
Use of Machine Learning Models to Warmstart
Column Generation for Unit Commitment

Nagisa Sugishita∗, Andreas Grothey∗, Ken McKinnon∗

2023-12-18

Abstract
The unit commitment problem is an important optimization problem in the energy indus-

try used to compute the most economical operating schedules of power plants. Typically, this
problem has to be solved repeatedly with different data but with the same problem structure.
Machine learning techniques have been applied in this context to find primal feasible solu-
tions. On the other hand, Dantzig-Wolfe decomposition with a column generation procedure
has been shown to be successful in solving the unit commitment problem to tight tolerance.
We propose the use of machine learning models not to find primal feasible solutions directly
but to generate initial dual values for the column generation procedure. Our numerical ex-
periments compare machine learning based methods for warmstarting the column generation
procedure with three baselines: column pre-population, the linear programming relaxation
and coldstart. The experiments reveal that the machine learning approaches are able to find
both tight lower bounds and accurate primal feasible solutions in a shorter time compared
to the baselines. Furthermore, these approaches scale well to handle large instances.

1 Introduction

The unit commitment (UC) problem is an important optimization problem in the energy industry.
Its aim is to compute the optimal operating schedules of power plants for given demand over a
fixed time period. This problem is solved by electricity generating companies on a daily basis to
determine which generators are to be used. The timings of switching the generators on and off and
the amount of power dispatched have to be optimized simultaneously. The decisions in successive
time periods are coupled by ramping limits (the maximum rate of change in power output) and
minimum up/downtime (the minimum number of time periods for a generator needs to stay
on/off after startup/shutdown to prevent damage) constraints, and this gives rise to large-scale
combinatorial problems. Due to their practical importance, they have been extensively studied
over the last few decades. For a recent survey, see van Ackooij et al. (2018).

This work focuses on UC problems that are to be solved repeatedly with different data but
with the same problem structure. This reflects practice: when a UC problem is solved as a
day-ahead planning problem, the characterisations of generators such as generation costs and
ramping rates remain the same across the days, but the problems are solved with different
demand forecasts each day. This makes the problem a good candidate for the use of machine
learning techniques to accelerate the solution.

∗School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh (UK), EH9 3FD,
Email: n.sugishita@sms.ed.ac.uk, a.grothey@ed.ac.uk, k.mckinnon@ed.ac.uk

1

ar
X

iv
:2

11
0.

06
87

2v
2

 [
m

at
h.

O
C

]
 1

5
D

ec
 2

02
3

1.1 Literature Review

ML for Optimization: In recent years, the use of machine learning techniques in optimiza-
tion has been studied extensively, in particular for mixed-integer linear programming (MILP)
problems. For a survey, see Bengio et al. (2021). Hutter et al. (2011) study automatic config-
uration of an MILP solver using machine learning. They use a local search method to find a
configuration with which the MILP solver performs well on a given set of problems. Another
popular application is the acceleration of branch and bound. In branch and bound, the choice of
branching variables has a significant impact on the overall solution time. Khalil et al. (2016) and
Gasse et al. (2019) train machine learning models to predict the output of Strong Branching and
use the trained model as a quick surrogate of Strong Branching to select the variable to branch
on. Other applications of machine learning to branch and bound are summarised in a survey by
Lodi and Zarpellon (2017).

An overview of applications of machine learning techniques to optimization problems specif-
ically in the energy industry is given by Yang and Wu (2021). Various authors focus on the
acceleration of the solution methods for the UC problem. Dalal et al. (2018) propose using a
simple nearest neighbour method to predict the optimal cost. In the training phase, they solve
training instances to optimality and create a dataset of the optimal objective values. Then, given
a test instance, they retrieve the nearest training instance and use the corresponding optimal
value as the prediction. Pineda and Morales (2022) extend the approach to use multiple training
instances and to find a feasible solution. To solve a test instance, they retrieve a prescribed
number of the nearest training instances and the corresponding optimal commitment decisions.
For each of these commitments, the binary variables in the UC problem are fixed to the cor-
responding optimal solution and the remaining continuous variables are optimized. Then, the
solution with the smallest cost among the feasible solutions is adopted. Xavier et al. (2020) use
a modified nearest neighbour method to construct a partial solution. Given a test instance, the
average of the solutions of the nearest training instances is computed. For each binary variable,
if the corresponding average is close to 0 or 1, the variable is fixed to that value. In this way,
some of the binary variables are fixed and the resulting smaller problem is passed to an MILP
solver. With other enhancements, the solver finds a near-optimal solution in a short time. The
focus of these studies and many of the references therein is finding good primal feasible solutions
in a short time. However, these methods do not give bounds on the suboptimality of the output.
Furthermore, they may require a large amount of time to build the training dataset: to get a
single training sample, it is necessary to solve an optimization problem to optimality, and as
the problem size becomes larger, the number of variables to be predicted increases, which may
require larger data sets.

Solution Methods for UC: One popular traditional approach to UC problems is to use
Dantzig-Wolfe decomposition to decompose the problem by generators (e.g., see van Ackooij et
al. (2018)). The reformulated problem is then solved with a column generation procedure. This
procedure can be seen as the dual of a cutting plane approach to Lagrangian relaxation, as is
discussed by Briant et al. (2008). Since the UC problem is an MILP problem, the reformulation
is not exact but a relaxation of the original problem. However, D. Bertsekas et al. (1983) and
Bard (1988) reported that the integrality gap introduced by the reformulation (i.e., the difference
between the optimal objective value and the lower bound provided by the relaxation) is typically
small especially if the problem size is large. In such cases, provided that a primal heuristic finds
a near-optimal feasible solution, Dantzig-Wolfe decomposition is likely to solve the UC problem

2

to a tight tolerance.
Recently, there has been interest in accelerating the column generation procedure using ma-

chine learning. Václavík et al. (2018) use a machine learning model to speed up the solver for the
pricing subproblem. They train a regression model to predict an upper bound of the objective
value of the pricing subproblem, and this upper bound is passed to the optimization solver. Shen
et al. (2022) study the column generation procedure applied to a graph colouring problem. They
use a machine learning model to generate a near-optimal solution to the pricing subproblem.
When their method fails to find a solution to the pricing subproblem that has negative reduced
cost, an optimization solver is used to solve it exactly. Morabit et al. (2021) use a machine
learning model to select columns from equally-promising ones obtained by solving the pricing
subproblem and add them to the restricted master problem (RMP). Their approach is especially
of value when primal degeneracy is present in the problem.

Warmstarted Column Generation: In the aforementioned decomposition-based approaches,
the dual values play a key role, and it is expected that using appropriate dual values as an initial
point will speed up the solution method. One approach to generating such dual values is to solve
an approximation of the original problem and obtain its optimal dual values. Borghetti et al.
(2002) and Schulze et al. (2017) relax the integrality constraints and obtain a continuous relax-
ation. However, the relaxation has a similar number of variables and constraints as the original
problem, and solving it even without the integrality constraints takes significant computational
time. Takriti et al. (1996) drop further constraints such as minimum up/down time constraints
and minimum power output constraints.

A different approach to warmstarting the column generation procedure is to pre-populate
columns in the RMP as is discussed by van Hoai et al. (2005). In this approach, “useful” columns
are added to the RMP first, which requires being able to generate and identify useful columns in
advance. In some applications, such columns may be generated using domain-specific knowledge.
Alternatively, if a family of MILP problems is being solved, the columns generated for previously
solved similar instances may be added.

As we will see in our numerical experiments, when the column generation procedure is applied
to the UC problem, these initialisation methods (e.g., solution of the linear programming relax-
ation (LPR)) can account for a significant part of the total computational time and the quality
of the initialisation has a big effect on the speed of convergence of the column generation pro-
cedure. In this paper, to speed up the initialisation time, we propose to warmstart the column
generation procedure using machine learning techniques. Namely, we use a machine learning
model to generate initial dual values. A model is first trained to output dual values which yield
a tight dual lower bound. After the training, when solving a new instance, the machine learning
model is used with the problem parameter as input to generate dual values. The generated dual
values are then used to warmstart the column generation procedure and the column generation
procedure allows us to further tighten the lower bound and, with the aid of a primal heuristic,
obtain feasible solutions. With this approach, we can exploit the strength of the machine learning
techniques while maintaining the desirable property of the column generation procedure (with
suitable primal heuristics), such as the capability to provide high-quality solutions with very
tight, provable lower bounds. Furthermore, the dimension of the dual variables is much smaller
than that of the primal variables and does not depend on the number of generators but only
on the number of time periods. Therefore we may expect that learning the dual values will be
easier than learning primal solutions directly.

One approach is to train a machine learning model to predict the optimal dual values from the

3

problem parameter values using supervised learning. In the training phase, a solution method
such as the column generation procedure is run on training instances to create a dataset of optimal
dual values. Then, a regression model is trained using the dataset. This is closely related to the
approach studied by Pineda and Morales (2022): they train machine learning models to predict
the optimal primal solution using a dataset of optimal primal solutions, whereas we train the
model to predict the optimal dual values using a dataset of optimal dual values.

