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Abstract

The rich literature on online Bayesian selection problems has long focused on so-called prophet
inequalities, which compare the gain of an online algorithm to that of a “prophet” who knows
the future. An equally-natural, though significantly less well-studied benchmark is the opti-
mum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not
omniscient. What is the computational complexity of the optimum online? How well can a
polynomial-time algorithm approximate it?

We study the above questions for the online stochastic maximum-weight matching problem
under vertex arrivals. For this problem, a number of 1/2-competitive algorithms are known
against optimum offline. This is the best possible ratio for this problem, as it generalizes the
original single-item prophet inequality problem.

We present a polynomial-time algorithm which approximates the optimal online algorithm
within a factor of 0.51—beating the best-possible prophet inequality. In contrast, we show that
it is PSPACE-hard to approximate this problem within some constant o < 1.
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1 Introduction

Decision-making in an uncertain, dynamic environment influenced by one’s decisions has arguably
always been the essence of life, and yet it appears to have been first confronted mathematically by
Herbert Robbins and Richard Bellman, from different perspectives, in the late 1940s and early 1950s.
Decision theory initially focused on instantaneous decisions, but later gave us stopping rules and
the gem of prophet inequalities [39]. Later, the Internet age brought us new business models relying
exclusively on stochastic decision making — online advertising, ride hailing, kidney exchanges —
in which the changing environment affected by the agents’ decisions can often be abstracted as an
evolving weighted bipartite graph.

Here we study one such problem, the online Bayesian bipartite matching, or RIDEHAIL, problem.
The input to this problem is a random bipartite graph, revealed over time. Initially, the m nodes
on one side of the graph, termed taxis or bins, are present. The n nodes on the other side, termed
passengers or balls, are revealed over time, in a fixed order known to us. Initially, we know for each
ball ¢ the probability p; of it actually arriving, as well as the non-negative weight w;; of the edge
connecting it to any bin ¢ — if it arrives. If ball ¢ does not arrive, we do nothing at time ¢; if it
does arrive, we can choose to match it, irrevocably, to some unmatched neighbor ¢ before time ¢+ 1,
yielding a profit w; ;. Our goal is to maximize the overall expected profit.

RIDEHAIL generalizes the classic single-item online Bayesian stopping rule problem — the so-
called prophet inequality problem. In particular, our problem with a single offline node already
captures the worst-case instances of the prophet inequality, for which no online algorithm is better
than 1/2-competitive against the optimal offline algorithm. On the other hand, RIDEHAIL is a
special case of the unit-demand combinatorial auctions problem and online stochastic maximum-
weight matching, for both of which 1/2-competitive algorithms are known [16, 18, 19].

There is an extensive literature on numerous variations of online Bayesian selection problems,
relating the performance of online algorithms with the omniscient prophet of inequality fame — that
is to say, with the offline optimum (see Section 1.2). In particular, these works study achievable
competitive ratios: the worst-case ratio over all inputs between the online algorithm and the best
offline algorithm. While this may be the right thing to do when the input is adversarial, when the
input is generated stochastically one perhaps could do better. In particular, in the stochastic case,
the optimum online algorithm for the given input is a well-defined benchmark that can be computed
in exponential time. Suddenly we are in the realm of approxzimation algorithms, rather than of
competitive analysis.

In approximation algorithms, typically one explores two interesting questions: First, is approxi-
mation hard? And second, what is the best approximation ratio achievable in polynomial time?

In this paper we address both questions. First, we show that for some a < 1 it is PSPACE-hard
to approximate the RIDEHAIL problem within a factor of a.

Theorem 1.1. It is PSPACE-hard to approximate the optimal online RIDEHAIL algorithm
within a factor of a, for some absolute constant o < 1. This remains true even when all weights
and inverse arrival probabilities are bounded by some polynomial in the size of the input.

Here, 1 — « is small, limited by the current status of expander constructions and approximation
hardness of MAX-SSAT (see Section 2). To our knowledge, no past work on variants of online
matching had demonstrated such level of hardness. (We briefly note that PSPACE is the “right”
complexity class for this problem, which can be solved in polynomial space by standard techniques.)
Finally, we note (see Appendix A) that our hardness of approximation result directly implies hardness
of computing an approximately-optimal online algorithm, and not just its expected value.!

'Note that for some problems, although computing the expected value of the optimal policy is hard, computing the
optimal policy itself is actually easy. For example, computing the probability that a random graph containing each



We then develop an approximation algorithm, and a technique to bound the (online) optimum.
To our knowledge, all past work on approximating the large family of online Bayesian selection prob-
lems, with the exception of [5], has used the prophet inequality benchmark of the offline optimum,
which necessarily limits the approximation ratio for many variations to be at most 1/2.

We go for bounding the online optimum. We achieve this by identifying a new constraint which
separates online from offline algorithms. In particular, we note that online algorithms cannot match
an edge (i,t) with probability greater than the probability of ball ¢ arriving, times the probability
of bin 7 not being matched by the online algorithm beforehand, due to the independence of these
events. This constraint, which is not true of offline algorithms, poses restrictions on the marginal
probabilities of edges to be matched by the optimal online algorithm. Combining this constraint with
the natural matching constraints we obtain a new LP which bounds the optimal online algorithm’s
gain. Using this new LP bound (and a number of further ideas, see Section 1.1), we design a new
algorithm which recovers at least 51% of the online optimum, i.e., a ratio strictly better than the
optimal competitive ratio of 1/2.

Theorem 1.2. There exists a polynomial-time online algorithm which is a 0.51-approximation
of the optimal online algorithm for the RIDEHAIL problem.

We further generalize our algorithm and achieve the same approximation bound for the more
general problem in which weights of any given ball’s edges can follow any joint distribution, but
weights of different ball’s edges are independent. That is, we extend our positive results to the more
general bipartite weighted matching problem studied by prior work [16, 18, 19]. (See Section 5.)

1.1 Techniques

Here we give a very brief overview of the key ideas used to obtain our main results.

1.1.1 Hardness

For our PSPACE-hardness result, we first refine the result of Condon et al. [11] for maximum
satisfiability of stochastic SAT instances. In the stochastic SAT (SSAT) problem, introduced by
Papadimitriou [44], a 3CNF formula is given, and variables xi,z2,...,x, are alternatingly set by
an (online) algorithm and randomly set by nature. Condon et al. [11] proved that approximating
the maximum expected number of satisfied clauses of an SSAT instance is PSPACE-hard. Using an
expander graph construction, we extend this result to SSAT instances in which each variable appears
in at most O(1) clauses. We then give a polynomial-time reduction from approximating maximum
satisfiability of a bounded-occurrence SSAT instance to approximating the optimal online algorithm
for the RIDEHAIL problem, implying our claimed PSPACE-hardness.

1.1.2 Algorithm

Our algorithmic results involve a number of ideas. We outline the key ones here.

Our LP Benchmark. We recall that we want to approximate the optimal online algorithm within
a factor strictly greater than 1/2 (which is tight against the optimal offline algorithm). Hence, our
first objective is to identify a property which separates online from offline algorithms. To this end,
we note (as did [49]) that for any online algorithm .4, the event of the arrival of ball ¢ is independent
of the event that bin ¢ is not matched by Algorithm A prior to time ¢. (Note that this constraint
does not necessarily hold for the prophetic optimum offline algorithm, which makes its matching

edge e with probability pe is connected is the #P-hard the network reliability problem [35, 45, 50], while computing
connectivity in the realized graph (even in an online setting) is trivial.



choices based on both past and future balls’ arrivals.) Consequently, the probability that edge
(i,t) is matched by online algorithm A is at most the product of these two events’ probabilities.
Combining this constraint with natural matching constraints, we obtain an LP which bounds the
expected gain of the optimal online algorithm (but not its offline counterpart). In Appendix C we
note that this LP completely characterizes the optimal online algorithm for instances with a single
offline node, equivalent to the single-item online Bayesian selection problem. This is not true for
general instances (as we would expect due to Theorem 1.1); we therefore use this LP to approzimate
the optimal online policy.

A Second Chance Algorithm. We present an efficient online algorithm for approximately round-
ing a solution to the above LP. Let x;; be the decision variables of this LP. Intuitively, these x;;
serve as proxies for the probability of (i,¢) to be matched by the optimal online algorithm. Our
online algorithm matches each edge (i,t) with probability at least x;; - (1/2+ ¢) for ¢ = 1/100. Our
algorithm can be seen as a generalization and extension of the 1/2-competitive algorithm of Ezra et
al. [18] for our problem. Their algorithm can be thought of as approximately rounding the above
LP (without the new constraint) as follows. After each arrival of ball ¢, pick a bin ¢ with probability
proportional to x;, and then, if bin ¢ is unmatched, match edge (i,t) with some probability g¢; ;.
These g;; are set to guarantee that each edge (4,t) is matched with marginal probability z;; - 1/2,
which can be thought of as applying an online contention resolution scheme as in [20]. To improve
on this, we first note that modifying these ¢; ; appropriately results in each edge (¢,t) being matched
with probability precisely x;¢- (1/2+c) if ), _, x4 is small, and at least ;- (1/2— O(c)) otherwise.
To increase these marginal probabilities to ;¢ - (1/2 + ¢) for each edge (i,t), we repeat the above
process if ¢ is unmatched, letting ¢ pick a second bin i’ and possibly matching edge (i/,¢). For this
second pick to achieve its desired effect, bin ¢ should not be matched too often when picked by ball
t in its second pick. That is, conditioning on ¢ not being matched after its first pick should not
decrease the probability of i being free by too much. This is the core of our analysis.

