the average rate at which listings become available. For example, consider the

following heuristic choices of aC and aL for the TSR design, for some fixed values of aC and aL:

aC(λ/τ) =
(
1− e−λ/τ

)
+ aCe

−λ/τ ; aL(λ/τ) = aL
(
1− e−λ/τ

)
+ e−λ/τ . (26)

Then as λ/τ → 0, we have aC(λ/τ)→ aC and aL(λ/τ)→ 1, while as λ/τ →∞ we have aC(λ/τ)→ 1

and aL(λ/τ)→ aL.9. With these choices, it follows that in the highly demand-constrained limit

(λ/τ → 0), the TSRN estimator becomes equivalent to the naive CR estimator, while in the highly

supply-constrained limit (λ/τ →∞), the TSRN estimator becomes equivalent to the naive LR

estimator. In particular, using Propositions 2 and 3, it is straightforward to show that the steady-

state naive TSRN estimator is unbiased in both limits; we state this as the following theorem, and

omit the proof.

Corollary 1. For each λ/τ , consider the TSR design with aC and aL defined as in (26).

Consider a sequence of systems where either λ/τ → 0, or λ/τ →∞. Then in either limit:

ĜTE
TSRN

(∞|aC(λ/τ), aL(λ/τ))−GTE→ 0.

We are also led to ask whether we can improve upon the naive TSRN estimator when the market

is moderately balanced. Note that the TSRN estimator does not explicitly correct for either the

fact that there is interference across listings, or the fact that there is interference across customers.

We now suggest a heuristic for correcting these effects, which we use to define two improved

interpolating TSR estimators; these estimators are the fourth and fifth estimators appearing in

Figure 2, which we call “TSR-Improved (1)” and “TSR-Improved (2)”. These effects are visualized

in Figure 1.

First, abusing notation, let ĜTE
CR

(T |aC , aL) denote the estimator in (19) using the same terms

from a TSR design, and dividing through by aL on both terms as normalization. Similarly abusing

notation, let ĜTE
LR

(T |aC , aL) denote the estimator in (20) using the same terms from a TSR design,

and dividing through by aC on both terms as normalization. Motivated by these naive estimators,

we explicitly consider an interpolation between the LR and CR estimators of the form:

βĜTE
CR

(T |aC , aL) + (1−β)ĜTE
LR

(T |aC , aL) (27)

= β

(
Q11(T |aC , aL)

aCaL
− Q01(T |aC , aL)

(1− aC)aL

)
+ (1−β)

(
Q11(T |aC , aL)

aCaL
− Q10(T |aC , aL)

aC(1− aL)

)
.

9 Our choice of exponent here is somewhat arbitrary; the same analysis follows even if we replace e−λ/τ with e−cλ/τ

for any value of c > 0.
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Figure 1 Illustration of TSR design and competition effects. Intervention only applies when treatment

customers view treatment listings (green cell). Suppose that the intervention makes the listing more attractive.

Now, consider the quantity Q00(T |aC , aL)/((1− aC)(1− aL))−Q10(T |aC , aL)/((1− aC)aL) in a

TSR design. This is the (appropriately normalized) difference between the rate at which control

customers book control listings, and the rate at which treatment customers book control listings.

Note that both treatment and control customers have the same utility for control listings, due to

the TSR design, but potentially different utilities for treatment listings. Hence, the difference in

steady-state rates of booking among control and treatment customers on control listings must be

driven by the fact that treatment customers substitute bookings from control listings to treatment

listings (or vice versa). This difference captures the “cannibalization” effect (i.e., interference) that

was found in LR designs in the demand-constrained regime.

Thus motivated, we can think of this difference as a “correction term” for the LR design from

our interpolating TSR estimator in (27). Using a symmetric argument we can also consider an

appropriately weighted correction term associated to interference across customers in a CR design:

Q00(T |aC , aL)/((1−aL)(1−aC))−Q01(T |aC , aL)/((1−aC)aL). (Similar estimates were also studied

in Bajari et al. (2019); see the related work for further details on this work.) See Figure 1 for an

illustration of these competition effect estimates.

We can weight these correction terms with different factors k > 0 to control their impact. In

addition, we can choose these weights in a market-balance-dependent fashion, based on the direction

of market balance in which we have seen that the respective interference grows. Combining these

insights, for β ∈ (0,1) and k > 0 we define a class of improved TSR estimators given by:

ĜTE
TSRI-k

(T |aC , aL) =

β

[
Q11(T |aC , aL)

aCaL
− Q01(T |aC , aL)

(1− aC)aL
− k(1−β)

(
Q00(T |aC , aL)

(1− aC)(1− aL)
− Q01(T |aC , aL)

(1− aC)aL

)]
+ (1−β)

[
Q11(T |aC , aL)

aCaL
− Q10(T |aC , aL)

aC(1− aL)
− kβ

(
Q00(T |aC , aL)

(1− aC)(1− aL)
− Q10(T |aC , aL)

aC(1− aL)

)]
. (28)

Given market balance λ/τ , we set β = e−λ/τ , and we choose aC and aL as in (26).
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In the limit where λ/τ → 0, note that ĜTE
TSRI−k

(T |aC(λ/τ), aL(λ/τ)) approaches ĜTE
CR

(T |aC)

as expected. Similarly, in the limit where λ/τ →∞, ĜTE
TSRI-k

(T |aC(λ/τ), aL(λ/τ)) approaches

ĜTE
LR

(T |aL). It is straightforward to show that ĜTE
TSRI-k

for any k is unbiased in both the highly

demand-constrained and highly supply-constrained regimes, since the correction terms play no role

in the limits.

For moderate values of market balance, both the cannibalization correction terms kick in, which

lead to improvements over naive TSRN as seen in Figure 2. To simplify the exposition, we only

consider two factors k = 1,2; we see that TSRI-1 has lower bias than the naive TSR, but TSRI-2,

which has a higher weight in front of the correction terms, has a lower bias than both naive TSRN

and TSRI-1, as well as the naive CR and LR estimators. In Appendix C, we explore the robustness

of our results to other model primitives, specifically scenarios with smaller or larger utilities and

the introduction of heterogeneity on one or both sides of the market. We find that the bias of CR

and LR estimators can increase with the introduction of these factors, but remarkably the bias

of the TSRI estimators remains low across the ranges that we study. We emphasize the fact that

the three TSR estimators presented here are examples to illustrate the potential for bias reduction

using this new design. There is of course a much broader range of both TSR designs and estimators;

some of these may offer even better performance.

We conclude this section with two additional observations. First, note that all our analysis in this

section has been carried out in the mean field steady state; in particular, Figure 2 shows the bias

of the estimators in steady state. For practical implementation, it is also important to consider the

relative bias in the candidate estimators in the transient system, since experiments are typically

run for relatively short time horizons. For discussion of the transient behavior for a finite time

horizon, see Appendix D. Second, in the next section, we discuss variance of the estimators we

have studied. There we find that the TSR estimators with the lowest bias also have the highest

variance; in other words, there is a bias-variance tradeoff.

7. Bias-variance tradeoff of estimators

Our mean field model is deterministic, so it does not allow us to study the variance of the different

estimators. In practice, however, markets consist of finitely many listings and experiments are run

for finite time horizon T , and so the variance of any estimator will be nonzero.10 In particular, the

variance of estimators becomes an important consideration alongside bias, particularly in choosing

between multiple estimators with similar bias. The variance of the TSR estimators is especially

10 We note that even if the system only consists of a finite number of listings N , as T →∞ the standard error of the
various estimators proposed in this paper will converge to zero. However, for finite T , this is not the case; since A/B
tests are always run to a finite horizon T , this nonzero variance will impact the accuracy of any estimates obtained.
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Figure 2 Difference between estimator and GTE in steady state. We consider variation in λ/τ by fixing τ = 1

and varying λ; analogous results are obtained if λ is fixed and τ is varied. We consider a market with

homogeneous customers and homogeneous listings, pre-treatment. We set ε= 1 and α= 0.5. In the CR design,

aC = 0.5. In the LR design, aL = 0.5. Customers have utility v= 0.315 for control listings and ṽ= 0.394 for

treatment listings, which corresponds to a steady state booking probability of 20 percent in global control and 23

percent global treatment when λ= τ .

important, given the earlier discussion that many heuristics that platforms use to minimize bias

do so at the cost of increased variance, leading to under-powered experiments (see Section 2).