In an alternative approach proposed by Nair et al. (2018), a neural network is trained to
maximise the dual lower bound directly, without relying on a pre-built training dataset. In their
study, a dual decomposition is applied to a parametrized two-stage stochastic programming
problem. Using the decomposable structure of the dual lower bound by scenarios, an efficient
stochastic gradient-based method is devised to train the neural network. This only requires
the solution of a single scenario subproblem in each iteration and does not require a dataset of
optimal dual values.

Another possible approach is based on a surrogate model. In the approach we tested, the
surrogate is a regression model trained to predict the value of the dual function given the problem
parameter and dual values. When a test instance is given, the problem parameter is fixed to that
of the test instance, and the dual values are varied to maximise the regression model. The dual
values found in this way are used to initialise the column generation procedure. One drawback
of this approach is the computational time. To obtain the dual values we need to solve an
optimization problem. Although the surrogate model is cheaper to optimize than the original
problem, we found it still takes a longer time than the other approaches. Given this limitation,
we do not consider this approach in this paper. For detailed discussions on this topic, see the
survey paper by Jones (2001).

Contributions: The main contributions of this paper are as follows. Firstly, we demonstrate
the use of machine learning to predict dual values that can be used to initialise the column
generation procedure. By combining the machine learning techniques and the column generation
procedure, we can exploit the strength of the two; namely, fast evaluation of machine learning
techniques and high accuracy of the column generation procedure with provable suboptimality.
This provable suboptimality property is missing in many earlier applications of machine learning
to the UC problem. Secondly, we provide comprehensive numerical experiments to compare the
performance of the proposed approaches on large-scale instances. The performance is measured
both in terms of the tightness of the initial lower bounds and in terms of the solution time
required by the warmstarted column generation procedure to find an accurate primal solution of
proven suboptimality.

The rest of the paper is structured as follows. Section 2 briefly reviews Dantzig-Wolfe decom-
position and the column generation procedure. Section 3 presents methods based on machine
learning models to generate initial values for the column generation procedure. In Section 4 the
proposed approach is applied to large-scale UC problems. Finally, in Section 5 conclusions and
further extensions of this work are presented.

2 Dantzig-Wolfe Decomposition and Column Generation

As noted in Section 1, Dantzig-Wolfe decomposition is known to be effective for the UC prob-
lem. In this section, we briefly review Dantzig-Wolfe decomposition and the column generation
procedure. For further background, see Vanderbeck and Savelsbergh (2006).

4

Consider the following family of MILP problems parametrized by ω:

z(ω) = min
x1,...,xG

G∑
g=1

cg
Txg (2.1)

s.t.
G∑

g=1

Agxg = a(ω),

xg ∈ Xg, g = 1, 2, . . . , G,

where G is the number of subproblems, x1, x2, . . . , xG are vectors of decision variables and

Xg = {xg ∈ {0, 1}n × Rm | Dgxg ≤ dg}, g = 1, 2, . . . , G.

Here, n and m are the number of integer and continuous variables respectively in xg, and for
each g and ω cg ∈ Rn+m, Ag ∈ Rk×(n+m), a(ω) ∈ Rk, Dg ∈ Rl×(n+m), dg ∈ Rl, where k and l
denote the number in each of the corresponding constraints. We assume that Xg is non-empty
and bounded for g = 1, 2, . . . , G, and that the problem (2.1) has a feasible solution for every ω.
To reduce clutter, in what follows we drop the dependence on ω except where this might cause
confusion. We also write x = (x1, x2, . . . , xG) and X = X1×X2×· · ·×XG. In the UC problem,
G is the number of generators, xg ∈ Xg corresponds to a feasible operational plan of generator g,
ω is the vector of demands and the first constraint in (2.1) represents the system-wide constraints
(i.e., the load balance and spinning reserve constraint). The constraint right-hand-side a(ω) has
entries for the demand and spinning reserve. The complete formulation of the UC problem is
given in Appendix A.

In Dantzig-Wolfe decomposition, we consider a relaxation of (2.1), referred to as the master
problem (MP), in which Xg is replaced by conv(Xg), the convex hull of Xg, for every g. Given
the boundedness assumption on Xg the MP can be written in terms of the extreme points
{xgi | i ∈ Ig} of Xg as

min
p

G∑
g=1

∑
i∈Ig

cg
Txgipgi (2.2)

s.t.
G∑

g=1

∑
i∈Ig

Agxgipgi = a, (2.3)

∑
i∈Ig

pgi = 1, g = 1, 2, . . . , G, (2.4)

pgi ≥ 0, g = 1, 2, . . . , G, i ∈ Ig.

This is a linear programming (LP) problem with decision variables pgi (g = 1, 2, . . . , G, i ∈ Ig).
Since the MP is usually too large to formulate and solve explicitly, a column generation

procedure is used. The restricted master problem (RMP) is defined by replacing each Ig in the
MP with a subset Îg ⊂ Ig. We assume that the RMP is feasible (the sets Îg must have suitable
columns to satisfy the requirement of constraint (2.3)) and define y and σg for g = 1, 2, . . . , G to
be the optimal dual values to the RMP corresponding to the restricted version of constraints (2.3)
and (2.4), respectively. To find columns to be added to the RMP, the following subproblems,

5

known as the pricing subproblems, are solved:

rg(y) = min
xg

{(cgT − yTAg)xg | xg ∈ Xg}, g = 1, 2, . . . , G. (2.5)

In the UC problem, this pricing subproblem is a scheduling problem of a single generator: given
a reduced cost cTg −yTAg, it finds the cheapest operational plan for the corresponding generator.
If rg(y) ≥ σg for all g, the RMP already includes all relevant columns and has found the optimal
solution to the MP. Otherwise, the solutions to the pricing subproblems for which rg(y) < σg
are added to the RMP and the above process is repeated.

For each y, a lower bound on the optimal objective value of (2.1) can be obtained using
duality. Let us denote the Lagrangian of (2.1) by

L(x, y) =

G∑
g=1

cTg xg − yT

 G∑
g=1

Agxg − a

 = aT y +

G∑
g=1

(
cTg − yAg

)
xg.

Since the minimisation of L(x, y) over x ∈ X for any y is a relaxation of (2.1), the the optimal
objective value z of (2.1) satisfies

z ≥ min
x∈X

L(x, y) =: q(y), (2.6)

for any y. From (2.5) and the definition of the Lagrangian, it follows that

q(y) = aT y +
G∑

g=1

rg(y). (2.7)

We refer to this value as the dual lower bound.
It is known that the simple column generation approach discussed above suffers from insta-

bility. In the first few iterations, due to the poor RMP model, the column generation proce-
dure tends to output irrelevant dual values. Vanderbeck (2005) refers to this behaviour as the
“heading-in effect”. This is closely related to a well-known instability issue of the cutting-plane
algorithm. See for example the discussion in Chapter XII and XV in the book by Hiriart-Urruty
and Lemaréchal (1993). To tackle the issue, it is necessary to deploy some mechanism to stabilise
the dual values, such as quadratic regularisation of the dual values or the box step method as
described by Briant et al. (2008). In this work, quadratic regularisation of the dual values is used.
We note that regularisation is also used to cope with degeneracy when the RMP is degenerate.
However, in our case, we did not observe any degeneracy of the RMP when solving the UC
problem. The purpose of adding the regularisation in our context is to mitigate the “heading-in
effect”.

Dualizing the RMP and adding quadratic regularisation on the dual values gives

max
y,σ

aT y +

G∑
g=1

σg −
µ

2
∥y − ȳ∥22 (2.8)

s.t. σg ≤ (cg
T − yTAg)xgi g = 1, 2, . . . , G, i ∈ Îg,

y, σ : free,

6

where ȳ is a regularisation centre and µ is a parameter used to adjust the strength of the
regularisation. We refer to (2.8) as the regularised RMP. In the regularised column generation
procedure, the regularised RMP is used in place of the RMP. The optimal solution to (2.8) is
computed and the pricing subproblems are solved based on this solution. The regularisation
centre ȳ is updated to the current dual values y whenever the lower bound (2.7) has improved.
In the following, we normally omit the word “regularised” when we refer to the regularised RMP
or the regularised column generation procedure but add the word “unregularised” when referring
to the one without regularisation (i.e., µ = 0).

2.1 Warmstarting the Column Generation Procedure

In the above algorithm, the dual values y are updated iteratively to provide tighter lower bounds.
It can be shown that the lower bound q(y) is continuous (in fact concave) in y. It follows that
in the case where near-optimal dual values are used as the initial point of the algorithm, the
lower bound in the first iteration will be close to the tightest. Assuming that the lower bound
is sufficiently tight, the algorithm would terminate as soon as a primal feasible solution with
sufficiently small suboptimality was found by primal heuristics. It is therefore expected that
using near-optimal dual values for the initial dual values will help the algorithm to terminate in
a shorter time.