Analysis. To prove that conditioning on ball ¢ not being matched after its first pick indeed does
not decrease the probability of bin ¢ being free by much, we show that (i) the bins’ matched statuses
by time ¢ have low correlation, and (ii) bin i is unlikely to be picked twice by ball ¢. To prove Property
(i), we show that most of the probability of a bin to be matched by this algorithm is accounted for
by variables which are negatively correlated, and even negatively associated (see Section 2). For our
proof of Property (ii), we finally reap the rewards from our new LP constraint. In particular, this
constraint implies that for bins 4 with ), _, z;y large, as above, x;; must be low, implying that
bin 4 is unlikely to be picked by ball ¢ as its first pick. Properties (i) and (ii) together imply that
conditioning on ball ¢ not being matched after its first pick does not decrease the probability of bin
7 to be unmatched much. This then implies that the second pick is not too unlikely to result in a
match of edge (7,t). We thus find that each edge (i,t) is matched by our algorithm with probability
(/24 ¢) - zj ¢, from which our (1/2 4 ¢)-approximation follows.

1.2 Related Work

The literature on online Bayesian selection problems is a long and illustrious one. We briefly outline
some of the most relevant work here. See also surveys on the topic [13, 29, 30, 41].

A seminal result in the stopping theory literature, the first prophet inequality, a 1/2-competitive
algorithm for the single-item online Bayesian selection problem, was first given in the late 70s [39].
Multiple algorithms achieving this bound are known [3, 4, 18, 38, 47|. On the other hand, better
bounds are known for various special cases, most prominently for i.i.d. distributions |1, 12, 31].

Numerous multiple-item online Bayesian selection problems were studied over the years. Gen-
eralizations of the classic 1/2-competitive prophet inequality of [39] for single-items were given for
matroid constraints [38], for multiple items [3], for bipartite matching under one-sided vertex arrivals
[4, 19], and for general matching under vertex arrivals [18], with positive results known for many



other constraints [16, 17, 19, 20, 38]. For matching under edge arrivals, a number of positive results
are known |20, 26, 38|, and a competitive ratio of 1/2 is impossible for this stochastic problem [18, 26].
This mirrors a similar separation between vertex arrivals and edge arrivals for this problem’s (un-
weighted) deterministic counterpart [24]. Much of this work on approximating the optimal offline
algorithm (prophet inequalities) for online Bayesian selection problems was motivated by connec-
tions discovered between prophet inequalities and algorithmic mechanism design [9, 14, 19, 28]. The
computational complexity of approximating the online optimal algorithm, however, was significantly
less well studied.

The only previous positive result for approximating the online optimum algorithm (better than
offline optimum) for an online Bayesian selection problem is due to Anari et al. [5], who gave a PTAS
for a special class of matroid constraints. On the computational complexity front, the only hardness
for such problems we are aware of is the recent result of Agrawal et al. [2], who show that computing
the optimal ordering of the random variables for a single-item problem is NP-hard (with an EPTAS
for this ordering problem due to [48]|). The (in)approximability of the optimum online algorithm
was studied for other stochastic online optimization problems recently, including probing problems
[10, 22, 25, 48], stochastic matching problems in infinite-horizon settings under Poisson arrivals and
departures [6], two-stage stochastic matching problems [21], and stochastic dynamic programming
problems [22]|. The computational complexity of approximating O PT,, for these and other problems
remains an intriguing open problem. We are hopeful that the tools we develop here will prove useful
in extending the literature on computational complexity and approximability of such problems of
decision-making under uncertainty.

Follow-up work: Following this work, the last two authors have extended this paper’s algorithm
to obtain improved algorithms for the (seemingly unrelated) online edge coloring problem [46].
Their ideas can be used to improve our approximation ratio from 0.51 to 0.526. In another work,
Kessel et al. [36] study a stationary version of the prophet inequality problem, and obtain optimal
competitive ratios, and improved approximation of the optimal online algorithm. Whether other
online Bayesian selection problems admit better (efficient) approximation of their optimal online
algorithms compared to the optimal prophet inequality remains to be seen. (See Section 6.)

2 Preliminaries

For any algorithm A and instance Z of a problem II, we let A(Z) denote the value of the output of
algorithm A on instance I. We use OPT.L(Z) to denote an optimal online algorithm for IT on Z.
Since the problem IT will be clear from context, we will usually just write O PT,,,(Z). Our interest is in
understanding how well this value can be approximated by efficient online algorithms. Throughout,
we say an algorithm gives an a-approximation to a quantity @, for « € (0, 1), if it outputs a number
in the range [a@, @]. The following simple fact, whose proof is deferred to Appendix B, is useful for
reductions involving hardness of approximation.

Fact 2.1. Let Q,Q" > 0 be positive quantities, such that Q'/Q < B, and let a € (0,1). Then, an

(Cl’ig)—appmximation to Q + Q' yields an a-approximation to Q.

We now turn to providing background on problems and tools used in this work.

Stochastic SAT. The stochastic SAT (SSAT) problem was first defined by Papadimtriou [44]. In
this work, we will consider the maximization variant of this problem, defined below.

Definition 2.2. The input to the MAX-SSAT problem is a 3CNF formula ¢ over an ordered list of
variables (z1,z2,...,xy,). We choose a value of either True or False for z1, nature chooses a value
of either True or False for x5 uniformly at random, we choose a value of either True or False for
x3, and so on. Our goal is to maximize the expected number of satisfied clauses in ¢ after all the



variables have been assigned a value. We will refer to {z1,x3,...} as the “deterministic variables”
and {x2,x4,...} as the “random variables.”

In his work introducing SSAT, Papadimitriou [44] proved PSPACE-hardness of determining the
probability of satisfiability of an SSAT instance. Over a decade later, this was improved to a hardness
of approzimation result by Condon et al. [11], via extensions of the PCP theorem [7]. In particular,
they prove the following hardness of approximation result.

Lemma 2.3. ([11, Theorem 3.3]) There exist constants k € N and o € (0,1) so that it is PSPACE-
hard to compute an a-approzimation to OPTy,(¢) for a MAX-SSAT instance ¢ satisfying:

1. no random variable appears negated in any clause of ¢, and

2. each random variables appears in at most k clauses of ¢.

It is worth noting that Theorem 3.3 in [11] only includes the statement about random variables
being non-negated. The second property is a direct consequence of the proof of the theorem. In
Appendix B we explain the necessary modifications to the proof to add this guarantee.

Expander Graphs. Define the expansion of a graph G as

WG) =  min [E(S, VA S|
SCV[S|<|V|/2 S|

where E(X,Y) = {(z,y) € E | e € X,y € Y} denotes the edges with one endpoint in X and
the other in Y. We will utilize results providing explicit, deterministic constructions of graphs with
constant degree and constant expansion (e.g. (23, 40]).

Lemma 2.4. There exists a deterministic, polynomial-time construction of a graph on n vertices
with expansion at least 1 and mazimum degree at most some constant d.

Negative Association. We briefly review some notions of negative dependence we need in this
work, in particular, the notion of Negatively Associated random variables.

Definition 2.5 (|33, 37|). Random variables Xi,..., X, are negatively associated (NA), if every
two monotone non-decreasing functions f and g defined on disjoint subsets of the variables in X are
negatively correlated. That is,

E[f - 9] <E[f]-Elg]. (1)

A family of independent random variables are trivially negatively associated. A more interesting
example of negatively associated random variables is the following.

Proposition 2.6 (0-1 Principle [15]). Let X1,..., X, € {0,1} be binary random variables such that
> Xi <1 always. Then, the joint distribution (X1,...,Xy) is negatively associated.

More elaborate NA distributions can be obtained via the following closure properties.
Proposition 2.7 (NA Closure Properties |15, 33, 37|).

1. Independent union. Let (X1,...,Xy) and (Y1,...,Yy,) be two mutually independent negatively
associated joint distributions. Then, the joint distribution (Xi,...,X,,Y1,...,Yn) is also NA.

2. Function composition. Let X = (Xy,...,X,) be NA, and let f1,..., fr be monotone non-
decreasing functions defined on disjoint subsets of X. Then the joint distribution (f1,..., fr)
s also NA.

Negative association implies many powerful concentration inequalities and other useful properties
(see e.g., [8, 15, 33, 37|). For our purposes we will use the pairwise negative correlation of NA
variables, implied by Equation (1) with the disjoint functions f(X) = X; and g(X) = X for i # j.

Proposition 2.8. Let X1,...,X,, be NA random variables. Then, for all i # j, Cov(X;, X;) < 0.