With this background as motivation, in this section we provide a preliminary yet suggestive sim-

ulation study of variance. The simulations highlight two important considerations that a platform

must take into account when designing and analyzing an experiment. First, similar to the results

from Section 6 on bias, we find that the estimator with the lowest variance depends on market

balance. Second, we see a bias-variance tradeoff between the CR, LR and TSR estimators, with the

TSR estimators offering bias improvements at the cost of an increase in variance. We emphasize

the point that whether a platform should care more about bias or variance depends on the size of

the platform (number of listings N) and the time horizon on which the experiment is run. The bias

of the experiment is relatively unaffected by changes in these two factors, but of course variance

decreases in the size of the market and the length of the time horizon. Thus these two factors

dictate whether bias or variance contribute more to the overall RMSE.

Full details of the simulation environment and parameters are in Appendix C, which we briefly

summarize here. We simulate marketplace experiments with varying market parameters for a finite

system with a number of listings N = 5000 and fixed time horizon T . For each run of the simulation,

we fix an experiment design (e.g., CR, LR, TSR) and simulate customer arrivals and booking

decisions until time T . System evolution is simulated according to the continuous time Markov chain

specified in (3)-(5). We calculate the estimator corresponding to the experiment design, defined

in (19)-(21) and (28) (for k = 1,2) for the time interval [T0, T ], where T0 is chosen to eliminate
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Figure 3 (Homogeneous listings and customers.) Top Left: Bias of each estimator. Top right: Standard error of

estimates. Bottom: RMSE of the estimates. Statistics are normalized by GTE. All statistics are calculated across

500 runs, with bootstrapped 95 percentile confidence intervals provided for each statistic. We consider a setting

with homogeneous listings and customers, with the same utilities as defined in Figure 2. In the CR design,

aC = 0.5. In the LR design, aL = 0.5. Simulation parameters are defined in Appendix C.

the transient burn-in period. We then simulate multiple runs and compare the bias and standard

error of the estimators across runs. Note that we report the true standard errors, calculated across

simulation runs. For discussion on the estimation of standard errors, see Section 9.

Figure 3 shows simulations for a homogeneous system with only one customer and one listing

type, with the same parameters as the mean field numerics presented in Figure 2. Note that the bias

of the estimators in these large market simulations echo the qualitative insights about bias obtained

from the mean field model. Similar findings are obtained in more general scenarios, cf. Appendix

C, where we investigate the effect of heterogeneity in the marketplace.

These simulations point to a bias variance-tradeoff between TSR estimators and the naive CR

and LR estimators, as well as between the three TSR estimators themselves. The TSR estimators,

as discussed earlier, offer benefits over the naive CR and LR estimators with respect to bias, but

they do so at the cost of an increase in variance. Moreover, among the three TSR estimators that

we explore, those with lower bias also have higher variance. The naive TSRN estimator has similar

variance with the lowest of CR and LR, but the bias of this estimator is also similar to the lowest

bias of CR and LR. On the other hand, TSRI-2 shows a substantial improvement in bias over both
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CR and LR for several market conditions, but this estimator also has the largest variance among

all five estimators, especially in the regime of intermediate market balance (cf. Appendix C).

Further, the minimum variance estimator depends on market conditions. For example, in a

demand-constrained market with λ/τ = 0.1, ĜTE
CR

has the lowest standard error, whereas in a

supply-constrained market with λ/τ = 10, ĜTE
CR

has the highest standard error.

We conclude this section by highlighting the potential for the class of TSR experiments, which

open up a large class of both designs and estimators. Among the three estimators we explore, we

see that there is a TSR estimator with low bias and another TSR estimator with low variance. It

is possible that, with further optimization of these designs and estimators, one can devise a new

estimator that optimizes this bias-variance tradeoff.

8. Comparison with cluster-randomized experiments

In this section we compare the TSR approach to existing approaches to reduce bias in marketplace

experiments. One such approach is to run a cluster-randomized experiment, which changes the

unit of randomization in order to reduce interference effects across units. The typical approach

is to divide the marketplace into clusters, such as geographical regions, such that there is less

interaction of market participants across different clusters. All participants within a cluster receive

the same treatment condition. The platform then estimates the GTE by comparing the outcomes

within the treatment clusters versus the outcomes in the control clusters. It is important to note

that many markets and social networks are highly connected and it is not possible to avoid all

interference across clusters; see, e.g., Holtz et al. (2020) for an example in the context of Airbnb.

Thus cluster-randomized experiments will reduce but not fully remove the bias.

To compare the performance of the cluster-randomized and TSR approaches, we use our existing

model to define a regime that gives the best-case performance for cluster-randomized experiments,

where there are tightly clustered preferences in the marketplace and the platform knows ex-ante

the true clusters (without having to learn them).

The simulations suggest that cluster-randomized estimators offer substantial bias reductions over

when the market is tightly clustered, but these improvements diminish if the market becomes

more interconnected. The TSR estimators, however, offer bias reductions in both clustered and

interconnected markets and, in interconnected markets, are less biased than the cluster-randomized

estimator. In our simulations, the variance of the cluster-randomized estimator is lower than that

of TSRI-2 in our example, although the variance of the cluster-randomized estimator will likely

change if we deviate from this best-case scenario with perfect knowledge of the clusters, identical

listings within clusters, and uniform treatment effects across different clusters. Hence, while our

model for market clusters is stylized, we believe our results suggest that TSR designs can be a

useful alternative to cluster-randomized experiments in interconnected markets.
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8.1. Market setup for cluster randomization

We consider the case where clusters are defined on the listing side, so that the cluster-randomized

experiment is expected to improve upon a listing-randomized experiment.11 To induce a clustered

structure, we model a setting with two customer types and two listing types, where each type of

customer prefers a different type of listing. Formally, there are customer types {γ1, γ2} and listing

types {θ1, θ2}. All customers consider all listings (αγ(θ) = 1 for all γ, θ) but customers have different

utilities for different listings.12 The global control utilities vγ(θ) have the following form:

θ1 θ2
γ1 x y
γ2 y x

where x≥ y ≥ 0. Note that if y = 0, then the market can be perfectly decomposed into two sub-

markets, where customers of type γ1 (resp., γ2) only book listings of type θ1 (resp., θ2). If y = x,

then each customer prefers both listings equally. Thus we can interpret the ratio y/x as a measure

of how equally a customer prefers both products, where intuitively the market is tightly clustered

when y/x is small. We call y/x the preference ratio.

The platform then runs a cluster randomized experiment where it first assigns listings to clusters

and then randomizes entire clusters to either treatment or control. In practice, the platform must

learn how to create the clusters, likely through observational data in the global control setting,13

but in these simulations, we assume that the platform observes the cluster structure perfectly. The

platform assigns all θ1 listings to one cluster and θ2 listings to another, and runs a completely

randomized design on the clusters, assigning one of the clusters to treatment and one to control.

For simplicity, assume that the intervention has a multiplicative lift δ > 1 on all customer-listing

pairs, so that the treatment utilities satisfy ṽγ(θ) = δvγ(θ).

The cluster-randomized estimator ĜTE
Cluster

, with clusters defined on the listing side, compares

the (scaled) rate of bookings of listings in treatment clusters to the rate of bookings of listings in

control clusters. Formally, in the mean field setting, once the clusters are randomized, let Z denote

the mass of listings assigned to a treatment cluster. Then

ĜTE
Cluster

(T |Z) =
Q11(T |1,Z)

Z
− Q10(T |1,Z)

1−Z
. (29)

We can similarly define an analogous estimator in the finite model.

The full set of parameters is as follows. The market has an equal number of listings of both types,

so that m(N)(θ1) =m(N)(θ2) = 0.5, and the same arrival rate for both customers types (λ(N)
γ1

= λ(N)
γ2

).

We set x= 0.5 and vary y ∈ [0,1]. We set δ= 1.3. We fix τ = 1 and consider λ∈ {0.1,1,10}.
11 Because we analyze a model where customers are short-lived while listings remain on the platform, it is likely that
the platform has more information on the listings, and is better able to learn clusters on the listing side.