It is worth noting that the regularisation of the dual values as discussed above is crucial in
this context. Without regularisation, even if near-optimal dual values are used as the initial
point, the algorithm is likely to be quite unstable, yielding dual values with poor lower bounds
in the following iterations. See Briant et al. (2008) for further discussion.

As discussed in Section 1, one approach to finding good dual values is to solve an approxi-
mation of (2.1). Let us denote the linear relaxation of Xg by X̄g:

X̄g = {xg ∈ [0, 1]n × Rm | Dgxg ≤ dg}, g = 1, 2, . . . , G.

The linear programming relaxation (LPR) is obtained by replacing Xg with X̄g in (2.1). Borghetti
et al. (2002) and Schulze et al. (2017) solve the LPR to optimality and use the optimal dual val-
ues to the LPR as the initial dual values for the column generation procedure. This approach
does not require any training as is required in a machine learning model. On the other hand,
solving the LPR takes a non-trivial amount of time.

Another approach is to initialise an unregularised RMP with “useful” columns and use the
optimal dual values to the unregularised RMP as the regularisation centre of the following it-
eration. To this end, we need to be able to generate useful columns before running the column
generation procedure. For example, if we solve similar instances sequentially, we may use the
columns generated for the previous instances.

2.2 Initial Dual Lower Bounds in the Column Generation Procedure

We note that the LPR is a relaxation of (2.1) so it gives a lower bound on the optimal objective
value. On the other hand, any dual values give a lower bound on the optimal objective value of
(2.1) by (2.7). In particular, the optimal dual values to the LPR give such dual values. In the
first iteration, the column generation procedure with the LPR initialisation evaluates this lower
bound. It is of interest to compare these two lower bounds. Let x̄∗ and ȳ∗ be any optimal primal

7

and dual values to the LPR, respectively, and let z̄∗ be the optimal primal and dual objective
value of the LPR. Using (2.6) and the fact that X̄ ⊃ X, we have

q(ȳ∗) = min
x∈X

L(x, ȳ∗) ≥ min
x∈X̄

L(x, ȳ∗).

On the other hand, since ȳ∗ is the optimal dual values to the LPR, strong duality (e.g., see D. P.
Bertsekas (2009)) gives

min
x∈X̄

L(x, ȳ∗) = L(x̄∗, ȳ∗) = z̄∗.

Thus, the dual lower bound q(ȳ∗) computed using the optimal dual values to the LPR is at least
as tight as (and probably tighter than) the optimal objective value of the LPR, z̄∗, i.e.,

q(ȳ∗) ≥ z̄∗.

3 Machine Learning Methods to Compute Initial Dual Values

In Section 2.1, we briefly discussed existing approaches to warmstarting the column generation
procedure. In this section, we consider approaches to training a machine learning model to
generate initial dual values for the column generation procedure. In a practical situation, the
goal is to solve the UC problem as quickly as possible. As we will observe in our numerical
experiments, there is a strong connection between solution time and the tightness of the initial
dual lower bound. Thus, we will train a machine learning model to output dual values that yield
a tight dual lower bound (2.7), using this as a surrogate measure of solution time. Below, we
consider two approaches to achieve this goal.

3.1 Machine Learning Model based on Single-Sampling Training

A simple approach to training a machine learning model is to build a dataset of optimal dual
values of training instances and train a regression model to predict the optimal dual values from
the problem parameter. To build a dataset, a set of training instances must be solved for example
with the column generation procedure. This approach based on a dataset of optimal solutions is
used to predict optimal solutions of optimal power flow problems by Guha et al. (2019), Zamzam
and Baker (2020), and Owerko et al. (2020). One can use any prediction model to this end. In
our numerical experiments, we will use the alternatives of a neural network model, a random
forest model and a nearest neighbour model. We refer to this approach in the remainder of the
paper as single-sampling training since this only involves the sampling of the problem parameter
ω.

3.2 Machine Learning Model based on Double-Sampling

A potential drawback of the single-sampling training is the large amount of time required to
solve enough problems to build a sufficiently large dataset. This is especially problematic when
the problem is large. An alternative approach is to train a machine learning model to maximise
the expected dual lower bound directly. This approach can exploit the decomposable structure
of the dual function. This approach was introduced by Nair et al. (2018) and used to solve a
parametrized two-stage stochastic programming problem.

8

A neural network model can be seen as a function f(ω, θ) = y which maps the problem
parameter ω and the model parameter θ to a dual value y. We aim to learn values of the model
parameter θ so that given ω the model outputs a dual value y for which the dual lower bound q(y)
is tight. In this section, we explicitly show the dependency of the lower bound on ω as q(ω, y),
which was suppressed in (2.7). Assume that the distribution of ω is given (e.g., the empirical
distribution based on historical data). Our goal is to maximise the expected lower bound

p(θ) = Eω[q(ω, f(ω, θ))].

From (2.7), it follows that

q(ω, y) = a(ω)T y +
G∑

g=1

rg(y) =
1

|G|

G∑
g=1

(a(ω)T y + |G|rg(y)).

We can interpret the final term as the expectation Eg[q̃(ω, y, g)] where g is uniformly sampled
from {1, 2, . . . , G} and

q̃(ω, y, g) = a(ω)T y + |G|rg(y).

If follows that

p(θ) = Eω,g[q̃(ω, f(ω, θ), g)].

p(θ) can be seen as an expectation over both ω and g. We use the stochastic gradient ascent
method, the standard approach used for training a neural network. That is, we sample ω and
g, compute the gradient of q̃ with respect to θ and make a single gradient ascent step. We then
resample ω and g and repeat the process.

The gradient of q̃ with respect to θ can be computed as follows: fix problem parameter ω
and subproblem index g and compute the dual values y = f(ω, θ) and the component q̃(ω, y, g)
of the dual lower bound corresponding to subproblem g. Suppose that the model output f(ω, θ)
is differentiable with respect to θ and the optimal value rg(y) of the pricing subproblem (2.5)
is differentiable with respect to y (which is the case when the optimal solution to the pricing
problem is unique). Then the gradient of q̃(ω, y, g) with respect to y is given by

∂q̃

∂y
= a− |G|Agx

∗
g (3.1)

where x∗g is the solution to the pricing subproblem g (2.5). Using the chain rule, we obtain

∂q̃

∂θ
= J

∂q̃

∂y
, (3.2)

where J is the Jacobian matrix of the neural network output y = f(ω, θ) with respect to θ, which
is given by automatic differentiation. In this paper, we refer to this approach as double-sampling
training since this involves sampling both the problem parameter ω and the subproblem g.

The procedures of the single and double-sampling training are listed in Figure 1. It is impor-
tant to note that each step of the double-sampling training involves evaluation of (3.2), which
requires the solution of only a single pricing subproblem, which is typically substantially smaller
than the original problem. On the other hand, the single-sampling training requires solving the

9

training UC instances to optimality. Furthermore, the single-sampling training uses the mean
squared error to train a model, that is, the model is encouraged to output the dual values close
to the optimal dual values. However, the dual values close to the optimal values in terms of
the Euclidean distance do not necessarily lead to a tight dual lower bound. In contrast, the
double-sampling training uses the dual lower bound to train the model, which is the metric we
are directly interested in.

One advantage of the single-sampling training is its flexibility. The training is based on the
dataset of the optimal dual values. Once the dataset is built, one can fit models with different
architectures.

• Solve as many training instances of (2.1) with different ω as possible within the training budget.

– Save each problem parameter ω and the corresponding near-optimal dual values.

• Train a regression model.

– Train to predict the optimal dual values from given ω.

• Repeat as often as possible within the training budget:

– Sample problem parameter ω and generator g.
– Compute the gradient of q̃(ω, f(ω, θ), g) with respect to θ using (3.1) and (3.2).
– Do a stochastic gradient step to improve p(θ).

Single-Sampling Training

Double-Sampling Training

Figure 1: Diagrams to show the training procedures. The upper one corresponds to the single-sampling
training while the lower one is to the double-sampling training.

Once a model is trained with the single or double-sampling training, it can be used to compute
initial dual values for the regularised column generation procedure, and it is expected that unlike
solving an approximation such as the LPR the computation will be quick. Furthermore, we later
observe experimentally that the trained model produces high-quality initial dual values, in terms
of both the tightness of the resulting dual lower bound and the solution time of the column
generation procedure when warmstarted from it.

4 Numerical Experiments

In this section, the performance of the dual initialisation methods based on machine learning
models as well as the benchmark initialisation methods is evaluated on UC problems of various
sizes.1 All methods are implemented in Python. IBM ILOG CPLEX 20.1.02 is used as the
optimization solver (the barrier method for the RMP and the branch and bound method for
the pricing subproblems), and PyTorch and scikit-learn are used to implement the neural net-
work models and the random forest models, respectively. The experiments are performed on a
workstation with a 16-core Intel® Xeon® E5-2670 and 126 GB of RAM.