3 PSPACE-Hardness

In this section, we prove our PSPACE-hardness result.

Theorem 1.1. It is PSPACE-hard to approzimate the optimal online RIDEHAIL algorithm within
a factor of a, for some absolute constant o < 1. This remains true even when all weights and inverse
arrival probabilities are bounded by some polynomial in the size of the input.

3.1 Extending Stochastic SAT Hardness

We first extend hardness of approximation for MAX-SSAT instances as in Lemma 2.3 to instances
which in addition satisfy that deterministic variables appear in at most &k clauses.

Lemma 3.1. There exist constants k € N and o € (0,1) so that it is PSPACE-hard to compute an
a-approximation to OPTe,(¢) for a MAX-SSAT instance ¢ satisfying

(1) no random variable appears negated in any clause of ¢, and
(2) each wvariable (both random and deterministic) appears in at most k clauses of ¢.

We give a polynomial-time reduction from a-approximating O PT,,(¢) for a MAX-SSAT instance
¢ as in Lemma 2.3 to o'-approximating OPT,,(¢') on a MAX-SSAT instance ¢’ satisfying both
properties (1) and (2) for some &' = O(1) and constant o/ € (0, 1).

The reduction. For odd (deterministic) 4, if the variable x; appears in a(4) clauses in ¢, we replace
the j* occurrence of x; with a new variable x;; for 1 < j < a(i). Let ¢ denote the new 3CNF
formula after these replacements. We also add clauses to force the optimal online algorithm to set
all of (x;1,2;2,. ..l‘i7a(i)) equal to each other, without increasing their number of occurrences by
more than a constant. Specifically, for each odd i, we construct via Lemma 2.4 an expander graph
G; on a(i) vertices with maximum degree at most d = O(1) and expansion at least 1. Associate the
vertices of G; with the literals (i1, %2, ..., %;4(;)) arbitrarily. For any edge in G; between z; ; and
z; i, add the following two clauses to ¢":

(zij VTig0) N (Tig V xijr). (2)

Note that if z; ; # x; j/, we satisfy exactly one of these two clauses, while if z; ; = x; j» we satisfy both.
The order of variables z; j and z; in ¢ is some arbitrary order such that variables in ¢’ corresponding
to (copies of) variables z; and x; in ¢ appear in an order consistent with the variables z; and z; in
¢. By adding dummy random variables, we further guarantee that copies of deterministic/random
variables in ¢ are likewise deterministic/random in ¢'.

The following lemma relates the maximum expected number of satisfiable clauses in ¢ and ¢/,
needed to complete our reduction’s analysis.

Lemma 3.2. Let By := 3 15,<, 2|E(Gi)|. Then, the MAX-SSAT instances ¢ and ¢ satisfy
OPTy(¢') = OPT,,(¢) + E,.

Proof. We first prove OPT,,(¢') > OPT,,(¢) + E,,. Consider an online algorithm A which for odd
i sets rj1 = T2 = ... = Tjq; = b, where b; is the assignment for z; of OPT,, on ¢ given the
induced history. This algorithm for ¢’ is clearly implementable. Moreover, this algorithm satisfies
each of the F, clauses of form (2), and satisfies OPT,,(¢) of the original clauses in expectation.
Hence OPT,,(¢') > A(¢') = OPTon(9) + En,.

We now prove that OPT,,,(¢') < OPT,,(¢) + E,. Assume that for some odd 4, and some fixed
history for all variables before (z;1,...,%; (), an SSAT algorithm A sets (z;1,%;2, . . ., T; 4(;)) such
that they do not all take the same value (with some positive probability). Consider the minimum



size subset S C {1,2,...,a(i)} such that flipping all {z;;};cs would result in all variables being
set to the same value (so, 1 < |S| < a(i)/2). Since the expansion of G; is at least 1, we know that
|E(S,V\S)| > |S|; flipping all the {z; ;}jes would hence let us satisfy at least | S| additional clauses of
the form (2), and possibly satisfy |S| fewer clauses corresponding to clauses in ¢ containing x;. Thus,
A would satisfy at least as many clauses in expectation by flipping the sign of {; ;};es. Repeatedly
applying this transformation results in an improved online algorithm A’ as stated in the previous
paragraph, from which we find that O PT,, satisfies at most OPT,,(¢) < A'(¢') < OPT,,(¢') + E,,
clauses in expectation. The lemma follows. ]

We now show that E,, is bounded from above by a constant times OPTy,, ().
Observation 3.3. E, < 12d - OPT,,(¢).

Proof. Since for each odd 7, the expander graph G; contains at most d edges per each of the a(i)
occurrences of i in ¢, we have that E, = > 4q.<n 21E(Gi)| < Y odqd i<n 2d - (7). Next, for m the
number of clauses in ¢, since ¢ is a 3-CNF formula, Y44 i<, @(i) < 3m. Finally, we note that, since
setting each variable randomly satisfies at least half of the clauses in expectation, m/2 < OPT,,(¢).
Combining these observations, we find that

E,= > 2/BG)< Y d-a(i)<6dm <12d- OPT,,(¢). O

odd i<n odd i<n

Given the above, we are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let o € (0,1) and k be the constants in the statement of Lemma 2.3. Let ¢
be a MAX-SSAT instance as in the statement of that lemma and ¢’ be the obtained instance from
the reduction of this section, which is polynomial-time, by Lemma 2.4. By construction, no random
variable appears negated in any clause, and each variable appears in at most ¥ = max(d + 2,k) =
O(1) clauses. By Lemma 3.2, OPT,,(¢') = OPTy,(¢) + E,. Next, we let Q = OPT,,(¢), Q' = E,,
and 8 = 12d, and note that Q'/Q < 3, by Observation 3.3. Thus, by Fact 2.1, for the constant

o = (O‘+12d> € (0,1), an o/-approximation to OPT,,(¢') = OPTy(¢) + E, = Q + Q' yields an

1+12d
a-approximation of @ = OPTy,(¢), which is PSPACE-hard, by Lemma 2.3. O

3.2 Hardness of Algorithms for RIDEHAIL

We are now ready to prove our main theorem about the hardness of RIDEHAIL. Throughout this
proof, we will let £ = O(1) be the constant in the statement of Lemma 3.1. Denote the variables
in an SSAT instance ¢ as in Lemma 3.1 by (x1,x2,...,2,) and the number of clauses of ¢ by m.
Without loss of generality, suppose n is even. From ¢, we construct a RIDEHAIL instance Z,, with
weights w; ¢ = w; for each pair (i,t) € E, where we refer to w; as the weight of ball £. The instance
has 2n bins, corresponding to the literals {z;,7; | i € [n]}. The instance Z; has n 4+ m balls; we will
refer to the first n balls as “literal balls” and the final m balls as “clause balls” (for reasons that will
become clear shortly). For odd ¢t < n, ball ¢ arrives with probability 1, has weight 1, and has an
edge only to bins x; and Zy. For even ¢ < n, ball ¢ arrives with probability 1/2, has weight 1, and
has an edge only to bin x;. The last m clause balls t =n +1,...,n + m each have weight ZL—:
arrive with probability m~%. The clause ball t = n 4 r corresponding to clause C, neighbors only
the bins corresponding to literals in C,.. (See Figure 1.)

We shall see that OPT,,(Z,) and OPT,,(¢) are, up to a negligible error term, related by a
simple linear relation. In particular, we will show that

and

(1 o m—4)m—1

2k

We prove Equation (3) in the following two lemmas. The first proves that OPT,, run on Z,
matches all arriving literal balls.

OPT,,(T,) = 0.75n + - OPT,(¢) + o(1). (3)
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Figure 1: The RIDEHAIL instance Zy

Bins are labeled by their corresponding literal, while balls are labeled by their weight.

Lemma 3.4. Algorithm OPT,, matches all arriving literal balls of L.

Proof. Suppose that there is some history h (occurring with probability ¢ > 0) after which OPT,,
does not match a literal ball ¢ which arrives; let A’ be the algorithm that follows exactly what O PT,,
does, with the exception that it will match ¢ if ¢ arrives after the history h. Then,

4
A/(qu) — OPTon(I¢) >q- (1 —k- % . m_4) =q/2>0.

Indeed, if the history h occurs, A’ gets a guaranteed profit of 1 from matching ¢ that OPT,,, does not
receive. The expected profit OPT,, gets from having the additional bin available to be potentially

matched to clause balls is at most k - g"”—; -m™?, since each literal bin has at most k clause balls

adjacent to it, each of which has value ?—I: and arrives with probability m™%. As the above would

imply A(Zy) > OPTyn(Zy), we conclude that OPT,,, must match each literal ball that arrives. [

A simple corollary of the above is that O PT,,, gets value of 0.75n in expectation from the literal
balls it matches. Moreover, this lemma gives a natural correspondence between OPT,, on Zs and
algorithms for ¢. The following lemma relies on Lemma 3.4 to bound the value O PT,,, obtains from
the clause balls in terms of the expected number of clauses of ¢ satisfied by OPT,,.

Lemma 3.5. Let B be the gain of OPT,, from clause balls of Z,. Then, for some 6 € [0, 2m~1],

(1 _ m—4)m—1

ELB] = 2k

-OPT,n(¢) + 6.