12 Alternatively, we can induce a clustered structure by modifying the consideration probabilities αγ(θ). Both
approaches of modifying the αγ(θ) and modifying the vγ(θ) are equivalent in the mean field model.

13 See Holtz et al. (2020) in the context of marketplaces and Ugander et al. (2013) in the context of social networks.
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Figure 4 Simulations of cluster-randomized estimator and TSR estimators as preference ratio y/x varies.

Relative demand is fixed at λ/τ = 1. We fix x= 0.5 and vary y. Bootstrapped 95 percentile confidence intervals

are provided for each statistic.

8.2. Results

Figure 4 shows how the performance of the estimators change when we vary the preference ratio

(at a fixed market balance). We choose TSRI-2 as a representative estimator for the TSR approach;

see Figure 5 in Appendix B for a comparison with all estimators.

We see a clear takeaway that, perhaps unsurprisingly, the cluster randomized estimator offer sub-

stantial bias improvements when the market is tightly clustered (i.e., a customer strongly prefers

one type of item over another) but offer little reduction in bias when the market is more intercon-

nected. In particular, the cluster-randomized estimator outperforms the TSR estimators when the

market is tightly clustered, while the TSR estimators outperform the cluster-randomized estimator

when the market is more connected.

The standard error changes little across the preference ratios, with the standard error of the

cluster-randomized estimate lower than that of TSRI-2, although the variance of the cluster-

randomized estimator will likely change if we deviate from this best-case scenario with perfect

knowledge of the clusters, identical listings within clusters, and uniform treatment effects across

clusters. In our scenario, the cluster-randomized estimator has lower RMSE for tightly clustered

markets and higher otherwise.



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
33

9. Conclusion

This paper proposes a general mean field framework to study the dynamics of inventory bookings

in two-sided platforms, and we leverage this framework to study the design and analysis of a num-

ber of different experimental designs and estimators. We study both commonly used designs and

estimators (CR, LR), and also introduce a family of more general two-sided randomization designs

and estimators (TSR). Our work sheds light on the market conditions in which each approach to

estimation performs best, based on the relative supply and demand balance in the marketplace.

For bias minimization, we suggest two directions for future work. The first is further optimiza-

tion of the TSR design as a standalone experiment design. We have proposed three natural TSR

estimators, but the space of both designs and estimators is much richer and it is worth asking

which are optimal with respect to bias and variance, as well as how this answer may change with

differing market conditions. The second direction is to develop the TSR design as a method to

debias one-sided experiments. The design allows us to measure competition effects between cus-

tomers and between listings; this observation suggests that these measurements can be used to

approximately debias existing CR and LR experiments, providing another route for platforms to

utilize two-sided randomization designs.

To make technical progress in this paper, we employed several simplifying assumptions on the

choice model and booking behavior. We believe that our core insight of market balance mediating

competition effects, and thus affecting the resulting bias in an experiment, extends to other settings

as well. We hypothesize, however, that some of our results are more robust to modeling choices than

others. For example, the result that the CR estimator is unbiased in the demand constrained limit

depends only on the fact that booked listings are replenished in between customer arrivals, and

likely extends to any reasonable choice model. On the other hand, the result that the absolute bias

of the LR estimator approaches 0 in the supply constrained limit may be more sensitive to different

choice models, and in particular how the customer weighs options on the platform compared to

the outside option. In this supply constrained limit, we conjecture that the relative performance of

the two experiment types still holds even in modified settings; that is, the LR estimator has lower

bias than the CR bias. Further, we believe that the approach of using TSR to observe competition

effects and heuristically debias estimators also extends beyond our model.

Another practical consideration for platforms is that not all experiment designs are suitable for all

types of interventions. In this paper, we have largely focused on interventions such as user interface

changes that change how an individual customer perceives an individual listing. There are also

other interventions that operate between subsets of customers or subsets of listings. For example,

a modification in the ranking algorithm over the listings changes operates not on an individual

customer-listing pair, but rather changes how a customer interacts with a subset of listings. This
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intervention is more conducive to a CR experiment than an LR or TSR experiment. Beyond these

feasibility constraints, it remains an open question whether certain types of experiments lead to

lower bias in different classes of interventions.

Finally, we emphasize the importance of inference in these settings, which we do not study in

this paper. In practice, standard errors are also estimated “naively”: they are typically computed

assuming independence of observations. However, because of interference, observations are clearly

not independent. In these settings, how biased might the standard error estimates be? How can

experimenters derive valid confidence intervals in these settings? Such questions are critical for any

platforms controlling the false positive and false negative results arising from their experiments.
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Appendix A: Proofs

Proof of Proposition 1. For each θ ∈Θ, define fθ(s) to be the right hand side of (8):

fθ(s) = (ρ(θ)− s(θ))τ(θ)−λ
∑
γ

φγpγ(θ|s).

Let f denote the |Θ|-dimensional vector-valued function where each component is defined by fθ. For a fixed

c > 0 define the set I = (−c,∞) of times t for which we wish to show the solution is unique. We require that

st ∈ S for all t∈ I and s0 = ŝ.

By the Picard-Lindelöf theorem Edwards et al. (2014), if f(s) is Lipschitz continuous for all s ∈ S, then

there exists a unique solution {st : t∈ I} on the entire time interval I with the desired initial condition. We

will show that each component fθ(s) satisfies the Lipschitz condition, which then implies that the vector-

valued function f(s) satisfies the condition.

Consider the partial derivatives of fθ(s) with respect to each s(θ′):

∂fθ(s)

∂s(θ̂)
=

−λ
∑

γ φγ ·
(εγ+

∑
θ′ αγ(θ

′)s(θ′)vγ(θ
′))·αγ(θ)vγ(θ)−αγ(θ)2s(θ)v2γ(θ)

(εγ+
∑
θ′ αγ(θ

′)s(θ′)vγ(θ′))2
− τ(θ), θ̂= θ;

λ
∑

γ
φγ · αγ(θ)

2s(θ)vγ(θ)s(θ̂)vγ(θ̂)

(εγ+
∑
θ′ αγ(θ

′)s(θ′)vγ(θ′))2
, θ̂ 6= θ.

The partial derivatives of fθ(s) are continuous and (since εγ > 0 for all γ) are bounded on S, and so fθ(s) is

Lipschitz continuous on S. It follows then that f(s) is Lipschitz on S and so there exists a unique solution

{st : t≥ 0} to (8) in S such that s0 = ŝ. �

Proof of Theorem 1. Let Y = {y : y(θ)≤ logρ(θ)}. For y ∈Y, define ωy(θ) = ey(θ); note that ωy ∈ S. For

y ∈Y, we define V (y) =W (ωy), i.e.:

V (y) = λ
∑
γ

[
φγ log(εγ +

∑
θ

αγ(θ)ey(θ)vγ(θ))

]
−
∑
θ

τ(θ)ρ(θ)y(θ) +
∑
θ

τ(θ)ey(θ). (30)

We prove the theorem in a sequence of steps.

Step 1: V (y) is strictly convex for y ∈ Y. The first term is the log-sum-exp function, which is strictly

convex (recall εγ > 0 for all γ); the second term is linear; and the last term is strictly convex.

Step 2: V (y) possesses a unique minimum y∗ on Y. Note that as y(θ)→−∞, we have V (y)→∞ (recall

that εγ > 0 for all γ). Therefore V must possess a minimizer on Y; since V is strictly convex, this minimizer

is unique.

Step 3: Define s∗ = ωy∗ , i.e., s∗(θ) = ey
∗(θ). Then s∗ is the unique solution to (10)-(11). Since V (y) =

W (ωy), and the mapping y 7→ ωy maps Y to {s : 0 < s(θ) ≤ ρ(θ)} ⊂ S, it suffices to show that (10)-(11)

cannot be minimized at any s such that s(θ) = 0 for some s(θ). To see this, note that since V (y)→∞ as

y(θ)→−∞, it follows that W (s)→∞ as s(θ)→ 0. It follows that s∗ is the unique solution to (10)-(11).