1The source code is available at: https://github.com/nsugishita/ml_to_warmstart_cg
2https://www.ibm.com/products/ilog-cplex-optimization-studio

10

https://github.com/nsugishita/ml_to_warmstart_cg
https://www.ibm.com/products/ilog-cplex-optimization-studio

4.1 Problem

In the experiments, we consider a setup in which UC problems are solved repeatedly with a
fixed set of generators but with different demand forecasts. To assess the scalability, we consider
3 different problem sizes, i.e., problems with 200, 600 and 1,000 generators. In all cases, the
length of the planning horizon is 48 hours with a time resolution of 1 hour. The generator
data is based on Borghetti et al. (2002). Since their sets of generators contain 200 generators
at most, we combine multiple sets to create larger ones. For example, to create a UC instance
with 1,000 generators, we combine 5 distinct 200-generator sets. Each generator is unique and
distinct across the sets so combining these sets does not introduce symmetry. The demand data
is based on the historical demand data in the UK published by National Grid ESO.3 A detailed
description of the problem formulation and implementation details of the initialisation methods
are given in Appendix A.

4.2 Initialisation Methods

The initialisation methods used in the experiments are described below.

4.2.1 Benchmark initialisation Methods.

The first three methods are not based on machine learning models but are evaluated as bench-
marks.

Coldstart: as a naive baseline, column generation is run from initial dual values y = 0. This
method does not require any training.

LPR: this is the method based on the LPR described in Section 2.1. Given a test instance, we
first solve the LPR by CPLEX. Then, the optimal dual values are used as the initial dual values
for the column generation procedure. This method does not require any training. This is the
method used by Borghetti et al. (2002) and Schulze et al. (2017).

Column pre-population: this approach requires training instances to be solved beforehand.
Before the evaluation, for each set of generators, as many training instances as possible are
solved to 0.25% optimality in 24 hours with 8 CPU cores. The number of training instances
solved is reported in Table 1. The training instances are solved using the column generation
procedure with the LPR initialisation and the local search primal heuristic. Implementation
details are given in Appendix B. For each training instance, the problem parameter values and
all the generated columns are saved. To solve a test instance, its problem parameter values (i.e.,
the demands) are compared against those of the training instances. The 70 training instances
with the closest problem parameter values in terms of the Euclidean distance are selected. The
columns of the selected nearest training instances are retrieved and added to the RMP of the
test instances. The RMP is then solved without regularisation and the optimal dual values are
used as the initial dual values. In our preliminary experiments, we observed that including the
pre-populated columns in the RMP increased the RMP solution times significantly and degraded
the overall performance. We therefore discard these columns. The number of nearest neighbours

3https://www.nationalgrideso.com/

11

https://www.nationalgrideso.com/

Table 1: Number of training instances solved

instance size number of training instances solved

200 25,660
600 12,023

1000 8,588

used, i.e., 70, was chosen by exhaustive grid search on a set of validation UC instances which
were different from the test instances and the training instances. That is, the performance of
the column pre-population initialisation with different numbers of neighbours was evaluated and
the number of neighbours with the best performance was chosen.

4.2.2 Machine Learning Methods based on Single-Sampling Training.

The next three methods are based on the single-sampling training and require a dataset of the
optimal dual values of training instances. In our implementation, the datasets created for the
column pre-population initialisation (where the optimal dual values are also stored) are used.

Nearest Neighbour: given a test instance, the four training instances with the closest problem
parameter values are chosen, and the mean of the corresponding optimal dual values are used
as initial dual values. The number of nearest neighbours (i.e., four) is chosen by grid search on
validation UC instances, in the same way as the column pre-population initialisation.

Random forest: a random forest model (Briant et al. (2008)) is trained using the dataset to
predict the optimal dual values given problem parameter values ω. The training of the models
took less than 30 seconds in all cases. We used the default hyperparameter values of scikit-learn.

Neural Network (single-sampling): the neural network model consists of 4 hidden layers
of 1000 units per layer, with skip connections between hidden layers and tanh as an activation
function. The hyperparameters are chosen based on the performance on validation instances.
For more details on model architecture and training procedure, see Appendix C. The time to
train the neural network models was less than 15 minutes in every case.

4.2.3 Machine Learning Methods based on Double-Sampling Training.

The final method is based on the double-sampling training.

Neural Network (double-sampling): the initialisation method based on a neural network
model with the double-sampling training is implemented as described in Section 3.2. The neural
network model has the same architecture as the one used for the single-sampling training. For
each set of generators, a single neural network model is trained with the same training time (24
hours using 8 CPU cores). See Appendix C for more detail on the training procedure.

12

4.3 Evaluation

The initialisation methods based on machine learning models are trained to predict dual values
which give tight dual lower bounds. To evaluate the performance of the methods, we first evaluate
the dual lower bound at the dual values output by the initialisation methods. Then, in the next
experiment, the column generation procedure is run using the initialisation method but without
any primal heuristics and the time to find a near-optimal dual lower bound is measured. In the
final experiment, the column generation procedure is run with primal heuristics and the time to
find a near-optimal primal feasible solution is measured.

4.3.1 Evaluation: Dual Lower Bound

To run the evaluations, 100 test instances of each size were created. For each test instance,
CPLEX was used for two hours to solve it and the best lower bound found within the time limit
was saved (we note that when there is an integrality gap between the Lagrangian lower bound
and the optimal objective value if given sufficient time CPLEX will find a tighter lower bound
than the column generation procedure). Then, the dual lower bounds computed at the dual
values output by the initialisation methods were calculated by (2.7) and compared against the
lower bound found by CPLEX. Table 2 shows the tightness of the dual lower bounds and the
required time (all times in this section are wall clock times) to run the initialisation methods.
The tightness of the dual lower bounds is reported as the average percentage gaps between the
bounds. For comparison, the average gap for the objective value of the LPR (which is also a
valid lower bound) is shown in the table as well (labelled as LPR objective value).

Clearly, coldstart yields poor lower bounds. The performance of LPR initialisation is signifi-
cantly better than coldstart. The column pre-population initialisation method gives even better
lower bounds, and in particular, is the best on 200-generator instances. However, the perfor-
mance is poorer on the largest test instances. The lower bounds of the methods based on machine
learning are comparable, and they give the best lower bounds on large test instances. Among
these methods, the neural network with the double-sampling training performs best on the two
largest instances. The computational time of the column pre-population and LPR initialisation
grows significantly as the problem size increases. On the other hand, the computational time
of the other methods remains small. We note that as discussed in Section 2.2 the optimal LPR
objective value gives a lower bound, but we see from Table 2 that the dual lower bound evaluated
at the optimal dual yields significantly tighter lower bounds.

4.3.2 Evaluation: Column Generation Procedure without Primal Heuristic

Given the dual values computed by the initialisation methods, the column generation procedure
is expected to successively tighten the lower bound. Hence, if the initialisation methods give
good dual values, the column generation procedure is more likely to find a near-optimal dual
lower bound in a short time.

To verify this point, the column generation procedure was run with the initialisation methods,
but without any primal heuristic, until dual values that yield a dual lower bound of a prescribed
suboptimality (0.1%, 0.05% and 0.025%) were found or the time limit of 10 minutes was reached.
We note that, without primal heuristics, the column generation procedure does not provide
upper bounds, and therefore no measure of suboptimality of the lower bounds is available. We
have monitored the progress of the column generation procedure (i.e., the suboptimality of

13

Table 2: Tightness of initial lower bound lb1 (%) and computational time (seconds). The tightness of
initial lower bounds lb1 is measured by comparing it with the best known lower bound lbCPLEX obtained
by running CPLEX for 2 hours and is reported as the percentage of lbCPLEX. The values reported in this
table are average over 100 test instances.

size: 200 600 1000
method lbCPLEX − lb1 time lbCPLEX − lb1 time lbCPLEX − lb1 time

coldstart 99.823 0.0 99.875 0.0 99.882 0.0
LPR (dual lower bound) 0.133 4.6 0.121 18.1 0.092 29.6
LPR objective value 0.193 4.6 0.195 18.1 0.155 29.6
column pre-population 0.019 15.0 0.025 24.2 0.073 34.5
nearest neighbour 0.041 <0.1 0.052 <0.1 0.059 <0.1
random forest 0.056 <0.1 0.062 <0.1 0.064 <0.1
network (single-sampling) 0.047 <0.1 0.047 <0.1 0.048 <0.1
network (double-sampling) 0.048 <0.1 0.037 <0.1 0.026 <0.1

the computed lower bounds) by comparing with the best lower bound computed by CPLEX
beforehand as explained in Section 4.3.1.

Table 3 shows the average computational time and the average number of iterations to find
the near-optimal dual lower bound or until the time limit of 10 minutes was reached, and the
number of problems for which the column generation procedure found a near-optimal dual lower
bound within the time limit. The computational time reported in this table includes the time
to run the initialisation methods such as solving LPR as well as the time to solve the RMP and
the pricing subproblems. For the instances that are not solved within the time limit, the time is
set to be 10 minutes and the number of iterations reached by the 10-minute time limit is used.