Proof. By Lemma 3.4, OPT,, matches each arriving literal ball. We consider the following natural
mapping between MAX-SSAT algorithms A on ¢ and families of algorithms F 4 which match each
literal ball in Zy. For odd ¢ < n, an algorithm A’ € F4 matches ball ¢ to bin 77 (x) iff algorithm A
sets x4 to True (False). For even t < n, if ball ¢ arrives, an algorithm A’ € F 4 matches ball ¢ to bin
x¢; this corresponds to nature setting x; = False. Otherwise, bin x; is unmatched up to time m+1,
and we will think of this as nature setting x; = True. (Note that ball ¢ arrives with probability 50%,
so the variables are set to True/False with the correct probability.) Finally, algorithms A" € F4
match each arriving clause ball to some available neighboring bin when possible. A simple exchange
argument shows that OPT,,(Zy) € F4 for some algorithm A.

Let C' be the number of clause balls of Zy that arrive. Then, with probability Pr[C = 1] =
m-m~ . (1 — m™%)™"1 exactly one such clause ball arrives, equally likely to correspond to any
of the m clauses in ¢. On the other hand, a literal x; (respectively, T7) is unmatched by A" € F4
immediately prior to time m+ 1 iff A(¢) or nature set x; to True (respectively, False). We conclude

that Algorithm A’ € F4 gains AW) g‘—: expected value from conditioned on a single clause ball

m

arriving. Thus, the expected gain E[B] of OPT,,(Z,) from clause balls is at least

(1 o m—4)m—1

E[B|>E[B|C=1]-Pi[C =1] = =

: OPT0n<¢) (4)



Let A be the MAX-SSAT algorithm for which OPT,,(Z4) € F4. By the above argument yielding
Equation (4), the expected gain of OPT;,(Z4) from clause balls conditioned on C' =1 is precisely

AG) 1t _ OPTin(8) 1t ®

m 2k — m

Pr[B|C =1] =

Next, we note that the probability that multiple clause balls arrive is inverse polynomial in m.

m m
PriC>2] =% (T) m 1= m )t <Y e <m S mem ™ <2mS (6)
t=2 =2

On the other hand, conditioned on at multiple clause balls arriving, the expected profit of OPT,,
from clause balls is at most

mi

E[B|C’22]§m-%§m5. (7)

Combining equations (5), (6) and (7), we find that the expected gain of OPT5,,(Z,) from matching
clause balls is at most
E[B]=E[B|C=1]-Pr[C =1]4+E[B|C >2]-Pr[C > 2]
_ OPTy(9) m*

c——mem T 1= mm)™ T S 2m

m 2k
_ —4\ym—1
= G”;k) - OPTpn () +2m~ L. O

We now conclude the reduction, and obtain the proof of our hardness result.

Proof of Theorem 1.1. Let «w € (0,1) be the constant from the statement of Lemma 3.1 and ¢ be a
MAX-SSAT instance as in the statement of that lemma. Without loss of generality, we assume that
¢ has no pairs of consecutive variables xor_1 and x9; which appear in no clauses. (Else, we remove
these variable pairs and relabel the remaining variables while preserving parity of indices. This
does not change the clauses, nor does it change the expected number of clauses satisfied by OPTy,,.)
Next, let Zy be the obtained RIDEHAIL instance from the (clearly polynomial-time) reduction of this
section; note furthermore than 7 has all weights and inverse arrival probabilities bounded above by
some polynomial in the size of the input. From Lemma 3.4, the expected gain of OPT,,(Zs) from
literal balls is 0.75n. Combining this with Lemma 3.5 we find that for v := % and some
§ €1[0,2m™1],
OPT,,(Zy) =0.75n+ v - OPTpn () + 0.

Next, since ¢ is a 3-CNF formula with at least half its variables appear in at least one clause, the
number of variables is at most n < 6m. Moreover, since setting all variables randomly satisfies at
least half of the clauses in expectation, we have m/2 < OPT,,(¢). Combining these two observations,
we get

0.75n < n < 12- OPTy, (), (8)

Next, let Q@ = v - OPTpn(¢) + 6, Q' = 0.75n, and 3 = % Note that '/Q < B by Equation (8),

and that 8 = O(1), since k = O(1). Therefore, by Fact 2.1, for the constant o/ := (%W),
which is in the range (0, 1) for sufficiently large m, an o/-approximation to OPTy,(Zy) = OPT,,(¢)+
0.75n = Q+Q' yields an - (y+2m 1) /y-approximation of Q € [y-OPTp,(6), (v+2m~1)-OPT,,(¢)].
By scaling appropriately, this yields an a-approximation to OPT,,(¢), which is PSPACE-hard to

obtain, by Lemma 3.1. The theorem follows. O



4 Algorithmic Results

In this section we give an algorithm to approximate the profit of OPT,,, for any joint distributions
over edge weights of each ball .

Theorem 1.2. There exists a polynomial-time online algorithm which is a 0.51-approximation of
the optimal online algorithm for the RIDEHAIL problem.

An LP Relaxation. Our starting point is a linear program (LP) called LP-Match, which we show
upper bounds the gain of any online algorithm for RIDEHAIL. Below, the variables we optimize over
are {z;}, which we think of as “the probability that the online algorithm matches ball ¢ to bin ¢".
Recall that ball ¢ arrives with probability p;.

LP-Match: max Z Wit - Tit

it
s.t. in,t <1 for all 4 9)

t
Z zit < Py for all ¢ (10)

i
Tip < pi- (1 - th> for all i,t (11)

<t

xip >0 for all 7, (12)

Denoting by LP-Match(Z) the optimal value of LP-Match on Instance Z, we have the following.

Lemma 4.1. For any RIDEHAIL instance Z, we have that
LP-Match(Z) > OPT,,(Z).
The above lemma is implied by [49]. For completeness, we provide a proof of this lemma below.

Proof. Let 7, denote the probability that O PT, matches bin ¢ to ball {. We note that 2™ constitutes
a feasible solution for LP-Match because (i) the probability OPT,, matches a bin i is at most 1,
(ii) the probability OPT,, matches a ball ¢ is at most p; (the probability that ¢ arrives), (iii)
the probability OPT,, matches a bin i to a ball ¢ is at most p; (the probability ¢ arrives) times
1 — >,y (the probability that ¢ is not matched by time ¢),> and (iv) these probabilities are
non-negative. On the other hand, for this z7,, the objective of LP-Match is precisely the expected
profit of OPT,, on this instance, and therefore LP-Match(Z) > OPT,,(Z). O

4.1 The Algorithm

Given a solution to LP-Match, whose objective upper bounds OPT,, by Lemma 4.1, a natural ap-
proach to approximate O PT,, is to round this solution online. By simple “integrality gap” examples
(see Appendix C), this is impossible to do perfectly. Instead, we show how to do so approximately,
by rounding a solution to LP-Match while only incurring a 1/2+ ¢ multiplicative loss in the rounding,
for the constant ¢ := 0.01.

For notational simplicity, assume without loss of generality that an optimal solution to LP-
Match to the input instance 7 satisfies all Constraints (10) at equality, i.e., >, z;+ = p; for all balls
t. This can be guaranteed by adding a dummy bin 4; for each ball ¢ with w;; = 0, and setting

2This uses the fact that arrival of ¢ is independent of the online algorithm’s previous choices. Note that this con-
straint is not valid for the probabilities induced by an offline algorithm, so our LP does not upper bound OPTo¢¢(Z).
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Ti, < Pt — »_; Tiy. These dummy edges do not affect the gain of OPT,,, nor that of the online
algorithm.

After computing a solution to LP-Match as above, our algorithm proceeds iteratively as follows.
For each time ¢, if ball ¢ arrives, we pick a single bin ¢ with probability x;./p:, and if this is bin
is vacant (unmatched), we match (i,¢) with some probability ¢; ;. (We sometimes refer to this as i
accepts t.) If this did not result in ¢ being matched, we repeat the process a second time, but this
time we match ¢ to its picked bin ¢, provided ¢ is vacant, and the edges until time ¢ have nearly
saturated Constraint (9) for i. See Algorithm 1.

Algorithm 1 Rounding LP-Match Online

solve LP-Match for {z;}

add dummy neighbor for each ¢ so that ), z;; = ps

M0

for all balls t =1,2,... do

pick a single bin ¢ with probability

if 7 is unmatched in M then

with probability g, = min (1, ;=2 ) do
M = MU{(i, )} |

if ¢ is still unmatched in M then

pick a single bin ¢ with probability

Ti,t
Pt

Tit
Pt
if ¢ is unmatched in M and ), _, z; s > ig—;g then
| M MU{G,1)}

: Output M

,_.
e

—=
N =

—
w

By Constraint (10), Lines 5 and 10 are well-defined. Also, by Constraint (9), Line 8 is well-defined
since ¢ < 1/2. We also note that the algorithm clearly outputs a matching.

As we shall show, our Algorithm 1 fares well in comparison to OPT,,(Z). In particular, we will
show the following per-edge guarantees.