Step 4: y∗ lies in the interior of Y, and thus s∗ lies in the interior of S. We have already shown that

s∗(θ) > 0 for all θ. It is straightforward to check that if y(θ) = logρ(θ), the derivative of V (y) becomes

positive, because the derivative of the first term of V (y) with respect to y(θ) is always positive, and the

derivatives of the last two terms cancel when y(θ) = logρ(θ). Therefore we must have y∗(θ)< ρ(θ) for all θ,

which suffices to establish the claim.



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
A2

For the next step, fix an initial condition s0 ∈ S with s0(θ) > 0 for all θ, and let st be the resulting

trajectory of (8). We first observe that the right hand side of (8) is equal to τ(θ)ρ(θ) when s(θ) = 0, and this

is positive; therefore, we must have st(θ)> 0 for all t≥ 0. Define yt(θ) = log st(θ), and let yt = (yt(θ), θ ∈Θ).

Step 5: V is a Lyapunov function for {yt : t≥ 0}. Further, y∗ is the unique limit point of {yt : t≥ 0}, and

it is globally asymptotically stable over all y0 ∈Y. We consider the function V (yt) as a function of t. By the

chain rule, we have:

d

dt
V (yt) =

∑
θ

∂V (yt)

∂y(θ)
· dyt(θ)
dst(θ)

· dst(θ)
dt

=
∑
θ

(∑
γ

(
λφγαγ(θ)eyt(θ)vγ(θ)

εγ +
∑

θ′ αγ(θ′)eyt(θ′)vγ(θ′)

)
− τ(θ)ρ(θ) + τ(θ)eyt(θ)

)
· 1

st(θ)

·

(∑
γ

(
−λφγαγ(θ)eyt(θ)vγ(θ)

εγ +
∑

θ′ αγ(θ′)eyt(θ′)vγ(θ′)

)
+ τ(θ)ρ(θ)− τ(θ)eyt(θ)

)

=−
∑
θ

1

st(θ)

(∑
γ

(
λφγαγ(θ)eyt(θ)vγ(θ)

εγ +
∑

θ′ αγ(θ′)eyt(θ′)vγ(θ′)

)
− τ(θ)ρ(θ) + τ(θ)eyt(θ)

)2

=−
∑
θ

1

st(θ)

(
∂V (yt)

∂y(θ)

)2

.

It follows that dV (yt)/dt < 0 whenever yt 6= y∗, and dV (yt)/dt= 0 if and only if yt = y∗. V is clearly positive

definite, since it is strictly convex; and as shown, it is minimized at y∗. Thus it is a Lyapunov function for

yt, as required Boyd (2008).

Step 6: s∗ is the unique limit point of {st : t≥ 0}, and it is globally asymptotically stable over all s0 ∈ S.

This follows from the preceding observation, as long as s0 satisfies s0(θ)> 0 for all θ. If s0(θ) = 0 for some θ,

then again because the right hand side of (8) is positive when st(θ) = 0, we must have st(θ)≥ 0 for all t > 0.

In this case we need only define yt(θ) = log st(θ) for t > 0, the desired result follows from the preceding step.

This completes the proof of the theorem. �

Proof of Theorem 2. Kurtz’s theorem (see Kurtz (1970) and Darling (2002)) provides conditions under

which a sequence of Markov jump processes converges to the mean field (or fluid) limit. In our proof, we

follow the development of Darling (2002) to establish the claimed convergence in the theorem.

First we define some necessary notation. Let T
(N)
i denote the time of the i’th jump; in the proof we

suppress the index (N) and instead write Ti. Let

µ(N)(y) = E[Y
(N)
Ti+1
−Y (N)

Ti
|Y (N)

Ti+1
= y]

and

Σ(N)(y) = Var(Y
(N)
Ti+1
−Y (N)

Ti
|Y (N)

Ti+1
= y)

denote the mean and covariance matrix of the increments. Let c(N)(y) be the rate function, i.e., Ti+1−Ti ∼

exp(c(N)(y)) if Y
(N)
Ti

= y. Define

b(N)(y) = c(N)(y)µ(N)(y).
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Note that for each N we have IN ⊆ S, where IN is the state space of Y
(N)
t (cf. (??)) and S is the state

space of the mean field ODE (cf. (6)).

Following the presentation of Kurtz’ theorem in Darling (2002), the desired result follows if we establish

the following conditions.

1. Convergence of initial conditions. For all δ > 0, there exists κ1(δ) such that for all N ,

P[‖Y (N)
0 − ŝ‖> δ]≤ κ1(δ)/N, (31)

where Y
(N)
0 (θ) denotes the initial condition of the chain. (Recall from the theorem statement that ŝ is

the initial condition of the mean field ODE.)

2. Convergence of mean dynamics. There exists a Lipschitz vector field b : S →S such that

sup
y∈IN

‖b(N)(y)− b(y)‖→ 0. (32)

3. Convergence of noise to zero. There exists κ2, κ3 such that the following two conditions hold:

sup
y∈IN

c(N)(y)≤ κ2N (33)

sup
y∈IN

Trace[Σ(N)(y)] + ‖µ(N)(y)‖2 ≤ κ3N
−2. (34)

Once we show that (31)-(34) are satisfied, Theorem 2 follows from an application of Kurtz’s theorem to

this setting.

We assume without loss of generality for the remainder of the proof that there exists a constant C such

that for all γ the customer arrival rates satisfy

λ(N)
γ

N
≤Cλγ .

Step 1: Find κ1(δ) such that (31) holds. Note that there is no randomness in our initial conditions and so

the probability on the left hand side of (31) is either 0 or 1.

For δ > 0, choose κ1(δ) such that if N >κ1(δ), then ‖Y (N)
0 − ŝ‖< δ. Then for N ≤ κ1(δ), the right hand side

of (31) is greater than or equal to 1, and so the condition trivially holds. On the other hand, for N >κ1(δ),

the left hand side of (31) is zero, and so again the condition trivially holds.

Step 2: Find b such that (32) holds. Define b : S →S to be the right hand side of the ODE defined in (8),

so each component of b is given by

bθ(y) = (ρ(θ)− y(θ))τ(θ)−
∑
γ

λγpγ(θ|y), θ ∈Θ (35)

and

pγ(θ|y),
αγ(θ)vγ(θ)y(θ)

εγ +
∑

θ′ αγ(θ′)vγ(θ′)y(θ′)
. (36)

We have already shown in the proof of Proposition 1 that b is Lipschitz on S and so we need only to prove

convergence.

In the N ’th system, since increments are proportional to 1/N , we have

b
(N)
θ (y) = c(N)(s)µ

(N)
θ (s)

=
1

N

(
m(N)(θ)−Ny(θ)

)
τ(θ)− 1

N

∑
γ

λ(N)
γ r(N)

γ (θ|y)



Johari, Li, Liskovich, and Weintraub: Experimental Design in Two-Sided Platforms
A4

with

r(N)
γ (θ|y) = E

[
D(N)
γ (θ|y)vγ(θ)

ε
(N)
γ +

∑
θ′D

(N)
γ (θ′|y)vγ(θ′)

]
,

where we have overloaded notation to define D(N)
γ (θ|y)∼Binomial(Ny(θ), αγ(θ)).

Condition (32) follows from these definitions of b
(N)
θ and bθ once we show that

sup
y∈IN

|r(N)
γ (θ|y)− pγ(θ|y)| → 0 (37)

for all θ and γ.

We start with the following lemma.

Lemma 1. Fix nonnegative constants A,B, and ε, ε′ > 0. Then:∣∣∣∣ A

ε+A+B
− A

ε′+A+B

∣∣∣∣≤ A

εε′
· |ε− ε′|.

Proof of lemma. We have:

A

ε+A+B
− A

ε′+A+B
=

A(ε− ε′)
(ε+A+B)(ε′+A+B)

.

The proof follows since A,B ≥ 0 and ε, ε′ > 0. �

With this lemma in hand, define:

p(N)
γ (θ|y),

αγ(θ)vγ(θ)y(θ)

ε
(N)
γ /N +

∑
θ′ αγ(θ′)vγ(θ′)y(θ′)

.

Since ε(N)
γ /N → ε as N →∞, it follows from Lemma 1 that:

sup
y∈S
|p(N)
γ (θ|y)− pγ(θ|y)| → 0

as N →∞. Thus it suffices to show that:

sup
y∈IN

|r(N)
γ (θ|y)− p(N)

γ (θ|y)| → 0. (38)

We now introduce two further lemmas.