Clearly, coldstart initialisation methods are the slowest, followed by the LPR initialisation
method. The methods based on machine learning are the best. On 600-generator instances,
the neural network with the double-sampling training is one of the best methods, and on 1000-
generator instances, it gives the best performance on average (the standard error of the com-
putational time was less than 4 seconds). There is a correlation between the results in Table
2 and Table 3: if an initialisation method outputs dual values with a tight lower bound, the
column generation procedure tends to require fewer iterations. For example in the 200-generator
and 600-generator instances, the column pre-population initialisation outputs dual values with
the tightest lower bound and the column generation procedure requires a smaller number of
iterations than the other methods. However, finding the initial dual values using the column
pre-population approach is very slow compared to double-sampling initialisation and as a result,
the solution obtained using the double-sampling initialisation is on average significantly faster.

4.3.3 Evaluation: Column Generation Procedure with Primal Heuristic

In the previous experiments, the initialisation methods were evaluated in terms of the quality
of the dual lower bounds. This is a natural criterion to evaluate the methods since they are
trained to maximise the dual lower bound. However, in practice, the primary interest is to solve
the original UC instance by finding a good feasible solution. To see the performance of the
initialisation methods in a more practical setup the column generation procedure was run with
primal heuristics until a solution within 1%, 0.5% and 0.25% suboptimality was found or the
time limit of 10 minutes was reached. The description of the primal heuristic used is given in

14

Table 3: Performance of the column generation procedure without primal heuristics. The three columns
labelled as “time”, “iters” and “solved” show average computational time (seconds) and iterations, and
the number of problems solved within the time limit (problems where the column generation procedure
found a near-optimal lower bound), respectively.

0.1% optimality 0.05% optimality 0.025% optimality
size method time iters solved time iters solved time iters solved

200 coldstart 95.9 18.2 100 131.0 21.5 99 181.6 25.6 97
LPR 15.1 3.2 100 23.5 5.5 100 35.8 8.4 100

column pre-population 19.9 1.0 100 19.9 1.0 100 21.2 1.4 100
nearest neighbour 4.3 1.0 100 8.0 2.0 100 21.6 5.3 100

random forest 4.3 1.1 100 9.8 2.5 100 27.6 7.0 100
network (single-sampling) 4.1 1.0 100 6.9 1.8 100 17.7 4.4 100

network (double-sampling) 4.7 1.1 100 9.3 2.2 100 25.3 6.2 100

600 coldstart 422.3 15.6 76 494.2 17.3 52 540.1 18.3 40
LPR 44.1 2.8 100 62.2 4.5 100 78.2 5.9 100

column pre-population 37.9 1.1 100 39.1 1.2 100 42.8 1.5 100
nearest neighbour 12.7 1.2 100 24.5 2.4 100 50.7 4.7 100

random forest 12.3 1.2 100 29.3 2.9 100 55.8 5.3 100
network (single-sampling) 11.4 1.1 100 19.8 1.9 100 39.1 3.7 100

network (double-sampling) 12.7 1.1 100 21.1 1.8 100 37.0 3.1 100

1000 coldstart 450.3 13.3 84 507.4 14.9 73 544.4 16.1 59
LPR 64.2 2.1 100 95.1 3.8 100 117.4 5.0 100

column pre-population 60.6 1.4 100 67.7 1.8 100 76.1 2.2 100
nearest neighbour 23.8 1.5 100 45.4 2.7 100 76.8 4.4 100

random forest 21.4 1.3 100 50.1 3.0 100 83.8 4.8 100
network (single-sampling) 19.2 1.2 100 35.5 2.2 100 62.4 3.7 100

network (double-sampling) 18.6 1.0 100 26.4 1.4 100 48.1 2.5 100

15

Table 4: Performance of the column generation procedure with primal heuristics. The three columns
labelled as “time”, “iters” and “solved” show average computational time (seconds) and iterations, and
the number of problems solved within the time limit (problems where the column generation procedure
found a near-optimal primal solution), respectively.

1% optimality 0.5% optimality 0.25% optimality
size method time iters solved time iters solved time iters solved

200 CPLEX 261.4 - 98 271.3 - 98 392.6 - 94
coldstart 106.7 16.4 100 151.3 20.4 100 237.6 27.2 99

LPR 8.3 1.1 100 18.8 3.4 100 60.8 11.6 100
column pre-population 20.0 1.0 100 21.2 1.3 100 51.8 7.0 100

nearest neighbour 4.8 1.0 100 8.3 1.7 100 34.2 6.8 100
random forest 4.9 1.1 100 9.2 2.0 100 44.4 8.8 100

network (single-sampling) 5.4 1.1 100 12.5 2.6 100 40.9 8.1 100
network (double-sampling) 4.8 1.0 100 8.4 1.7 100 36.6 7.3 100

600 CPLEX 593.2 - 6 594.2 - 5 597.9 - 4
coldstart 416.2 13.9 83 505.3 15.9 53 564.0 17.4 25

LPR 29.1 1.1 100 44.9 2.2 100 93.5 5.7 100
column pre-population 39.0 1.1 100 42.0 1.3 100 59.0 2.4 100

nearest neighbour 12.7 1.0 100 21.8 1.6 100 51.5 3.9 100
random forest 13.1 1.0 100 22.8 1.8 100 56.5 4.3 100

network (single-sampling) 14.3 1.1 100 28.8 2.1 100 53.0 3.9 100
network (double-sampling) 13.3 1.0 100 16.8 1.2 100 44.5 3.1 100

1000 CPLEX 600.0 - 0 600.0 - 0 600.0 - 0
coldstart 508.9 11.8 63 559.5 13.1 36 590.0 14.0 15

LPR 46.5 1.0 100 72.2 2.0 100 131.2 4.6 100
column pre-population 61.9 1.3 100 74.3 1.8 100 112.6 3.4 100

nearest neighbour 19.5 1.0 100 43.3 2.0 100 90.7 4.2 100
random forest 20.8 1.1 100 43.5 2.0 100 98.0 4.4 100

network (single-sampling) 18.9 1.0 100 49.5 2.3 100 94.0 4.4 100
network (double-sampling) 20.1 1.0 100 24.9 1.2 100 65.9 2.9 100

Appendix B.
Table 4 shows the average computational time and the average number of iterations to close

the optimality gap or to reach the time limit of 10 minutes, and the number of problems solved
within the time limit. For comparison, we also solve the extensive form (2.1) to the same
tolerances without decomposition (i.e., by branch and bound) using CPLEX.

These results show that solving the problems without decomposition is the slowest. The other
methods show overall the same trend as Table 3. Solving the problem with coldstart is by far
the slowest in every case. The column pre-population initialisation is slower than the remaining
methods with the loose tolerance (1.0%), but faster than the LPR initialisation method with the
tighter tolerance (0.5% or 0.25%). The methods based on machine learning are faster in all cases
than the LPR, column pre-population and coldstart initialisation methods. When the problem
is small or the tolerance is loose, the neural network with the double-sampling training is one
of the best methods. On the large instances (600 or 1000 generators) with the tight tolerance
(0.5% or 0.25%) it gives the best performance. We note that, as we saw in Table 3, there is
again a correlation between the tightness of initial lower bounds computed by an initialisation
method and the number of iterations required by the column generation procedure. For example,

16

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

Total solution time (seconds)

T
ig

ht
ne

ss
of

in
it

ia
ll

ow
er

bo
un

ds
(%

)

Network (double-sampling)
LPR

Figure 2: Tightness of the initial lower bound vs the total computational time required by the column
generation procedure on 1000-generator test instances

comparing the pre-populate and the double sample results only 2 cases of 9 (the 1% and 0.5%
for 600 generators) are against the trend and in these the deviation is minor.

To observe the effect of the quality of the initial dual values on the time taken by the column
generation procedure more clearly, in Figure 2 the total computational time (0.25% tolerance)
for each 1000-generator test instance is plotted against the tightness of the initial lower bound.
The initialisation methods based on the LPR and the neural network model with the double-
sampling training are compared in the plot. We observe a correlation between the two metrics.
That is, if the lower bound computed in the first iteration of the column generation procedure
is tighter then the total computational time required by the column generation procedure with
primal heuristic tends to be smaller.

A method to generate initial dual values must balance the time to train, the quality of the
dual values and the computational time. One extreme example is the LPR initialisation. It
does not require any offline training. However, it produces dual values with a relatively loose
lower bound and the solution time grows as the problem size increases. The methods based on
machine learning models need offline training, but they run very quickly when solving a new
instance and output dual values with a tight lower bound, resulting in a significant reduction of
the time required to solve new instances.

To clarify this point, Table 5 shows a breakdown of the average computational time of the
column generation procedures applied to the 1000-generator instances for the 100 test cases. The
column labelled ‘Initialisation’ shows the time required to run the initialisation methods. For the
LPR initialisation method this is the time to solve the LPR, while for the column pre-population
initialisation method, this is the time to solve the unregularised RMP. For the methods based
on machine learning, this is the time to evaluate the models. In the case of 1% tolerance, the
time required to solve the LPR is longer than the sum of the time spent on the other routines.
However, as the tolerance becomes tighter, the number of iterations and the time spent in the
other routines increase, and by 0.25% tolerance, the LPR initialisation time is only 25% of the
total time. We see a similar trend if we use the column pre-population initialisation.