Theorem 4.2. Fach edge (i,t) € E is matched by Algorithm 1 with probability at least
Pri(i,t) e M] > x4 - (/24 ¢).

Theorem 4.2 implies that our algorithm is a polynomial-time 0.51-approximation of the optimal
online algorithm, thus proving Theorem 1.2.

Proof of Theorem 1.2. All steps of Algorithm 1, including solving the polynomially-sized LP in
Line 1, can be implemented in polynomial time. The approximation ratio follows directly from
linearity of expectation, together with Lemma 4.1 and Theorem 4.2. O

The remainder of this section is dedicated to proving Theorem 4.2. To this end, we consider two
events for edge (7,t) being matched—depending on whether it was matched as a first pick or second
pick, in Line 8 or Line 12, respectively. We bound the probability of an edge being matched either
as a first pick or as a second pick in the following sections.

4.2 Analysis: First Pick

In this section we bound the probability of an edge being matched as a first pick. That is, the
probability that edge (i,t) is added to M in Line 8. We start with the following useful definition.
1/2—c

Definition 4.3. Ball ¢ is early for bin i if ), _, z; < ﬁ Otherwise, it is late. Edge (i,t) is early

(late) if ¢ is early (late) for i. We use F; and L; to denote the early and late balls for i, respectively.

11



Intuitively, a ball is late for bin 7 if most balls ¢’ (weighted by z; #-value) precede t. Note that
the early/late distinction determines whether or not the probability g;; in Line 8 is 1. In particular,
this probability is less than 1 only if (7,t) is early, and equal to 1 when (i,t) is late. We will use this
observation frequently in the subsequent analysis.

For every (i,t), we let V;; be an indicator random variable for the event that bin ¢ is vacant (i.e.,
unmatched) at time ¢t. We additionally let M; C M denote the edges in M added as a result of a
bin i accepting a ball’s first pick (i.e., in Line 8), and My C M denote the edges in M added as a
result of a bin ¢ accepting a ball’s second pick (i.e., in Line 12). Note that M = M; LI Ms.

The next lemma bounds the probability of an edge (i,?) being matched as a first pick (in Line 8).

Lemma 4.4. If edge (i,t) € E is early, then
Pr((i,t) € Mi] = xis - (Y2 + ).
In addition, for any edge (i,t) € E,
ziy - (/2 —3c) < Pr[(i,t) € Mq] < iy - (Y2 + ).

Proof. Fix i. We prove by strong induction that these bounds hold for all edges (i,t') with ¢ < t.
The base case, for t = 1, is vacuously true. Assume the claim holds for all ¢’ < t; we will prove it
holds for t as well.

The event (i,t) € M requires that ball ¢ arrives and bin 4 is picked in Line 5, that bin 4 is vacant
at time ¢, and that bin 7 accepts the offer. Note that ¢ being vacant at time ¢ is independent from
the arrival of ¢, and the first pick of ¢. Therefore,

Pr{(i,t) € Mu] = @iy - Pr[Vig] - gig- (13)
For this reason, we turn our attention to bounding the probability of ¢ being vacant at time ¢,

Pr(Vi ] =1-> Pr[(i,t') € M| =1-) Pr[(i,t') € My] = > Pr[(i,t') € My]. (14)

<t t'<t t'<t

First, the inductive hypothesis and the definition of z; ; imply the following upper bound on Pr[V;;].

PrVig ] <1— Y Pr((i,t) e Mi]=1- > xp-(12+0). (15)
t/<t, t/<t,
t'eE; t'eE;

If (4,t) is early, this bound is tight because (i,t') is early for any ¢ < t; hence, for early (i,t) we
. 1/24+
have that Pr[V;;] =1 -3, _, z;¢ - (}/2+ ¢). Recalling that ¢;; = I_Et/<t/$i,;'(1/2+c

Equation (13) then implies that Pr[(i,t) € Mi] = x;; - (1/2+ ¢) for early edges (i,1).
If (i,t) is late, then Zt,<t7t,€Ei Tip =D pep, Tip > % Hence, by Equation (15) we have that

y for early (i,t),

/g —
Pr[Vi,] <1 <£ - Z) (Yo tc) =12t (16)
Again, Equation (13) then implies that Pr[(i,t) € M| < ;- (1/2 + ¢) for late edges (4,1).

Finally, we lower bound Pr[(i,t) € Mj] for late (i,t). To do so, we lower bound Pr[V;]; here,
our analysis must account for the fact that late edges can be matched in either M7 or Ms. Hence,
we first note that for any ¢ < ¢ that is late for ¢, we have, similarly to Equation (15) that the
probability of edge (i,t') being matched as a second pick is at most

Pr((i,t) € Ms] < @i - PrlVig] < mipr - (12 + ). (17)
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Now, combining equations (14) and (17), we lower bound Pr[V;;] as follows:

Pr(Vig > 1= wiw - (o +¢) = S mip- (Yot o) > 1— (ot c)— <1 - VZC) (et

1
o tt/,;; /2+c
which simplifies to
PrVi: > 1/2 — 3c. (18)
Again, Equation (13) then implies that Pr[(i,t) € M;] > x; - (1/2 — 3¢). O

The proof of Lemma 4.4 yields upper and lower bounds on Pr[V; ;] (equations (15), (16) and (18)),
which will prove useful later. For convenience, we extract these bounds in the following corollary.

Corollary 4.5. For any edge (i,t), we have that Pr[V;,] > 1/2—3c. For any late (i,t), we have that
Pr[Vii] < Y2+ c. For any early (i,t), we have that Pr[Vi] =1 =3, _, xiy - (Y2 +c).

Given Lemma 4.4, in order to prove Theorem 4.2, we wish to prove that the second attempt of
t to match will ensure late edges (7,t) a probability of at least x;; - 4c of being matched. This is the
meat of our analysis, and the next section is dedicated to its proof.

4.3 Analysis: Second Pick

In this section we prove that the second pick of ball ¢, in Lines 9-12, does indeed increase the
probability of late edges (i,t) to be matched. In particular, we prove the following theorem.

Theorem 4.6. For any late edge (i,t) € E,
Pr[(i,t) € Ma] > x; - 4e.

Before proving the above theorem, we provide some useful intuition and outline the challenges
the proof of Theorem 4.6 needs to overcome.
By Lemma 4.4, the probability of a late edge (i,t) being matched as a first pick is at least

Pr{(i,t) € Mq] > i - (Y2 — 3¢). (19)

Moreover, by the same lemma, each edge (i,t) € E (whether early or late) is matched as a first pick
with probability at most Pr[(i,t) € M;] < z;+- (1/2+ ¢). Denote by A; the event that ¢ arrives and
denote by Uj(t) the event that ¢ is unmatched after its first pick of i; = j. Then, we have

Pr[Ui(t) | As i1 = j] =1 =Pr[Vj] - qj.

If (j,t) is late, then because Pr[V;;] < 1/24 ¢ by Corollary 4.5, the above quantity is at least 1/2 —c.
If (j,t) is early, then because Pr[V;;] =1 -3, _, x4 (1/24 c), by Corollary 4.5, combined with the
definition of g;;, we have that the above quantity is exactly equal to 1/2 — ¢. In summary,

Pr[U(t) | Agiy = §] > 12 —c. (20)

Now, we recall that for late edges (i,t), we have that ¢;; = 1. So, a late edge (4,t) is matched
iff ¢ is vacant by time ¢ and ¢ is picked in Line 5 or Line 10. One might then be tempted to guess
that Pr[(i,t) € My | Ui(t)] is equal to Pr[(i,t) € M;], which by (19) and (20) would imply that
Pr{(i,t) € Ma] > mis- (Y2 —c¢) - (/2 — 3¢c) > x;4 - 4c (the last inequality using ¢ < 0.01), as desired.
4.3.1 The Key Challenges

There are two key issues with the simplistic argument above.
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Challenge 1: Re-drawing . Unfortunately, conditioning on Uj(t) does not result in the prob-
ability of (i,¢) being matched in the second pick equalling that of it being matched in the first
pick. To see this, suppose a ball ¢ was late for a single bin 4, and z;;/p; = 1. In that case,
conditioning on Ui (t) is equivalent to conditioning on 4 being occupied (matched) before time ¢.
Consequently, for this late edge (i,t), we have that Pr[(i,t) € M1] > x;; - (1/2 — 3¢) by Lemma 4.4,
while Pr{(i,t) € My | Ui (t)] = 0, which implies that the second pick does not increase the probability
of (i,t) to be matched at all, as Pr[(i,t) € Ms] = 0(!).

This is where Constraint (11) of LP-Match comes in: This constraint implies that if ¢ is late for
bin 4, then the probability that ¢ was picked in Line 5 at time ¢ conditioned on arrival of ¢ is at most

Tit 2 —¢ 2¢
—’<1—Zx”/<1— = < 4e.
< v < - : <

Dt et f2+c  12+4c

This implies that there is a (high) constant probability of ¢ not being picked in Line 5.

Lemma 4.7. For any late edge (i,t), for iy the bin picked in Line 5 at time t,

Priiy #i| A > 1 —4e.