Lemma 2. Let X and Z be nonnegative random variables with means µX and µZ respectively. Fix ε > 0.

Then: ∣∣∣∣E[ X

ε+X +Z

]
− µX
ε+µX +µZ

∣∣∣∣≤ (ε+µZ)E[|X −µX |] +µXE[|Z −µZ |]
ε2

.

Proof of lemma. Observe that since ε > 0 and both X and Z are nonnegative, we have:

X

ε+X +Z
− µX
ε+µX +µZ

≤ (ε+µZ)(X −µX) +µX(µZ −Z)

ε2
.

By taking the expectation of the absolute value of both sides and using the triangle inequality, we have:

E
[∣∣∣∣ X

ε+X +Z
− µX
ε+µX +µZ

∣∣∣∣]≤ (ε+µZ)E[|X −µX |] +µXE[|µZ −Z)|]
ε2

.

Finally, the lemma follows since by Jensen’s inequality, the absolute value of the expectation is less than or

equal to the expectation of the absolute value. �
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Lemma 3. Fix B > 0 and p∈ [0,1]. For each y such that 0≤ y≤B and yN ∈Z, let X(N)(y) be a binomial

random variable with success probability p and number of trials Ny. Then:

sup
0≤y≤B:Ny∈Z

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]→ 0

as N →∞.

Proof of lemma. If p= 0 or p= 1, the result is immediate, so we assume without loss of generality that

0< p< 1.

Fix a> 0. Note that for all N and for all y≤ a we have:

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]≤ (1 + p)a. (39)

On the other hand, for y such that a< y≤B we have:

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]≤B ·E[∣∣∣∣X(N)(y)

Ny
− p
∣∣∣∣] . (40)

Fix δ such that 0< δ < 1. Using a standard Chernoff bound,

P
(∣∣∣∣X(N)(y)

Ny
− p
∣∣∣∣> δp)≤ 2e−δ

2pNy/3.

This concentration inequality implies that

E
[∣∣∣∣X(N)(y)

Ny
− p
∣∣∣∣]≤ (1− 2e−δ

2pNy/3
)
δp+ 2e−δ

2pNy/3p.

Thus combining with (40), we have:

sup
a<y≤B

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]≤ (1− 2e−δ
2pNa/3

)
δBp+ 2e−δ

2pNa/3Bp

and so

lim
N→∞

sup
y>a

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]≤ δBp. (41)

Since equations (39) and (41) hold for all a > 0 and 0< δ < 1, by taking a→ 0 and δ→ 0, we conclude

that

sup
0≤y≤B:Ny∈Z

E
[∣∣∣∣X(N)(y)

N
− py

∣∣∣∣]→ 0,

as required. �

We can combine the preceding two lemmas to complete the proof of this step, as follows. If we divide

through the numerator and denominator of r(N)
γ (θ|y) by N , and apply Lemma 2 and the triangle inequality,

we obtain:

|r(N)
γ (θ|y)− p(N)

γ (θ|y)| ≤
(ε(N)
γ /N +

∑
θ′ 6=θ αγ(θ′)vγ(θ′)y(θ′))

(ε
(N)
γ /N)2

· vγ(θ)E

[∣∣∣∣∣D(N)
γ (θ|y)

N
−αγ(θ)y(θ)

∣∣∣∣∣
]

+
vγ(θ)αγ(θ)y(θ)

(ε
(N)
γ /N)2

∑
θ′ 6=θ

vγ(θ′)E

[∣∣∣∣∣D(N)
γ (θ′|y)

N
−αγ(θ′)y(θ′)

∣∣∣∣∣
]
. (42)
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By applying Lemma 3, we have

sup
y∈IN

E

[∣∣∣∣∣D(N)
γ (θ|y)

N
−αγ(θ)y(θ)

∣∣∣∣∣
]
→ 0

for all θ. Since ε(N)
γ /N → εγ > 0 for all γ and αγ(θ), vγ(θ), and y(θ) are bounded for all γ and θ, we conclude

that

sup
y∈IN

|r(N)
γ (θ|y)− p(N)

γ (θ|y)| → 0

as N →∞, as required.

Step 3: Find κ2 such that (33) holds.

For each y ∈ IN the rate function is bounded by

c(N)(y) =
∑
θ

[(
m(N)(θ)−Ny(θ)

)
τ(θ) +

∑
γ

λ(N)
γ rγ(θ|y)

]
≤N · |Θ| · τ(θ) +N ·C

∑
γ

λγ

and so (33) is satisfied with κ2 = Θτ(θ) +C
∑

γ
λγ .

Step 4: Find κ3 such that (34) holds.

Here we rely on the fact that increments at any jump of Y
(N)
t (θ) are of size 1/N . Observe that:

Trace
[
Σ(N)(y)

]
+ ‖µ(N)

θ (y)‖2 =
∑
θ

E
[
(Y

(N)
Ti+1

(θ)−Y (N)
Ti

(θ))2|Y Ti = y
]
,

since the diagonal entries of Σ(N)(y) are just the variances of the increments at each jump. Now at any jump,

Y
(N)
Ti+1

(θ)− Y (N)
Ti

(θ) is at most 1/N . Thus the right hand side of the preceding expression is at most Θ/N2,

and so (34) holds with κ3 = Θ.

Thus conditions (31)-(34) hold, and Theorem 2 follows from Kurtz’s Theorem (cf. Theorem 2.8 in Darling

(2002)). �

Proof of Proposition 2. Throughout the proof, to simplify notation we fix aC , aL, and then suppress

them throughout the proof (e.g., instead of s∗(θ, j|aC , aL), we simply write s∗(θ, j)). We also assume for

simplicity that 0<aC < 1 and 0<aL < 1. This assumption can be made without loss of generality: if one or

more of these inequalities fails, we can reduce the type space by eliminating one or more of the treatment

conditions, and then replicate the argument below.

We recall from (18) that Qij(∞) is:

Qij(∞) = λ
∑
θ

∑
γ

φγ,ipγ,i(θ, j|s∗), (43)

where the choice probability is:

pγ,i(θ, j|s∗) =
αγ,i(θ, j)vγ,i(θ, j)s

∗(θ, j)

εγ,i +
∑

θ′

∑
j′=0,1αγ,i(θ

′, j′)vγ,i(θ′, j′)s∗(θ′, j′)
. (44)

We also make use of the following flow conservation condition cf. (9), which we rewrite here for the

experimental setting:

(ρ(θ, j)− s∗(θ, j))τν(θ) = λ
∑
γ

∑
i=0,1

φγ,ipγ,i(θ, j|s∗). (45)
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Step 1: We have s∗(θ, j)→ ρ(θ, j) for all θ, j. Divide both sides of (45) by τν(θ)s∗(θ, j). The left hand side

of the equation becomes ρ(θ, j)/s∗(θ, j)− 1. The right hand side of the equation becomes

λ

τν(θ)

∑
γ

∑
i=0,1

φγ,iαγ,i(θ, j)vγ,i(θ, j)

εγ,i +
∑

θ′

∑
j′=0,1αγ,i(θ

′, j′)vγ,i(θ′, j′)s∗(θ′, j′)
,

where we used the definition of the choice probability. Note that each term in the sum is bounded by one,

and there are finitely many terms, so the entire expression approaches zero as λ/τ → 0. Thus we have

ρ(θ, j)/s∗(θ, j)→ 1.

Step 2: For all γ, θ, i, j, we have pγ,i(θ, j|s∗)→ pγ,i(θ, j|ρ). This follows because the choice probabilities

pγ,i(θ, j|s∗) are continuous in s∗.

Step 3: Completing the proof. The limit in (22) follows immediately from Step 2 and the definition of

Qij(∞).

Proof of Theorem 3 Consider a sequence of systems where λ/τ → 0. Using the Proposition 2, we observe

that:

1

λ
GTE=

1

λ
Q11(∞|1,1)− 1

λ
Q00(∞|0,0)→

∑
θ

∑
γ

φγpγ,1(θ,1|ρ(1))−
∑
θ

∑
γ

φγpγ,0(θ,0|ρ(0)). (46)

We now use Proposition 2 to show that the steady-state naive CR estimator is unbiased in the limit as

λ/τ → 0, while the steady-state naive LR estimator remains biased. First we consider a CR experiment paired

with the naive CR estimator.