17

Table 5: Breakdown of the average computational time (seconds) for 1000-generator case.

tolerance Initialisation RMP Subproblem Primal Heuristic

1% coldstart - 238.9 186.9 90.0
LPR 29.6 0.1 12.2 4.7

column pre-population 34.5 0.7 22.2 4.5
nearest neighbour 0.0 0.1 15.0 4.4

random forest 0.0 0.1 15.6 5.0
network (single-sampling) 0.0 0.1 15.2 3.6

network (double-sampling) 0.0 0.1 16.6 3.4
0.5% coldstart - 269.2 209.7 93.7

LPR 29.6 1.0 28.9 12.8
column pre-population 34.5 2.4 30.6 6.7

nearest neighbour 0.0 0.7 31.1 11.5
random forest 0.0 0.9 30.5 12.1

network (single-sampling) 0.0 0.9 35.4 13.2
network (double-sampling) 0.0 0.2 20.0 4.8

0.25% coldstart - 289.9 222.8 95.9
LPR 29.6 4.8 69.0 27.8

column pre-population 34.5 5.5 59.5 13.0
nearest neighbour 0.0 2.8 65.1 22.8

random forest 0.0 3.5 68.3 26.3
network (single-sampling) 0.0 2.9 67.7 23.4

network (double-sampling) 0.0 1.2 50.0 14.6

5 Conclusion

We have investigated the use of machine learning techniques to accelerate Dantzig-Wolfe decom-
position with a column generation procedure to solve parametrized UC problems. In particular,
we have proposed the use of machine learning models to compute the initial dual values for the
column generation procedure. We have trained machine learning models so that they output
dual values that yield tight dual lower bounds. In contrast to previous approaches which con-
struct primal solutions directly, our approach can deliver an accurate solution as well as obtain
its suboptimality bound, from the column generation procedure.

We have considered two approaches to training a machine learning model. The first approach,
the single-sampling training, was to directly predict the optimal dual values given the problem
parameter values as a standard regression problem. This requires a large dataset of the optimal
dual values of training instances. The second approach, the double-sampling training, was based
on the decomposable structure of the dual function.

We have first evaluated the performance of the machine learning models by computing the
dual lower bounds at the dual values generated by the models. As benchmarks, we have used the
dual lower bounds using the optimal dual values to the LPR, the optimal dual values to the RMP
with pre-populated columns and coldstart with dual values y = 0. The coldstart initialisation
always has the worst dual lower bounds, while the LPR generates dual values with relatively
tight dual lower bounds. The column pre-population initialisation gives the best dual lower
bounds on 200-generator instances, but the performance is poorer on the largest test instances.
The methods based on machine learning yield dual values with significantly tighter dual lower

18

bounds, compared to the bound computed by the LPR, and the best bounds on the larger test
instances. The computational time to solve the LPR or the RMP with pre-populated columns
grows significantly as the instance size becomes larger. However, the computational time to
evaluate the machine learning models remains negligible even with large instances.

To see the effectiveness of the above initialisation methods to warmstart the column gener-
ation procedure, we have evaluated the performance of the column generation procedure when
warmstarted with the dual values obtained by each initialisation method. For this reason, the
column generation procedure was run without any primal heuristics. In this evaluation, the time
required by the column generation procedure to find near-optimal dual lower bounds was mea-
sured. The results revealed that the column generation procedure initialised with any of all the
machine learning based initialisation methods can find a near-optimal dual lower bound more
quickly than with the LPR, column pre-population or coldstart initialisation.

We have also evaluated the performance of the warmstarted column generation procedure in
a more practical setup where a near-optimal primal solution (generator schedule) is sought. In
this experiment, to find primal feasible solutions, the column generation procedure was run with
primal heuristics and we observed the time required to find a primal solution of a prescribed
suboptimality. In the numerical experiments, we observed that solving the UC problem with
decomposition was always faster than solving the problem without decomposition using CPLEX.
We further noted that warmstarting the column generation procedure successfully reduced the
number of iterations and overall computational time to find a solution of prescribed suboptimality
and this was especially dramatic for the initialisation methods based on machine learning. We
observed that the initialisation methods that generate tighter initial Lagrangian lower bounds
produce a better performance of the column generation procedure with primal heuristics. For
example, the initialisation methods based on machine learning outperformed the LPR for all
problem sizes. The numerical experiments also showed that the methods based on machine
learning scale well and can be effective for solving large-scale UC problems. In particular, the
neural network initialisation with the double-sampling training was usually the best, especially
on the large instances (Table 2). One possible reason for the strong performance of the neural
network with the double-sampling training compared to the other machine learning models is
the efficiency of the training. The double-sampling training uses a stochastic gradient method
which exploits the structure of the problem. With the training time we used (24 hours), we do
not observe a significant difference between the methods on 200-generator instances, however,
on larger instances, there were differences between them.

An interesting area for further study is the UC problem with stochastic demand forecasts. In
many solution methods, UC problems with deterministic demand forecasts appear as subprob-
lems and are solved repeatedly. See Takriti et al. (1996) and Schulze et al. (2017) for instance.
Typically the subproblems share the same problem structure and only differ in the cost coeffi-
cients and the demand forecasts. This paper considers only the case where the perturbations are
on the demand but not on the cost. However, the technique we developed is extendable to the
stochastic case and may be equally effective.

A Problem Formulation

We closely follow one of the standard formulations in literature, referred to as the 3-binary
variable formulation by Ostrowski et al. (2012), and formulate the following constraints:

19

• Load balance: Generators have to meet all the demand in each time period (generation
shedding at 0 cost is allowed).

• Reserve: To deal with contingencies, it is required to keep a sufficient amount of backup
in each time period, which can be activated quickly.

• Power output bounds: Each generator’s power output has to be within its limit.

• Ramp rate bounds: Generators can only change their outputs within the ramp rates.

• Minimum up/downtime: If switched on (off), each generator has to stay on (off) for a
given minimum period.

The formulation of the model is as follows.

• Parameters

– G: number of generators

– T : number of time periods where decisions are taken

– Cnl
g : no-load cost of generator g

– Cmr
g : marginal cost of generator g

– Cup
g : startup cost of generator g

– P
max /min
g : maximum/minimum generation limit of generator g

– P
ru/rd
g : operating ramp up/down limits of generator g

– P
su/sd
g : startup/shutdown ramp limits of generator g

– T
u/d
g : minimum up/downtime of generator g

– P d
t : power demand at time t

– P r
t : reserve requirement at time t

• Variables

– αgt ∈ {0, 1}: 1 if generator g is on in period t, and 0 otherwise

– γgt ∈ {0, 1}: 1 if generator g starts up in period t, and 0 otherwise

– ηgt ∈ {0, 1}: 1 if generator g shuts down in period t, and 0 otherwise

– pgt ≥ 0: power output of generator g in period t

• Total cost (the objective to be minimised)

min
T∑
t=1

G∑
g=1

(
Cnl
g αgt + Cmr

g pgt + Cup
g γgt

)
.

• Load balance
G∑

g=1

pgt ≥ P d
t t = 1, 2, . . . , T.

20

• Reserve
G∑

g=1

(Pmax
g αgt − pgt) ≥ P r

t t = 1, 2, . . . , T.

• Power output bounds

Pmin
g αgt ≤ pgt ≤ Pmax

g αgt g = 1, 2, . . . , G, t = 1, 2, . . . , T

• Ramp rate bounds

pgt − pg t−1 ≤ P ru
g αg t−1 + P su

g γgt g = 1, 2, . . . , G, t = 2, 3, . . . , T.

pg t−1 − pgt ≤ P rd
g αgt + P sd

g ηgt g = 1, 2, . . . , G, t = 2, 3, . . . , T.

• Minimum up/downtime

t∑
u=max{t−Tu

g +1,1}

γgu ≤ αgt g = 1, 2, . . . , G, t = 1, 2, . . . , T

t∑
u=max{t−Tu

g +1,1}

ηgu ≤ 1− αgt g = 1, 2, . . . , G, t = 1, 2, . . . , T

• Logical constraints (to enforce binaries to work as we expect)

αgt − αg t−1 = γgt − ηgt g = 1, 2, . . . , G, t = 2, 3, . . . , T

1 ≥ γgt + ηgt g = 1, 2, . . . , G, t = 1, 2, . . . , T

B Implementation Details

In the numerical experiments, a regularised column generation procedure is used. Initially, the
regularisation centre is set to the dual values given by the initialisation method. In each iteration,
a lower bound is evaluated using the current dual values and the regularisation centre is updated
to the current dual values if the lower bound gets improved. Furthermore, if the lower bound
improves, the regularisation parameter is divided by two, and otherwise multiplied by two. This
closely follows the implementation of the column generation procedure described by Schulze et al.
(2017).