Challenge 2: Positive Correlation Between Bins. Lemma 4.7 alone does not resolve our prob-
lems. Suppose that ball ¢ is late for all bins for which z;; # 0, and all these bins have perfectly
positively correlated matched status, i.e., V;; = V;; for all bins 4,j always. If this were the case,
then we would have that Pr[V;, | Ui(t)] = 0, since if ¢ is not matched to its first ¢y, then ¢; and ¢
must both have been matched before. This again would result in Pr[(i,t) € Ma] = 0.

To overcome the above, we show that the above scenario does not occur. In particular, we
show that while positive correlations between different bins’ matched statuses are possible, such
correlations cannot be too large. More formally, we show the following.

Lemma 4.8. For any time t and bins i # j, we have that
COV(‘/%7t, V}‘ﬂf) S 12c¢.

The crux of our analysis is proving Lemma 4.8. Using it, we will be able to argue that for any
late edge (i,t), the probability that i is free at time ¢, conditioned on Uj(t) and on the first pick
satisfying i1 # i (a likely event, by Lemma 4.7), is not changed much compared to the unconditional
probability of i being free at time ¢. In particular, this implies that the probability of (i,¢) being
matched as a second pick, conditioned on U (%), is not too much smaller compared to its probability
of being matched as a first pick. In particular, we will show that Pr[(i,t) € Ma] > z;; - 4c, for
sufficiently small ¢ > 0, as stated in Theorem 4.6.

We prove that lemmas 4.7 and 4.8 indeed imply Theorem 4.6, as outlined above, in Section 4.3.3.
But first, we turn to proving our key technical lemma, namely Lemma 4.8.

4.3.2 Bounding Correlations of Occupancies

To bound the correlation of vacancy indicators, it is convenient to define the indicator random
variable O; ; := 1—V; 4, which indicate whether ¢ is occupied (i.e., matched) at time ¢. We additionally
decompose the variables O;; into two variables, based on whether i was matched (became occupied)
along an early or late edge. In particular, we let Oft < O; be an indicator for the event that 7 is
matched along an early edge before ¢ arrives. Similarly, we let OiL’t =0, — Oﬂ be an indicator for
the event that i is matched along a late edge before t arrives. To bound the pairwise correlations of
variables O; ;, we will show that Oft contributes most of the probability mass of O;;, and that the
variables Oft and Oft are negatively correlated. To prove this negative correlation, we will prove
the following, stronger statement.
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Lemma 4.9. For any time t, the variables {Oft}i are negatively associated (NA).

Proof. For every edge (i,t), let X;; be the indicator random variable for the event that ball ¢ arrives
and picks bin ¢ as its first pick. Let Y;; ~ Ber (¢;+) be an indicator for the event that bin i accepts,
i.e., it will be matched to ball ¢ if it arrives and picks ¢ as its first pick and 7 is free.

For fixed ¢, the variables {X;;} are 0/1 random variables whose sum is at most 1 always, so
they are NA by the 0-1 Principle (Proposition 2.6). On the other hand, the variables {Y;;}; are
independent, and hence NA. Moreover, {X;};, {Y;+}; are mutually independent distributions, and
so by closure of NA under independent union (Proposition 2.7), we also have that {X;;,Y;.}; is
NA. Likewise, the lists {Xj, Y;+}; are mutually independent as we vary ¢; again using closure of NA
under independent union we find that {X;;,Yi}:+ are also NA.

Fix t. For each bin 4, let ¢; denote the largest ¢’ < ¢ so that (i,¢") is early. We note that bin ¢
cannot be matched as a second pick to any ' < t;. So, it is matched along an early edge before t
arrives if and only if there are some t’ < ¢; and r such that ball ¢’ arrives and picks bin 4, and bin
i accepts the proposal (for the smallest such ¢, bin 7 is guaranteed to be free). Therefore, we have
that

Of = \/ (X AYig).

t'<t;

Note that we have written {OZ + }i as the output of monotone non-decreasing functions defined on
disjoint subsets of the variables in {X;,Y;,}i;. Hence, by closure of NA under monotone function
composition (Proposition 2.7), we have that {O{Et}Z are NA. O

By Proposition 2.8, the above lemma implies that any OE and OE are negatively correlated.

Corollary 4.10. For any time t and bins i # j, we have that Cov(OF, OE)

1,17

We are now ready to prove Lemma 4.8.

Proof of Lemma 4.8. First, we show that the probability of a bin ¢ being matched along a late
edge before time ¢t is small, which we later use to bound the covariance of OiL’t and other binary
variables. First, if (¢,¢) is not late, then trivially, Pr[OZLt] = 0 < 4c. Otherwise, we have that
Dov<tiit) early Tit! = 1§2+ Thus, by Lemma 4.4, we have that Pr[Oft] > Z;z (I/24+¢) =1/2—c.
On the other hand, by Corollary 4.5, we also have that Pr[V;] > 1/2 — 3c. Therefore, we find that
here, too, the probability of O{jt is small.

Pr[O{jt] = Pr[O;+] — Pr[OiEJ] < (Y24 3¢c) — (/2 — ¢) = 4e.
From the above, we find that regardless of whether or not (i,t) is late, we have that
Pr[O}] < 4c. (21)

Therefore, using the additive law of covariance for Cov(O;4+,0j+) = Cov(l — O;4,1 — Oj4) =
Cov(Viz, Vi), we obtain the desired bound,

Cov(Vig, Vjt) = Cov(OF;, + Of, 0F, + OF,)
= Cov(0f, OF,) + Cov(0F,, OF,) + Cov(0},,05,) + Cov(0},,0},)

< 0+ Pr[Of;,,05,] + Pr[O},,0F;] + Pr[O},,0},] Cor. 4.10
<0+ PrjOf] + Pr[Oft] + Pr[oft]
< 12¢. Eq. (21)0O
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4.3.3 Putting it All Together

We are now ready to use weak positive correlation (if any) between vacancy indicators V;; and Vj.
In particular, we will show that the probability of bin ¢ to be occupied a time t is not changed much
when conditioning on A; (arrival of ¢), the first picked bin at time ¢ being i1 # 4, and Uy (¢) (ball ¢
bot being matched to its first pick).

Lemma 4.11. For any late edge (i,t), we have that

Pr(Ois [ Ag,in 7 4, Ur(t)] < Pr{Oig] - (1 " (1/21366)2> .

Proof. To analyze the conditional probability above, we first look at Pr[O;, A¢, i1 = j, Ui (t)]. This
is the probability of bin ¢ being occupied at time ¢, ball ¢ arriving and picking j as its first pick,
and not being matched due to this first pick. Note that A; and the first pick is independent of
bins’ occupancy statuses at time ¢. Additionally, we notice that with probability 1 — ¢;; bin j will
deterministically reject. With probability g, it rejects if and only if j is occupied. So, for any

J#1,
Pr[O;4, Ag,i1 = j,Ui(t)] = Pr[O; 4] - Pr[As, i1 = j] - (1 — q5¢) + @5 - Pr[Oj¢ | Oie]) . (22)

We now turn to relating the last term in the above product, namely (1 —gq;¢)+q;:-Pr[O;¢ | Oi4),
to its "unconditional" counterpart, Pr[U;(t) | A¢, i1 = j] = (1 — gj¢) + gj¢ - Pr[O;,]. For notational
convenience, we which we abbreviate by

zigr = (1= qjt) + ¢t - Pr[Ojs | Oig].

Recalling that Cov(O; ¢, Oj¢) = Cov(Viy, Vi) < 12¢, by Lemma 4.8, we have

PI‘[O‘t Oz t] Pr[Ot] . PI‘[Oz t] + COV(O‘t Oz t) 12¢
P[0, | O] = ——b =it — 212 : 220 < pr(o; . (23
1051 Ol = 56 Pr[O;] < POt 50 &)
Hence,
12¢
zige < (1= qje) + e - | Pr[Oza] + rl0d] (Eq. (23))
12¢
§ (1 — qjvt) + qjit * (PI‘[Oj,t] + 1/2—C> (COI“. 45, c < 1/2)
. . 12¢
= Pr[Ui(t) | As, i1 = j] + g5 - Vo ¢
< Pr{UL(t) | Ayt = 4] - (14 —2C Eq. (20), ¢j4 < 1 24
< PrUs(t) | Ay, iq = j]- +m (Eq. (20), ¢j¢ <1) (24)
Using this bound in Equation (22) and summing over all j # i, we have
. . . ) 12¢
PI‘[OLt, At,’Ll 7é 1, Ul(t)] S PI‘[Oi7t] . PI‘[At, 11 75 1, Ul(t)] . (1 + (1/2—6)2> .
The desired inequality therefore follows by Bayes’ theorem. O

With this lemma in place, we are ready to conclude this section by proving Theorem 4.6, i.e.
that Pr[(i,t) € Ma] > x; - 4c for any late edge (i,1).