Using Proposition 2, it follows that:

1

λ
ĜTE

CR
(∞|aC)→ 1

aC

∑
θ

∑
γ

aCφγpγ,1(θ,1|ρ(1))− 1

1− aC

∑
θ

∑
γ

(1− aC)φγpγ,0(θ,1|ρ(1)).

Now note that ρ(θ,1|1) = ρ(θ) and ρ(θ,0|1) = 0 when aL = 1; similarly, ρ(θ,0|0) = ρ(θ), and ρ(θ,1|0) = 0 when

aL = 0. Thus, from the definition of the TSR design in (13)-(15) and the definition of the choice probability

in (7), the choice probability of a control customer for a treatment listing at ρ(1) is the same as the choice

probability of a control customer for a control listing at ρ(0):

pγ,0(θ,1|ρ(1)) = pγ,0(θ,0|ρ(0)).

These choice probabilities are the same because (1) all listings are in treatment in the CR design, with

the mass of each type θ equal to ρ(θ); and (2) control customers have the same choice model parameters for

these listings regardless of whether they are in treatment or control. Thus it follows that ĜTE
CR

(∞|aC)/λ−
GTE/λ→ 0 as λ/τ → 0, i.e., the steady-state naive CR estimator is asymptotically unbiased.

On the other hand, consider the steady-state naive LR estimator. Observe that:

1

λ
ĜTE

LR
(∞|aL)→ 1

aL

∑
θ

∑
γ

φγpγ,1(θ,1|ρ(aL))− 1

1− aL

∑
θ

∑
γ

φγpγ,1(θ,0|ρ(aL)).

Since ρ(aL) is different from both ρ(1) (all listings in treatment) and ρ(0), in general, this limit will not

be equivalent to the GTE; i.e., the naive LR estimator is asymptotically biased. Thus the difference between

ĜTE
LR

(∞|aL) and the GTE does not converge to zero in general as λ/τ → 0; i.e., the naive LR estimator is

biased.
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Proof of Proposition 3. We prove the proposition in a sequence of steps. We adopt the same conventions

as in the proof of Proposition 2: to simplify notation we fix aC , aL, and then suppress them throughout the

proof (e.g., instead of s∗(θ, j|aC , aL), we simply write s∗(θ, j)). We also again assume that 0< aC < 1 and

0<aL < 1; as before, this assumption is without loss of generality.

Step 1: We have s∗(θ, j)→ 0 for all θ, j. Suppose instead that for some θ, j pair, the limit inferior of

s∗(θ, j) is positive along the sequence of systems considered. Divide both sides of (45) by λ, and take the

limit inferior of each side. The left hand side approaches zero. On the other hand, the right hand side remains

positive (because φ, ε, α, and v are all positive). Thus we have a contradiction, establishing the claim.

Step 2: The following limit holds:

s∗(θ, j)

1/(λ/τ)
→ ρ(θ, j)ν(θ)∑

γ

∑
i=0,1 φγ,igγ,i(θ, j)

.

To prove this, divide both sides of (45) by λs∗(θ, j). The left hand side becomes

1

λ/τ
· (ρ(θ, j)− s∗(θ, j)) · ν(θ)

s∗(θ, j)
.

The left hand side will then have the same limit as:

ρ(θ, j)ν(θ)

λ/τ
· 1

s∗(θ, j)
.

The limit of the right hand side becomes
∑

γ

∑
i=0,1 φγ,igγ,i(θ, j), establishing the desired result.

Step 3: For all γ, θ, i, j, the following limit holds:

pγ,i(θ, j|s∗)
1/(λ/τ)

→ ρ(θ, j)ν(θ)gγ,i(θ, j)∑
γ′

∑
i′=0,1 φγ′,i′gγ′,i′(θ, j)

.

This follows by the definition of pγ,i, and the previous step.

Step 4: Completing the proof. Given the definition of Qij in (43), the preceding step completes the proof.

Appendix B: Cluster-randomized experiments

Figure 5 compares the performance of all estimators in a clustered market. We have the same simulation

set-up as Figure 4 and we add the CR and LR estimators, as well as TSRN and TSRI-1. We find that the bias

of TSRI-1 is more sensitive to changes in the strength of the clustering than TSRI-2, though not as sensitive

as the cluster randomized estimator, CR, LR, or TSRN. In particular, we see that TSRI-1 has larger bias

than the cluster randomized estimator for preference ratios y/x < 0.5, similar bias for y/x= 0.5, and lower

bias for y/x > 0.5. Further, TSRI-1 and the cluster randomized estimator have similar standard errors. The

simulations suggest that TSRI estimators can reduce bias in highly interconnected markets where cluster

randomized experiments cannot.
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Figure 5 Comparison of all estimators in a clustered market as the preference ratio y/x varies. Relative

demand is fixed at λ/τ = 1. We fix x= 0.5 and vary y. Bootstrapped 95 percentile confidence intervals are

provided for each statistic.

Figure 6 shows the bias of TSRI-2 and the cluster-randomized estimator when the preference ratio is fixed

at y/x= 0 and market balance λ/τ varies. In this setting with a highly clustered market, we find qualitatively

similar behavior that in the bias and standard error of the two estimators, though the magnitude of the

difference may differ. We omit the plot depicting the improvement over the LR in this figure since the bias

of the LR estimate approaches 0 as λ/τ →∞.

Appendix C: Numerics and simulations across different market parameters

In this section, we investigate bias, standard error, and RMSE of the estimators as we change market

parameters and introduce heterogeneity into the system. The purpose of this investigation is two-fold, to

verify that the results presented in the main text hold in heterogeneous systems and to analyze the relative

performance of the estimators in varying market conditions. We replicate the mean field and simulation

results shown in Figure 2 and Figure 3 in settings with different utilities, customer heterogeneity, listing

heterogeneity, and heterogeneous treatment effects. We also consider a modification of the consideration set

formation process where customers sample a fixed K number of listings into their consideration set.

Across our range of simulations, we see qualitatively similar behavior to our findings in the main text:

among the two one-sided experiments, the naive CR estimator has lower bias for small λ/τ and the naive LR

estimator has lower bias for large λ/τ , while the TSRI-1 and TSRI-2 estimators offer bias reductions at both
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Figure 6 Simulations of cluster-randomized estimator and TSR estimators as relative demand λ/τ varies.

Preference ratio is fixed at y/x= 0. We fix τ = 1 and vary λ. Note that at λ= 1, the LR bias is extremely small

(1.7 percent of the GTE) and so the bias of the TSR estimators, while higher than that of the LR estimator, is

less than 3 percent of the GTE. Bootstrapped 95 percentile confidence intervals are provided for each statistic.

extremes and moderate levels of market balance. The TSR estimators offer these bias reductions at the cost

of higher variance.

When we fix λ/τ and vary parameters regarding customer choice, we find that increasing booking proba-

bility and introducing heterogeneity can increase the bias of CR and LR estimators, but remarkably the bias

of the TSRI estimators remains low across the ranges that we study.

In each of these cases, TSRI-2 consistently has the lowest bias, though it also has the highest standard

error. TSRI-2 minimizes RMSE in these simulations, though we note that this depends on the size of the

market and the time horizon of the experiment. The size of the standard error decreases as the size of the

market increases and as the time horizon increases, and the bias remains constant. Thus in a large enough

market with a long enough time horizon (here with N = 5000 and T = 25), TSRI-2 minimizes RMSE.

C.1. Simulation details

For every setting, we run 500 simulations with N = 5000. We fix α= 1, ε= 1, and τ = 1 across all settings and

for each we consider three levels of demand: λ= 0.1,1,10. The simulation runs for T1 time units. We drop

the burn in time and calculate the value of the estimator on the time interval [T0, T1] for some 0<T0 <T1.

We set T0 = 5 and T1 = 25.