In every iteration, after the pricing subproblems are solved, a primal heuristic based on local
search is run. Given the solutions to the pricing subproblems, this primal heuristic checks the
feasibility and if necessary switches on the cheapest available generators to make the solution
feasible. Note that the solutions to the pricing subproblems are feasible generator schedules
and infeasibility only arises from an insufficient generation capacity to meet the demand or
insufficient reserve. This primal heuristic loosely follows that proposed by Guan et al. (1992).
In our experiments, we observe that it usually finds near-optimal primal solutions when the dual
values get close to optimal. If the column generation procedure using the local search primal
heuristic fails to find a primal feasible solution satisfying the given optimality tolerance within

21

30 iterations, we use in addition a column combination primal heuristic. Then in the subsequent
iterations, we use both of the primal heuristics (the two primal heuristics are independent of each
other). The column combination primal heuristic is a popular primal heuristic in the column
generation procedure in general. The idea of this heuristics is to solve (2.1) with restricted
patterns of solutions, referred to as restricted master IP by Vanderbeck (2005). In the kth
iteration, we replace Xs in (2.1) with {x(k−l)

s }l=0,1,2 where {x(k−l)
s }l=0,1,2 are solutions to the

sth pricing subproblem found in the current iteration and or the previous two iterations. The
resulting problem is still a mixed-integer programme but the solution space is much smaller than
the original problem. In our numerical experiments, we observed that the problem is feasible
without the need to add artificial variables (columns).

C Hyperparameters for the Neural Networks

The model consists of 4 hidden layers of 1000 units per layer, with skip connections between
hidden layers as described by De and Smith (2020). The structure of the network is visualised
in Figure 3. The tanh function is used as an activation function. These hyperparameters were
chosen by grid search, as discussed in the end of this section. The weights in the linear trans-
formation are initialised based on the methods of Glorot and Bengio (2010). All biases and the
weights on the residual connections are initialised to zero.

input

linear

activation

linear

activation

α

linear

activation

α

linear

output

Figure 3: The structure of the neural network model with skip connections. For a more detailed
explanation of the architecture, see De and Smith (2020).

For the single-sampling training, we use the dataset of the optimal dual values of training
instances. We split the dataset into a training set (80%) and a validation set (20%). The Adam
method (Kingma and Ba (2015)) is used to learn the parameters of the neural network. After
each epoch, we evaluate the mean squared error on the validation set. If it does not improve for
successive 4 epochs, we halve the learning rate. If it does not improve for successive 12 epochs,
we terminate the training to avoid overfitting.

For the double-sampling training, we also use the Adam method (Kingma and Ba (2015)).
The model performance is evaluated every 5 minutes by computing the dual lower bound on
validation instances using the output of the neural network. To this end, 10 validation instances
are sampled, which are distinct from the instances used to train the model (i.e. compute (3.2))
and to test the final performance (reported in Table 3, 4). If it fails to improve the performance
for successive 15 minutes, the learning rate is divided by 1.5. In our experiment, we did not
observe overfitting. However, if this became an issue, we could use regularisation such as dropout,
as proposed by Cobbe et al. (2019).

As discussed earlier in this section, the number of layers and the activation function were
chosen by grid search. Models with 3, 4 and 5 layers and with tanh and relu were trained on the
200-generator case. Table 6 reports the performance of the trained models in the same format

22

Table 6: Tightness of lower bound computed with the output of the neural networks. The tightness is
measured by comparing it with the best known lower bound lbCPLEX obtained by running CPLEX for 2
hours and is reported as the percentage of lb∗.

activation number of layers lbCPLEX − lb1

tanh 3 0.0239
4 0.0228
5 0.0239

relu 3 0.0462
4 0.0480
5 0.0479

Table 7: Difference of primal and dual values between training and test instances.

size difference in terms of primal values (%) difference in terms of dual values (%)

200 2.93 6.85
600 2.88 5.99
1000 2.80 7.09

as Table 2. The instances used in Table 6 are different from the training, validation (used to
monitor the progress of the training) and test instances.

D Statistics Relevant to Training

Table 7 shows the difference between training and test instances. For each test instance the
commitment decision of the nearest training instance ptrain and the commitment decision of the
test instance ptest was compared using the Hamming distance:

Difference in terms of primal values (%) =
Hamming distance of ptrain and ptest

the number of commitment decisions in ptest · 100.

The average of the above quantity using 40 test instances was computed and shown in the
middle column of Table 7. Similarly, the distance between the optimal dual values of the nearest
training instances and the test instances was computed. For each test instance, the nearest
training instance is obtained. Then, the optimal dual values of the training instance and the test
instance (dtrain and dtest, respectively) and the following metric is computed:

Difference in terms of dual values (%) =
∥dtrain − dtest∥2

∥dtest∥2
· 100.

The average is shown in the right-most column in the table.

References

Bard, J. F. (Sept. 1988). “Short-term scheduling of thermal-electric generators using Lagrangian
relaxation”. In: Operations Research 36.5, pp. 756–766. doi: https://doi.org/10.1287/
opre.36.5.756.

23

https://doi.org/https://doi.org/10.1287/opre.36.5.756
https://doi.org/https://doi.org/10.1287/opre.36.5.756

Bengio, Y., A. Lodi, and A. Prouvost (2021). “Machine learning for combinatorial optimization: a
methodological tour d’horizon”. In: European Journal of Operational Research 290.2, pp. 405–
421. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063.

Bertsekas, D. et al. (1983). “Optimal short-term scheduling of large-scale power systems”. In:
IEEE Transactions on Automatic Control 28.1, pp. 1–11. issn: 0018-9286.

Bertsekas, D. P. (2009). Convex optimization theory. Belmont, Massachusetts: Athena Scientific.
isbn: 1886529310.

Borghetti, A. et al. (2002). “Lagrangian heuristics based on disaggregated bundle methods for
hydrothermal unit commitment”. In: IEEE Power Engineering Review 22.12, pp. 60–60. issn:
0272-1724. doi: https://doi.org/10.1109/TPWRS.2002.807114.

Briant, O. et al. (2008). “Comparison of bundle and classical column generation”. In: Mathemat-
ical Programming 113.2, pp. 299–344. issn: 0025-5610. doi: https://doi.org/10.1007/
s10107-006-0079-z.

Cobbe, K. et al. (Sept. 2019). “Quantifying generalization in reinforcement learning”. In: Pro-
ceedings of the 36th international conference on machine learning. Ed. by Kamalika Chaud-
huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 1282–1289. url: https://proceedings.mlr.press/v97/cobbe19a.html.

Dalal, G. et al. (2018). “Unit commitment using nearest neighbor as a short-term proxy”. In:
2018 power systems computation conference, pp. 1–7. doi: 10.23919/PSCC.2018.8442516.

De, S. and S. Smith (2020). “Batch normalization biases residual blocks towards the identity
function in deep networks”. In: Advances in neural information processing systems. Ed.
by H. Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 19964–19975. url: https :
//proceedings.neurips.cc/paper/2020/hash/d5ade38a2c9f6f073d69e1bc6b6e64c1-
Abstract.html.

Gasse, M. et al. (2019). “Exact combinatorial optimization with graph convolutional neural
networks”. In: Advances in neural information processing systems 32. Ed. by H. Wallach et
al. Curran Associates, Inc., pp. 15580–15592.

Glorot, X. and Y. Bengio (Jan. 2010). “Understanding the difficulty of training deep feedforward
neural networks”. In: Journal of Machine Learning Research - Proceedings Track 9, pp. 249–
256. url: http://proceedings.mlr.press/v9/glorot10a.html.

Guan, X. et al. (1992). “An optimization-based method for unit commitment”. In: International
Journal of Electrical Power & Energy Systems 14.1, pp. 9–17. issn: 0142-0615. doi: https:
//doi.org/10.1016/0142-0615(92)90003-R.

Guha, N. et al. (2019). “Machine Learning for AC Optimal Power Flow”. In: The 36th Interna-
tional Conference on Machine Learning. Climate Change: How Can AI Help?

Hiriart-Urruty, J. and C. Lemaréchal (1993). Convex analysis and minimization algorithms ii.
Grundlehren der mathematischen Wissenschaften 306. Berlin: Springer. isbn: 978-3-642-
08162-0. doi: 10.1007/978-3-662-06409-2.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). “Sequential model-based optimization
for general algorithm configuration”. In: vol. 6683, pp. 507–523. isbn: 9783642255656. doi:
https://doi.org/10.1007/978-3-642-25566-3_40.

Jones, D. R. (2001). “A taxonomy of global optimization methods based on response surfaces”.
In: Journal of Global Optimization 21, pp. 345–383. doi: https://doi.org/10.1023/A:
1012771025575.