Proof of Theorem 4.6. We start by bounding

Pr((i,t) € Ma] > Pr[(i,t) € My | Ay, iy # i, Ui (t)] - Pr[Ap, i1 # 4, Ur(t). (25)
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In words, the probability (i,t) is matched as a second pick is at least the probability of the same
event and i1 # i. By Lemma 4.7 we know that Pr[A;, i1 # i] > p; - (1 — 4c¢); by Equation (20), we
know that Pr[Uy(t) | A, i1 = j] > /2 — ¢ for any j # i. As a consequence, by Bayes’ theorem and
our choice of ¢ < 1/4, we have that

Pr[As, i1 # i, U1 (t)] = Pr[Ag, in # ] - Pr[UL(¢) | As, i1 # 1] > pr - (1 —4e) - (/2 — ). (26)

Next, we note that

Pr[(i,t) € Mo | A, i1 i, Up ()] = 3;: -Pr[Vig | Ae,in #i, Ur(t)] (27)

because conditioned on Ay, picking someone other than 4 first, and being rejected, we will match
(i,t) exactly when ¢’s second pick is ¢ and 7 is vacant.
Lemma 4.11 yields the following lower bound on the probability of [V;¢ | A¢, i1 # i, Ui (¢)]:

PI‘[V;"t ’ At,il 75 i, U1 (t)] =1- PI‘[OZ‘¢ | At, il 75 i, Ul(t)]

zummmy0+(mc)

1/ —¢)?
— Pr[Vi] - (1/21360)2 (1= Pr[V])
12¢

W - (1/2 + 3¢) (Cor. 4.5) (28)

Combining equations 27 and 28 we thus have

12¢
. <1/2—SC—(1/2_C)2'(1/2+36)>. (29)
Putting it all together, equations (25), (26), and (29) and our choice of (sufficiently small) ¢ = 0.01
imply the desired inequality,

Lit

Pr((i,t) € My | Ap,ir # 4, Ur(t)] > )
t

Tt

Pr{(i,t) € Ms] > p; : <1/2 —3c—

(1/21260)2.(1/2+30)> pr-(1—4e)- (Y2—c) > x4 -4c. O

5 Generalizing the Algorithm

Our algorithm and its analysis of Section 4 generalize seamlessly to a setting in which weights of
each online node t are drawn from discrete joint distributions. For brevity, we only outline the small
changes in the LP, algorithm and analysis here.

Problem Statement. We are given a complete bipartite graph, with vertices of one side (bins) give
up front, and vertices of the other side (balls) arriving sequentially, with ball ¢ arriving at time ¢ (with
probability one). The vector of edge weights of any ball ¢, denoted by w' := (w1 ¢, way,...), is drawn
from some discrete joint distribution, w® ~ D;. The vector of all edge weights, w := (w!,w?,...),
is drawn from the product distribution, w ~ D := [[, D;. That is, the weights of any ball’s edges
may be arbitrarily correlated, but weights of different balls’ edges are independent. We assume
that these discrete distributions are given explicitly, e.g., via a list of tuples of the form (v j, py ;)
with p;; := Prp,[w' = v j]. We note that the problem considered in previous sections is a special
instance of this problem with each D; consisting of two-point distributions, with one of the possible
realizations of w! ~ D; being the all-zeros vector.
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Generalizing LP-Match. The generalization of LP-Match now has decision variables y; ; j, which
we think of as proxies for the probability of edge (i,t) being matched by the optimal online algorithm
when ball ¢’s edge weights are w® = v; ;. Generalizing the argument behind Constraint (11), we note
that w! is independent of bin i not being matched by the optimal online algorithm by time ¢. From
this we obtain Constraint (30) below. The remaining constraints of the obtained LP (below) are
matching constraints.

LP-Match-Gen: max Zw%j Yt
i7t?j
s.t. Z Zyi,w‘ <1 for all 4

tog

Z Yitj < DPtj for all ¢, j
i

Yitg <prj- [ 1=D. viwy for all 7,1, j (30)

<t g
Yitj =0 for all 4,t, j

Generalizing the algorithm. Our general algorithm will match each edge (i, ) when w' = vy ;
with marginal probability at least probability

Pr((i,t) € M,w" = vy 5] > yisj- (Y2 +c).

To do so, when ball ¢ arrives, we first observe the realization of the edge weight vector w' = vy ;.

Then, When picking a bin ¢ (either as first or second pick) at time ¢, we now do so with probability
Yi,t,r 1/24-c

Pt,j <t Z]-/ yi’tlyj/'(l/2+c
picked bin ¢ to be matched to ball ¢ by the algorithm. The dummy nodes 4; are now assigned values
Yitj < Dtj — »; Yir,j for each j. Apart from this, the algorithm is unchanged. We note that this

algorithm can be implemented in polynomial time in the size of the input (the representation of D).

. Moreover, we take ¢;; := min (1, = )) to be the probability of a vacant
tl

Generalizing the Analysis. Extending the analysis of Algorithm 1 to this more general problem
is a rather simple syntactic generalization. We therefore only outline the changes in the analysis.
Broadly, all changes needed for the analysis require us to refine our claims as follows. Denote
by R; a random variable denoting the random index of the weight vector of edges of t. That
is, R = j +—= w' = v j. Then, all our bounds for the probability of (i,t) being matched
(as a first or second pick, or either) now need to refer to R; = j, and relate to y; ;. So, for
example, Lemma 4.4 will be restated to show that for each early edge (i,¢) and index j, we have
that Pr[(i,t) € M1, Rt = j| = yitr - (1/2+¢), and for any edge (7,t), we have that y; ¢, - (1/2—3c) <
Pr{(i,t) € M1, Rt = j] < yirr-(Y/2+c¢). Lemma 4.9 requires some care in setting up the NA variables
to prove that Oft are NA, by also accounting for the realization of R;, with indicators [R; = j],
which are NA by the 0-1 Principle (Proposition 2.6). Apart from that, the proofs are essentially
unchanged, except for replacing occurrences of A; by R; = j in every probability conditioned on

arrival of ¢, and appropriately replacing a;’t’t by ypzt#
»J

6 Conclusions and Open Questions

We studied the online stochastic max-weight bipartite matching problem through the lens of approx-
imation algorithms, rather than that of competitive analysis. In particular, we study the efficient
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approximability of the optimal online algorithm on any given input. On the one hand, we show
that the optimal online algorithm cannot be approximated beyond some constant (barring shock-
ing developments in complexity theory). On the other hand, we present a polynomial-time online
algorithm which yields a 0.51 approximation of the optimal online algorithm’s gain—surpassing the
approximability threshold of 1/2 of the optimal offline algorithm. Many intriguing research questions
remain.

First, it is natural to further study the efficient approximability of our problem. We suspect
that much better approximation guarantees are achievable; in particular, [49] suggests a family of
additional constraints strengthening our LP relaxation, possibly leading to improved approximation.
One might also ask if our general algorithmic approach can be extended to implicitly represented
weight distribution D. For example, what can one show if D is itself a product distribution, D; =
IL; Diy, with w;y ~ D;;7 A related interesting question is to obtain better approximation for the
widely-studied special case of balls drawn from some i.i.d distribution (see, e.g., [27, 32, 34, 42, 43]).

More broadly, one might ask how well one can approximate the optimal online algorithm of online
Bayesian selection problems under the numerous constraints studied in the literature, including
matroid and matroid intersections, knapsack constraints, etc. For which of these problems is the
online optimum easy to compute? Which admit a PTAS? Which admit constant approximations?
Which are hard to approximate? We are hopeful that the ideas developed here, both algorithmic, as
well as our new hardness gadgets, will prove useful when exploring this promising research agenda.

Acknowledgements. We thank the anonymous EC’21 reviewers and Neel Patel for useful com-
ments which helped improve the presentation of this manuscript, and we thank the authors of [49]
for drawing our attention to their work.

A Hardness of Computing Approximately-Optimal Online Policies

In this section we justify our claim that a hardness result for approximating the value achieved by
the optimal online algorithm implies a hardness result for the computation of the decisions made
by an (approximately) optimal online algorithm. Let o be as in Theorem 1.1.

Claim A.1. No polynomial-time algorithm computes the decisions made of an online algorithm
which (O‘T‘H)—appmmmates the optimal online RIDEHAIL algorithm, unless PSPACE = BPP .3

Proof. We reduce from the problem of computing an a-approximation to the profit obtained by
OPT,, for a fixed input Z, with polynomially bounded weights and inverse arrival probabilities. Let
OPT denote this profit. Let P denote the maximum possible profit for Z for any realization of the
randomness.

Assume we could compute the decisions made by an algorithm A which achieves an (
approximation. For some parameter 7', use these decisions to run the algorithm on 7' independent
instantiations of a given input and record the profits as X1, Xo, ..., X7. Let X denote the sample
average X := %ZiTzl X;. Using the Chernoff-Hoeffding bound, we can bound the probability X
deviates from its expectation as

Pr UX—E[X]‘ > (120‘ 'OPTH <2 exp (—2T2(1ZX'OPT)2) < exp (—@ (T- OPT2>>.

251).

T - P? p?

Take T = O(n - P?/OPT?); note this is polynomial in the size of the input, as long as all weights
and inverse arrival probabilities of Z are polynomially bounded. Then,

11—«

Pr “X - E[X]’ > < : OPT)] < exp (—0O (n)).