We further scale time by min{λ, τ} so that the number of “events” (i.e., bookings) that occur in the time

interval is consistent across different values of λ and τ . More specifically, for a given (λ, τ) pair, we calculate
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the value of the estimator on the time interval [T0/min{λ, τ}, T1/min{λ, τ}]. To see why this is necessary,

note that in the case where there is no outside option and all customers book a listing if one is available,

the rate of bookings is min(λ, τ). We heuristically rescale time so that if we removed the effect of choice

set dynamics and utilities and all customers book any available listing, the number of bookings would be

consistent across market balance levels. This rescaling allows us to achieve similar precision in our estimates

of bias across different levels of market balance; that is, under this rescaling the size of the standard error

of the estimates is similar across different levels of market balance. Because of this rescaling, it is difficult

to compare how standard errors of the estimators change when we fix the time horizon and change market

balance. We suggest that the reader use the standard error figures to compare the standard error of different

estimators within the same level of market balance.

For the base setting shown in Section 7 with homogeneous listings and customers, a customer has utility

v = 0.315 for a control listing and ṽ = 0.3937 for a treatment listing, corresponding to a mean field steady

state booking probability of 20 percent in the global control model and 23 percent in the global treatment

model. This change corresponds to a 25 percent increase in the utility, due to treatment. Unless otherwise

noted, all sets of market parameters are chosen to maintain the 20 and 23 percent booking probabilities in

global control and treatment, respectively.

We fix aC = 0.5 in the CR experiments and aL = 0.5 in the LR experiments. For the TSR experiments,

we vary aC and aL as defined in Section 6.3. For a general TSR experiment with randomization parameters

(aC , aL), we simulate a completely randomized design on the listing side, fixing bN ·aLc listings in treatment

and dN ·(1−aL)e listings in control. Since customers arrive over time, we cannot run a completely randomized

design and so we simulate Bernoulli randomization on the customers, randomizing each customer to treatment

independently with probability aC .

For each statistic (bias, standard error, and RMSE), bootstrapped 95th percentile confidence intervals are

presented. In each setting, we re-sample 500 simulation runs, with replacement, from the original set of 500

simulations. We calculate the value of the bias, standard error, and RMSE for each estimator and present

the 95th percentile intervals of each.

C.2. Market scenarios

In this section, we analyze the effect of changes in customers’ choice set parameters on the behavior of the

estimators, while holding the market balanced fixed with λ= τ = 1. In all of these scenarios, TSRI-2 has the

lowest bias and the highest variance. TSRI-2 is the estimator that minimizes RMSE in these simulations,

though this depends on the relative magnitude of the bias and standard error, as a result of the size of the

market. For a larger market, the standard error is smaller the magnitude of the bias, and vice versa for a

smaller market.

Varying average utility. In addition to the homogeneous system with one customer type and one listing

type presented in Figure 3, we consider two additional settings, again in a homogeneous system, but now

scaling the utility v. We fix the effect of the intervention such that the lift in utility ṽ/v = 1.25 is constant

in all three settings, and consider settings with smaller v and larger v. Rescaling v will change the steady
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Figure 7 (Varying average utility.) Results in balanced market with λ= τ = 1. Top left: Bias of each estimator

in the mean field model (normalized by GTE). Top right: Bias of each estimator in simulations, averaged across

500 runs (normalized by GTE). Bottom left: Standard error of estimates, calculated across 500 runs (normalized

by GTE). Bottom right: RMSE of the estimates, calculated across 500 runs (normalized by GTE).

state booking probabilities in global treatment and control so that we no longer have 23 percent of booking

in global treatment and 20 percent in global control.

Note that changes to α and/or ε can be equivalently viewed as a rescaling of the utility, so changing the

utility also allows us to explore the effect of changes in α or ε as well.

• Low utility: v= 0.155, ṽ= 0.1938.

• Medium utility: v= 0.315, ṽ= 0.3937.

• High utility: v= 0.62, ṽ= 0.775.

Results are presented in Figure 7. As the average utility increases (and so does the steady state booking

probability of arriving customers), the bias for CR,LR,TSR− naive and TSRI-1 all increase, whereas the

bias TSRI-2 is largely consistent across different levels of utility. The standard errors of the estimators do

not change notably as we vary the average utility. A consequence of the change in bias is that the RMSE

minimizing estimator depends on the utility level, with TSRI-2 having the highest RMSE for v = 0.15 but

the smallest for v= 0.62.

Heterogeneity of customers. There is one listing type θ and two customer types γ1, γ2. We fix the size

of the treatment utility increase such that ṽγ1(θ) = 1.25 · vγ1(θ) and ṽγ2(θ) = 1.25 · vγ2(θ). We additionally

fix the steady state booking probabilities in global control and global treatment to be 20 percent and 23

percent, respectively.

Customers of type γ1 have higher utility for the listing than customers of type γ2. We vary the heterogeneity

of the customers by varying the ratio vγ2(θ)/vγ1(θ).
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Figure 8 (Varying heterogeneity of customers.) Results in balanced market with λ= τ = 1. Top left: Bias of

each estimator in the mean field model (normalized by GTE). Top right: Bias of each estimator in simulations,

averaged across 500 runs (normalized by GTE). Bottom left: Standard error of estimates, calculated across 500

runs (normalized by GTE). Bottom right: RMSE of the estimates, calculated across 500 runs (normalized by

GTE).

• Homogeneous: vγ2(θ)/vγ1(θ) = 1, with vγ1(θ) = 0.315, vγ2(θ) = 0.315.

• Low level of heterogeneity (Het-L): vγ2(θ)/vγ1(θ) = 3, with vγ1(θ) = 0.17, vγ2(θ) = 0.51.

• High level of heterogeneity (Het-H): vγ2(θ)/vγ1(θ) = 3.83, with vγ1(θ) = 0.12, vγ2(θ) = 0.46.

Results are presented in Figure 8. As heterogeneity of the customers increases, the CR estimator has similar

levels of bias, while LR,TSRN, and TSRI-1 slightly increase, though not as appreciably as the increase seen

when varying the average utility level. In all cases, TSRI-2 has the lowest bias and highest standard error.

In these simulations, TSRI-2 is the estimator that minimizes RMSE, although this can change depending on

the size of the market and the relative sizes of the bias and the standard error.

Heterogeneity of listings. There are two listing types θ1 and θ1 and one customer type γ. We fix the

treatment effect so that ṽ(θ) = 1.25 ·v(θ). We additionally fix the steady state booking probabilities in global

control and global treatment to be 20 percent and 23 percent, respectively.

We vary the heterogeneity of the listings by letting v(θ2)> v(θ1) and varying the ratio v(θ2)/v(θ1).

• Homogeneous: v(θ2)/v(θ1) = 1, with v(θ1) = v(θ2) = 0.315.

• Low level of heterogeneity (Het-L): v(θ2)/v(θ1) = 1.6, with v(θ1) = 0.25, v(θ2) = 0.4.

• High level of heterogeneity (Het-H): v(θ2)/v(θ1) = 6, with v(θ1) = 0.1, v(θ2) = 0.6.

Results are presented in Figure 9. As heterogeneity of the listings increases, the bias of the CR estimator

increases significantly, the TSRN estimator increases to a lesser extent, and the LR, TSRI-1, and TSRI-2
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Figure 9 (Varying heterogeneity of listings.) Results in balanced market with λ= τ = 1. Top left: Bias of each

estimator in the mean field model (normalized by GTE). Top right: Bias of each estimator in simulations, averaged

across 500 runs (normalized by GTE). Bottom left: Standard error of estimates, calculated across 500 runs

(normalized by GTE). Bottom right: RMSE of the estimates, calculated across 500 runs (normalized by GTE).

estimators remain roughly consistent. In all cases, TSRI-2 has the lowest bias and highest standard error.

In these simulations, TSRI-2 is the estimator that minimizes RMSE, although this can change depending on

the size of the market and the relative sizes of the bias and the standard error.

Heterogeneity of treatment effect. We consider the impact of heterogeneous treatment effects on the

performance of the estimators. We restrict attention to where the treatment increases the utility, but the

size of the increase can differ across the market.

There are two listing types θ1 and θ2 and one customer type γ. We fix the customer’s preferences pre-

treatment such that the customer prefers θ2 to θ1 pre-treatment, with vγ(θ2)/vγ(θ1) = 1.3. We compare three

settings, one where the treatment effect has the same multiplicative lift on both listing types, one where

the treatment amplifies the existing preference order, and one where the treatment reverses the existing

preference order.