24

https://doi.org/https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/https://doi.org/10.1109/TPWRS.2002.807114
https://doi.org/https://doi.org/10.1007/s10107-006-0079-z
https://doi.org/https://doi.org/10.1007/s10107-006-0079-z
https://proceedings.mlr.press/v97/cobbe19a.html
https://doi.org/10.23919/PSCC.2018.8442516
https://proceedings.neurips.cc/paper/2020/hash/d5ade38a2c9f6f073d69e1bc6b6e64c1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d5ade38a2c9f6f073d69e1bc6b6e64c1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d5ade38a2c9f6f073d69e1bc6b6e64c1-Abstract.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/https://doi.org/10.1016/0142-0615(92)90003-R
https://doi.org/https://doi.org/10.1016/0142-0615(92)90003-R
https://doi.org/10.1007/978-3-662-06409-2
https://doi.org/https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/https://doi.org/10.1023/A:1012771025575
https://doi.org/https://doi.org/10.1023/A:1012771025575

Khalil, E. et al. (Feb. 2016). “Learning to branch in mixed integer programming”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 30.1. doi: https://doi.org/10.1609/
aaai.v30i1.10080. url: https://ojs.aaai.org/index.php/AAAI/article/view/10080.

Kingma, D. P. and J. Ba (May 2015). “Adam: a method for stochastic optimization”. In: The
international conference on learning representations. ULR https://arxiv.org/abs/1606.
01885.

Lodi, A. and G. Zarpellon (2017). “On learning and branching: a survey”. In: TOP 25.2, pp. 207–
236. issn: 1134-5764. doi: https://doi.org/10.1007/s11750-017-0451-6.

Morabit, M., G. Desaulniers, and A. Lodi (2021). “Machine-learning–based column selection for
column generation”. In: Transportation Science 55.4, pp. 815–831. doi: 10.1287/trsc.2021.
1045. eprint: https://doi.org/10.1287/trsc.2021.1045. url: https://doi.org/10.
1287/trsc.2021.1045.

Nair, V. et al. (2018). “Learning fast optimizers for contextual stochastic integer programs”. In:
Proceedings of the thirty-fourth conference on uncertainty in artificial intelligence, UAI 2018,
monterey, california, usa, august 6-10, 2018, pp. 591–600. url: http://auai.org/uai2018/
proceedings/papers/217.pdf.

Ostrowski, J., M. F. Anjos, and A. Vannelli (2012). “Tight mixed integer linear programming
formulations for the unit commitment problem”. In: IEEE Transactions on Power Systems
27.1, pp. 39–46. issn: 0885-8950. doi: https://doi.org/10.1109/TPWRS.2011.2162008.

Owerko, D., F. Gama, and A. Ribeiro (2020). “Optimal power flow using graph neural networks”.
In: 2020 ieee international conference on acoustics, speech and signal processing (icassp),
pp. 5930–5934. doi: https://doi.org/10.1109/ICASSP40776.2020.9053140.

Pineda, S. and J. M. Morales (2022). “Is learning for the unit commitment problem a low-
hanging fruit?” In: Electric Power Systems Research 207, p. 107851. issn: 0378-7796. doi:
https://doi.org/10.1016/j.epsr.2022.107851. url: https://www.sciencedirect.
com/science/article/pii/S0378779622000815.

Schulze, T., A. Grothey, and K. McKinnon (Aug. 2017). “A stabilised scenario decomposition
algorithm applied to stochastic unit commitment problems”. In: European Journal of Oper-
ational Research 261.1, pp. 247–259. issn: 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2017.02.005.

Shen, Y. et al. (June 2022). “Enhancing column generation by a machine-learning-based pricing
heuristic for graph coloring”. In: Proceedings of the AAAI Conference on Artificial Intelligence
36.9, pp. 9926–9934. doi: 10.1609/aaai.v36i9.21230. url: https://ojs.aaai.org/
index.php/AAAI/article/view/21230.

Takriti, S., J. R. Birge, and E. Long (1996). “A stochastic model for the unit commitment
problem”. In: IEEE Transactions on Power Systems 11.3, pp. 1497–1508. issn: 0885-8950.
doi: https://doi.org/10.1109/59.535691.

Václavík, R. et al. (2018). “Accelerating the branch-and-price algorithm using machine learning”.
In: European Journal of Operational Research 271.3, pp. 1055–1069. issn: 0377-2217.

van Ackooij, W. et al. (2018). “Large-scale unit commitment under uncertainty: an updated
literature survey”. In: Annals of Operations Research 271.1, pp. 11–85. issn: 0254-5330.

van Hoai, T., G. Reinelt, and H. G. Bock (2005). “Advanced column generation techniques
for crew pairing problems”. In: Modeling, simulation and optimization of complex processes.
Ed. by H. G. Bock et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 203–214. isbn:
978-3-540-27170-3.

25

https://doi.org/https://doi.org/10.1609/aaai.v30i1.10080
https://doi.org/https://doi.org/10.1609/aaai.v30i1.10080
https://ojs.aaai.org/index.php/AAAI/article/view/10080
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885
https://doi.org/https://doi.org/10.1007/s11750-017-0451-6
https://doi.org/10.1287/trsc.2021.1045
https://doi.org/10.1287/trsc.2021.1045
https://doi.org/10.1287/trsc.2021.1045
https://doi.org/10.1287/trsc.2021.1045
https://doi.org/10.1287/trsc.2021.1045
http://auai.org/uai2018/proceedings/papers/217.pdf
http://auai.org/uai2018/proceedings/papers/217.pdf
https://doi.org/https://doi.org/10.1109/TPWRS.2011.2162008
https://doi.org/https://doi.org/10.1109/ICASSP40776.2020.9053140
https://doi.org/https://doi.org/10.1016/j.epsr.2022.107851
https://www.sciencedirect.com/science/article/pii/S0378779622000815
https://www.sciencedirect.com/science/article/pii/S0378779622000815
https://doi.org/https://doi.org/10.1016/j.ejor.2017.02.005
https://doi.org/https://doi.org/10.1016/j.ejor.2017.02.005
https://doi.org/10.1609/aaai.v36i9.21230
https://ojs.aaai.org/index.php/AAAI/article/view/21230
https://ojs.aaai.org/index.php/AAAI/article/view/21230
https://doi.org/https://doi.org/10.1109/59.535691

Vanderbeck, F. (2005). “Implementing mixed integer column generation”. In: Column generation.
Springer US, pp. 331–358. isbn: 0387254854.

Vanderbeck, F. and M. W. P. Savelsbergh (2006). “A generic view of Dantzig–Wolfe decomposi-
tion in mixed integer programming”. In: Operations Research Letters 34.3, pp. 296–306. issn:
0167-6377.

Xavier, A. S., F. Qiu, and S. Ahmed (2020). “Learning to solve large-scale security-constrained
unit commitment problems”. In: INFORMS Journal on Computing 0.0. doi: https://doi.
org/10.1287/ijoc.2020.0976.

Yang, Y. and L. Wu (2021). “Machine learning approaches to the unit commitment problem:
current trends, emerging challenges, and new strategies”. In: The Electricity Journal 34.1.
Special Issue: Machine Learning Applications To Power System Planning And Operation,
p. 106889. issn: 1040-6190. doi: https://doi.org/10.1016/j.tej.2020.106889. url:
https://www.sciencedirect.com/science/article/pii/S1040619020301810.

Zamzam, A. S. and K. Baker (2020). “Learning optimal solutions for extremely fast ac optimal
power flow”. In: 2020 ieee international conference on communications, control, and computing
technologies for smart grids (smartgridcomm), pp. 1–6. doi: https://doi.org/10.1109/
SmartGridComm47815.2020.9303008.

26

https://doi.org/https://doi.org/10.1287/ijoc.2020.0976
https://doi.org/https://doi.org/10.1287/ijoc.2020.0976
https://doi.org/https://doi.org/10.1016/j.tej.2020.106889
https://www.sciencedirect.com/science/article/pii/S1040619020301810
https://doi.org/https://doi.org/10.1109/SmartGridComm47815.2020.9303008
https://doi.org/https://doi.org/10.1109/SmartGridComm47815.2020.9303008

	Introduction
	Literature Review

	Dantzig-Wolfe Decomposition and Column Generation
	Warmstarting the Column Generation Procedure
	Initial Dual Lower Bounds in the Column Generation Procedure

	Machine Learning Methods to Compute Initial Dual Values
	Machine Learning Model based on Single-Sampling Training
	Machine Learning Model based on Double-Sampling

	Numerical Experiments
	Problem
	Initialisation Methods
	Benchmark initialisation Methods.
	Coldstart:
	LPR:
	Column pre-population:

	Machine Learning Methods based on Single-Sampling Training.
	Nearest Neighbour:
	Random forest:
	Neural Network (single-sampling):

	Machine Learning Methods based on Double-Sampling Training.
	Neural Network (double-sampling):

	Evaluation
	Evaluation: Dual Lower Bound
	Evaluation: Column Generation Procedure without Primal Heuristic
	Evaluation: Column Generation Procedure with Primal Heuristic

	Conclusion
	Problem Formulation
	Implementation Details
	Hyperparameters for the Neural Networks
	Statistics Relevant to Training