3BPP denotes the decision problems solvable in polynomial times by randomized algorithms which fail with prob-
ability at most 1/3.
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so we can clearly in polynomial time compute a X that is, w.h.p., at most (ITTO‘) - OPT far away

from a (O‘—‘H)—approximation to OPT. In particular,

2
_ 1 _
e lopT (221 opr(222)|.
4 4
We immediately observe that the quantity X — OPT (ITTC“) is hence in the interval [OPT - o, OPT].

Hence, w.h.p., we have given an a-approximation to OPT. As we demonstrated this problem to be
PSPACE-complete, if we can do this in polynomial time w.h.p. then PSPACE = BPP. O

B Omitted Proofs of Section 2

In this section we provide proofs deferred from Section 2, restated below for ease of reference.

Fact 2.1. Let Q,Q" > 0 be positive quantities, such that Q'/Q < B, and let a € (0,1). Then, an

(%g)—approximation to Q + Q' yields an a-approzimation to Q.

atz _ 1— 11—«

Proof. As f(z) = 5 17. Is monotone increasing in x > —1 for a € (0,1), we have that

(Lw) > a+Q'/Q _ aQ+Q’ Thus, An (a+/3

)-approximation to @ + Q' yields a number T in the

16) 2 THQ T Q@ 145
range
a+f
5 (Q+Q).0+Q] cle@+Q.Q+0Q)
1+5
Subtracting Q" from T' then yields a number T'— Q' in the range [o - Q, Q). O

Next, we provide a proof of the underlying PSPACE-hardness result of Condon et al. [11] used
in our reductions.

Lemma 2.3. ([11, Theorem 3.3]) There exist constants k € N and o € (0,1) so that it is PSPACE-
hard to compute an a-approzimation to OPTy,(¢) for a MAX-SSAT instance ¢ satisfying:

1. no random variable appears negated in any clause of ¢, and
2. each random variables appears in at most k clauses of ¢.

Proof. This lemma follows from the proof in [11]; here, we briefly explain why.

In that paper, the authors prove their main result that RPCD(logn, 1) = PSPACE in Theorem
2.4. Using this theorem, they prove that it is PSPACE-hard to approximate MAX-SSAT in Theorem
3.1. In their proof, they start with a language L in PSPACE and an input z, and construct an
RPCDS for L flipping O(logn) coins and reading O(1) bits of the debate. From this, they construct
a MAX-SSAT instance ¢ such that if x € L, all clauses of ¢ can be satisfied with probability 1,
while if # ¢ L there is no way to satisfy more than an a < 1 fraction of the clauses of ¢. Their
construction of ¢ builds a constant-size 3CNF for each possible realization of the O(log n) coin flips,
and takes the conjunction of these 3CNFs. Each constant-size 3CNF has variables corresponding to
the bits of the debate that V' queries for a specific realization of the coin-flips. Hence, to show that
¢ only has each random variable appear in O(1) clauses, it suffices to show that each random-bit in
the RPCDS constructed is queried for only O(1) realizations of the coin flips.

To show this, we turn to the construction of the RPCDS used to prove Theorem 2.4. Via Lemma
2.1, the authors first show that it is sufficient to consider RPCDSs where the verifier can read a
constant number of rounds of Player 1 (and not just a constant number of bits).

In Lemma 2.3, the authors describe their protocol for a verifier V' which can read O(1) rounds of
Player 1. Note that the random coins in this protocol are used to select a “random odd-numbered
round k£ > 1" and a “random bit of round k& — 1 of Player 0." In fact, this is the only time that the
verifier reads a random bit of Player 0. So, in this construction, each random bit is only queried in
O(1) realizations of the coin flips. With Lemma 2.1, the authors transform this RPCDS to one that

20



only reads a constant number of bits. We note that this transformation only impacts the strings
that player 1 writes, and does not affect the coin flips or the bits of player 0 read.

From this, it holds that the MAX-SSAT instance ¢ constructed in Theorem 3.1 has each random
variable appear in O(1) clauses. That instance does not yet satisfy the property that random
variables only appear non-negated. Condon et al. give a fix for this in the proof of Theorem 3.3; we
briefly note that after the modification provided in this proof, it will still hold that random variables
appear in O(1) clauses. O

C LP-Match: Additional Observations

Here we make a few additional observations concerning the usefulness of Constraint (11) and LP-
Match in general, as well as some natural limits to this LP.

First, we note that LP-Match captures the optimal online algorithm precisely for the classic
single-item prophet inequality problem. That is, for RIDEHAIL instances with a single bin 4, solutions
to this LP can be rounded online losslessly.

Observation C.1. LP-Match(Z) = OPT,,(Z) for any RIDEHAIL instance Z with a single bin 1.

Proof. Consider the following online algorithm, which starts by computing a solution i to LP-Match.
Next, upon arrival of ball ¢ with with w;; = w;+, (i.e., Ry =), match (i,t) with probability

yi,t,r

P (1= ey Do Yirar)

This last quantity is indeed a probability, by Constraint 11. A simple proof by induction shows
that for each ¢ and r, we have that Pr[(i,t) € M,R; = r] = y;+,, and consequently Pr[F;,;] =
1-— Zt, <t ZT, Vi, from which we obtain the inductive step, as

Prl(i.) € M, By = 1] = pr, - Yiar | (1 oy zy) -

Pt - (1 - Zt’<t T/yi»tlﬂ‘/) t'<t r’

By linearity of expectation, this online algorithm for instance Z has expected reward precisely

> Wity - Yigr = LP-Match(Z).

i,t,r
Consequently, OPT,,(Z) > LP-Match(Z). The opposite inequality follows from Lemma 4.1. O

On the other hand, for general RIDEHAIL instances, there is a limit to the approximation guar-
antees obtainable using LP-Match. In particular, simple examples show that there is a gap between
the upper bound given by LP-Match and the expected profit of OPT,,, appropriately restricting
the approximation guarantees provable using this LP. This is to be expected, given our work in
Section 3. We present a simple example of such a gap instance below.

Observation C.2. There exists a RIDEHAIL instance T with w;y € {0,1} for all (i,t) € E for
which LP-Match(Z) > 8/7- OPT,,(I).

Proof. We consider an instance Z with three balls and two bins. For k& = 1,2, ball ¢ = k£ has with
probability pi o = 1/2 edge weights w;; = 0 for all i. With the remaining probability py 1 = 1/2, its
edges have weights wy 1, = 1 and wy 3—; = 0. The last ball has weights w3 ;, = 1 for all bins k = 1,2
with probability one. An optimal solution to LP-Match on this Instance Z assigns yy 1 = 1/2 for
k=1,2,and y3 1 = 1/2 for k = 1,2, achieving an objective value of >, , . yi+» = 2. However, with
probability 1/4, both of the first two balls have all their edge weights zerO: and so an online algorithm
can at most achieve an expected value of 7/4. That is, OPT,,(Z) < 7/8 - LP-Match(Z). O
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D Unweighted Hardness

We briefly make the observation that our previous hardness proof also gives a hardness result for
RIDEHAIL instances where all arriving passengers have weight 1. Given the similarity to our previous
argument, we only detail the changes that must be made.

Observation D.1. [t is PSPACE-hard to approximate the optimal online RIDEHAIL algorithm
within a factor 1 — o(1), even for RIDEHAIL instances with binary weights.

Proof. We will simply take the construction from Section 3.2 and make all arriving balls have weight
1. In particular, for an SSAT instance ¢ as in Lemma 3.1, we define the unweighted RIDEHAIL
instance 7y as follows in Figure 2.

Dbt 1 0.5 1 05 ... 05 m* ... m+*

Figure 2: The unweighted RIDEHAIL instance Zy
Bins are labeled by their corresponding literal, while balls are labeled by their weight.

Analogously to Lemma 3.4, we can clearly see that OPT,, matches all arriving literal balls of
T4, and hence gets an expected profit of at least 0.75n. Analogously to Lemma 3.5, breaking into
cases based on the number of arrived balls demonstrates that the expected profit OPT,, will get
from the clause balls is at most

OPT,,(¢) - m™™ - 1 —m Hm L fom™5 =m™ (OPTo () - (1 — m~Hm=1 4 o(1)).
In summary, the profit of OPT,, on the instance Z is
0.75n +m ™ (OPT () - (1 —m™H)™ 1 +6)

for some § = o(1).

Apply Fact 2.1 with Q" = 0.75n and Q = m~*(OPT,,(¢) - (1 — m~4)™"1 +§). Note Q'/Q < B
for 8 = O(poly(n,m)). Hence an (i‘ig )—approximation to @ + Q' yields an a-approximation to
Q. Take « to be a sufficiently large constant less than 1 such that it is PSPACE-hard to obtain an

a-approximation to (). As

a+p l—a 1
1+8 = 148  O(poly(n,m))’
it holds it is PSPACE-hard to obtain an approximation to unweighted RIDEHAIL instances within
a factor of 1 — ~——1—. O
O(poly(n,m))
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