We fix the steady state booking probabilities and global control and global treatment to be 20 percent

and 23 percent, respectively. In all of the scenarios, we have v(θ1) = 0.27, v(θ2) = 0.351.

• Multiplicative: ṽ(θ1) = 0.3375, ṽ(θ2) = 0.4388.

• Heterogeneous treatment effects - amplify (HTE-amp): ṽ(θ1) = 0.2727, ṽ(θ2) = 0.5265.

• Heterogeneous treatment effects - reverse (HTE-rev): ṽ(θ1) = 0.432, ṽ(θ2) = 0.355.

Results are presented in Figure 10. We find that when the treatment effect amplifies the existing prefer-

ences, the CR estimator has a larger bias. This is likely an artifact of the increase in listing heterogeneity

after treatment (see discussion on varying listing heterogeneity and Figure 9). The bias is similar in the two
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Figure 10 (Varying heterogeneity of treatment lift on utilities.) Results in balanced market with λ= τ = 1. Top

left: Bias of each estimator in the mean field model (normalized by GTE). Top right: Bias of each estimator in

simulations, averaged across 500 runs (normalized by GTE). Bottom left: Standard error of estimates, calculated

across 500 runs (normalized by GTE). Bottom right: RMSE of the estimates, calculated across 500 runs

(normalized by GTE).

settings with a multiplicative treatment effect and heterogeneous treatment effects that reverse the control

preference order. In all cases, TSRI-1 has the lowest bias, highest standard error, and lowest RMSE.

C.3. Robustness with varying market balance

We now replicate Figures 2 and 3 for different market settings, verifying the results we present in the

main text regarding the dependence of the estimators on market balance. In Section C.2, we consider four

scenarios at a fixed market balance, by varying average utility, customer heterogeneity, listing heterogeneity,

and treatment effect heterogeneity. In this section, we choose one representative set of parameters from each

scenario and show how the performance of the estimators change as we change market balance. In particular,

we show that the behavior of the estimators in a large market setting is still similar to the behavior obtained

in the mean field limit, even in the presence of heterogeneity in the market.

The representative settings shown are low utility (varying average utility), high level of heterogeneity (het-

erogeneity of customers), high level of heterogeneity (heterogeneity of listings), and heterogeneous treatment

effects amplifying existing preference (heterogeneity of treatment effects). The parameters are as defined in

Section C.2. One might suspect that these settings, either with a low booking probability or high levels of

heterogeneity, are the ones most likely to differ from the mean field model. We show, however, that the

findings in the main text are indeed robust.

Across our range of simulations, we see qualitatively similar behavior to our findings in the main text: the

naive CR estimator has lower bias for small λ/τ and the naive LR estimator has lower bias for large λ/τ ,
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Figure 11 (Varying market balance - small average utility.) Top left: Bias of each estimator in the mean field

model (normalized by GTE). Top right: Bias of each estimator in simulations, averaged across 500 runs

(normalized by GTE). Bottom left: Standard error of estimates, calculated across 500 runs (normalized by GTE).

Bottom right: RMSE of the estimates, calculated across 500 runs (normalized by GTE).

while the TSR estimators interpolate between the two. The TSR estimators offer these bias reductions at

the cost of higher variance. Further, the bias of CR is higher at larger λ/τ , and the bias of LR is higher at

smaller λ/τ .

We note that although the qualitative findings are similar, the bias in the simulations is not identical to

the bias in the mean field model, especially at the smaller and larger values of λ. We conjecture that this

is due to the fact that stochastic effects matter in these extremes. When λ is small, since T is fixed, we see

a (relatively) smaller number of customer arrivals in the same time horizon; indeed, this is why standard

errors are higher overall in this setting. On the other hand, when λ is large, then (relatively) few listings will

be available. In this setting, if the steady state number of available listings is very small relative to N , then

our mean field approximation will begin to be less accurate, even though the qualitative behavior is similar.

The discrepancies may be larger with the TSR estimators, since there are even fewer interactions happening

in each of the four cells.

C.4. Modifications of consideration sets.

Here we consider a modification to the consideration set formation process described in Section 3. Instead

of a customer sampling each listing independently with probability α, we now consider a situation where a

customer samples a fixed set of K = 50 listings into their consideration set, drawn uniformly at random, as

long as there are at least 50 listings available. When there are fewer than 50 listings, the customer samples

all listings in to their consideration set. We note that another scenario to investigate is the one in which
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Figure 12 (Varying market balance - large heterogeneity between customers.) Top left: Bias of each estimator

in the mean field model (normalized by GTE). Top right: Bias of each estimator in simulations, averaged across

200 runs (normalized by GTE). Bottom left: Standard error of estimates, calculated across 200 runs (normalized

by GTE). Bottom right: RMSE of the estimates, calculated across 200 runs (normalized by GTE).

Figure 13 (Varying market balance - large heterogeneity between listings.) Top left: Bias of each estimator in

the mean field model (normalized by GTE). Top right: Bias of each estimator in simulations, averaged across 500

runs (normalized by GTE). Bottom left: Standard error of estimates, calculated across 500 runs (normalized by

GTE). Bottom right: RMSE of the estimates, calculated across 500 runs (normalized by GTE).
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Figure 14 (Varying market balance - heterogeneous treatment effects amplifying global control preferences.)

Top left: Bias of each estimator in the mean field model (normalized by GTE). Top right: Bias of each estimator

in simulations, averaged across 200 runs (normalized by GTE). Bottom left: Standard error of estimates,

calculated across 200 runs (normalized by GTE). Bottom right: RMSE of the estimates, calculated across 200

runs (normalized by GTE).

listings are drawn proportionally to their utility to the customer, to capture search and recommendation

algorithms that recommend listings that the customer is likely to book. We leave deeper investigation of the

formation of consideration sets (including sensitivity to the value of K) for future work.

We calibrate the utilities such that the mean field model where customers sample listings into their choice

set with probability K/N = 50/N has a steady state booking probability of 20 percent in global control and

23 percent in global treatment, when λ= τ . Note that with this change in consideration set formation, we

can no longer guarantee that the finite system converges to the mean field model defined in Section 4. Thus

we study these scenarios through simulations in the finite model and present the bias and standard error of

the estimators in the simulations (see Figure 15). As noted above, we find qualitatively similar behavior as

before.
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Figure 15 (Fixed size K = 50 consideration set.) Top left: Average bias (normalized by GTE) of each estimator

across 500 runs. Top right: Standard error of estimates, calculated across 500 runs (normalized by GTE). Bottom:

RMSE of estimates, calculated across 500 runs (normalized by GTE). There is one customer type and one listing

type. Customers have utility v= 6 for control listings and ṽ= 7.5 for treatment listings.

Appendix D: Numerics for transient dynamics

For practical implementation, it is important to consider the relative bias in the candidate estimators in

the transient system, since experiments are typically run for relatively short time horizons. Theoretically,

we can provide some insight when τ →∞: in this case, the dominant term in the right hand side of (8) is

(ρ(θ)−st(θ))τ . Using this fact, it can be shown that as τ →∞, for each t > 0, there holds s∗t (aC , aL)→ ρ(aL)

(where we define ρ(aL) as in Section 6.1). In other words, the state remains at ρ(aL) at all times. As a result

in this limit the transient estimators ĜTE
CR

(T |aC) and ĜTE
LR

(T |aL) are equivalent to ĜTE
CR

(∞|aC) and

ĜTE
LR

(∞|aL), respectively. In particular, asymptotically as τ →∞, the transient estimator ĜTE
CR

(T |aC , aL)

will be an unbiased estimate of GTE at all times T > 0. (The same is true if λ→ 0, provided the initial state

is s0 = ρ(aL).)

More generally, Figure 16 numerically investigates how the time horizon of the experiment affects the

performance of the estimators in the mean field model. The system starts out in the steady state of the

global control condition and evolves over the time horizon of the experiment. The relative performance of

estimators depends on the time horizon of interest as well as market balance conditions.
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Figure 16 Transient dynamics of estimators with λ/τ = 0.1,1, and 10. Homogeneous system with one customer

type and one listing type with parameters as defined in Figure 2. System starts out in the global control steady

state.
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