
Black-Box Statistical Prediction of Lossy
Compression Ratios for Scientific Data

Journal Title
XX(X):1–16
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Robert Underwood1, Julie Bessac1, David Krasowska2, Jon C. Calhoun 2, Sheng Di 1, and
Franck Cappello 1

Abstract
Lossy compressors are increasingly adopted in scientific research, tackling volumes of data from experiments or
parallel numerical simulations and facilitating data storage and movement. In contrast with the notion of entropy in
lossless compression, no theoretical or data-based quantification of lossy compressibility exists for scientific data. Users
rely on trial and error to assess lossy compression performance. As a strong data-driven effort toward quantifying
lossy compressibility of scientific datasets, we provide a statistical framework to predict compression ratios of lossy
compressors. Our method is a two-step framework where (i) compressor-agnostic predictors are computed and
(ii) statistical prediction models relying on these predictors are trained on observed compression ratios. Proposed
predictors exploit spatial correlations and notions of entropy and lossyness via the quantized entropy. We study 8+
compressors on 6 scientific datasets and achieve a median percentage prediction error less than 12%, which is
substantially smaller than that of other methods while achieving at least a 8.8× speedup for searching for a specific
compression ratio and 7.8× speedup for determining the best compressor out of a collection.

1 Introduction

The ever-increasing execution scale of high-performance
parallel computing applications and advanced scientific
facilities, producing extremely large volumes of data,
presents challenges in scientific data storage and transfer.
The upcoming Linac Coherent Light Source II-HE, for
example, will acquire data at a rate of 1 TB/s Dyer and Fry
(2022) so that data cannot be stored without parallel lossy
data reduction techniques. Lossless compression suffers
from very low compression ratios (CRs) for these datasets,
but error-bounded lossy compression has been effective
in significantly reducing scientific data size with a strict
control of data distortion. Significantly reducing the data size
without sacrificing data integrity is a concerning research
problem for many of today’s scientific projects run on large
parallel machines, especially because efficiently storing and
transferring data are key for post hoc data analysis and
management. Thus, many of today’s scientific data formats,
including NetCDF and HDF5, support data reduction by
calling various third-party data compression libraries.*

Substantial progress has been made in the design of
lossy compressors to improve their performance, enhance
the quality assessment methodology, and expand the range
of applications that can use lossy compression. Lossy
compressors can now achieve substantial compression ratios
quickly while maintaining the scientific integrity of the data.
While images are not the only way to assess distortion,
Figure 1 gives an intuition of the improvement in both
compression ratio (how much the data was reduced; larger is
better) and quality for two of the leading lossy compressors
for scientific data – SZ and ZFP. Compression is now used
for many more use cases Cappello et al. (2019) from classic
use cases such as visualization, reducing storage footprint,

and reducing I/O time, and now includes many new use
cases reducing streaming intensity, lossy checkpoint/restart,
avoiding re-computation with lossy caching, running larger
simulations by reducing memory footprint, accelerating CPU
↔GPU transfers, reducing deep neural networks model size,
and accelerating training of deep neural networks.

There have also been several advances in the development
of methodologies to assess the quality of lossy compressors
including the development of standard datasets with
SDRBench Zhao et al. (2020), a consistent interface with
LibPressio Underwood et al. (2021), and quality assessment
tools including Z-Checker Tao et al. (2019a) and Foresight
Grosset et al. (2020). We expect the future will empower
and demand many new uses of lossy compression which
will require even further innovation in the design of lossy
compressors.

However, with over half a decade of consistent
improvements, an important question now arises: what is the
limit of the compressibility of scientific data? This question
is important, at least for two reasons: (i) researchers in lossy
compression algorithms need to know if further progress is
still possible. In the lossless context, the Shannon entropy
and source coding theorem establish a theoretical lower
bound of the code rate (average number of bits per symbol).
Lossless coding algorithms were compared to this lower
bound, which allowed the demonstration that arithmetic
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Figure 1. Visualization of Miranda - density data for SZ’s different versions (EB: value range relative error 10−2), Performance on
single core CPU (Intel Broadwell). Versions: ZFP 0.5 Lindstrom (2014), SZ 1.0 Di and Cappello (2016) SZ 1.3-4 Tao et al. (2017),
SZ2 Liang et al. (2018b), SZ3 Zhao et al. (2021), SZ3-QoZ Liu et al. (2022)

coding is nearly optimal. (ii) users of lossy compression
need to know what compression ratio is achievable for
their datasets, considering a quality tolerance. For lossy
compression of scientific data, the community lacks a roof-
line model relating the largest achievable compression ratios
to different users’ quality tolerances. While establishing
theoretical bounds of lossy compressibility for scientific
datasets is currently a hard open research problem, a useful
step in this direction is to produce models of compression
ratio that are fast and highly accurate for many compressors.
Such models would respond to users’ need to estimate
the compressibility (or expected compression ratio) of their
datasets for several compressors before actually performing
the compression operation. We focus on two existing typical
use cases in parallel computing. (use case 1) Enabling
fast, automated configuration of a single compressor (that
will be run in parallel on many nodes) to maximize the
quality that will fit in available storage Underwood et al.
(2020). Reducing the storage footprint needed by parallel
applications such as cosmology simulations Habib et al.
(2016), climate simulations (e.g. the community earth system
model (CESM)), and X-ray crystallography Yoon et al.
(2017) that dump vast amounts of data to fixed-size external
devices. (use case 2) Enabling quickly choosing among
several compressors with the highest CR at runtime in order
to minimize data size Tao et al. (2019b).

However, existing lossy compression models are either
too slow to be used in applications or too inaccurate to be
effective. Accurately predicting lossy compression ratios for
scientific datasets is challenging because of two key factors.
(1) The lossless Shannon entropy alone cannot be used
directly on scientific datasets to estimate the compressibility
because they often exhibit a high level of autocorrelation
that lossy compression techniques can leverage. (2) Lossy
compression removes information from datasets, leading
to changes in the symbol distribution, hence the need to
quantify lossyness as part of a compressibility measure.

To address this gap, we present an efficient black-box
statistical lossy compression ratio prediction method for 2D
and 3D scientific datasets. Our method requires two steps:
(1) we perform compressor-agnostic statistical analysis on
datasets, and (2) we train a statistical prediction model
from resulting statistics of Step (1) and observed CRs
from existing compressors. This is the first formulation
of a generic (compressor-free) statistical prediction model
that uses training only from observed compression ratios
for its specialization to a compressor. The generic model
can specialize to any lossy compressor before prediction,
as opposed to other prediction models that depend on
knowledge of a compressor’s design principles Lu et al.
(2018); Qin et al. (2020); Krasowska et al. (2021) or need
several trial runs during prediction Underwood et al. (2020).
We note that all existing and currently proposed methods
require the use of compressors to generate compression
ratios as training data.

Our technical contributions are summarized as follows. (i)
We derive data-based statistical predictors that exploit the
spatial correlation of data via a singular value decomposition
(SVD) and notions of entropy and lossyness via the
quantized entropy, and we show their complementarity. (ii)
We study leading state-of-the-art lossy compressors covering
different compression models with different principles.
(iii) We carefully investigate various responses of our
developed compression ratio predictions to the different
data compressor-prediction schemes used in the state-of-
the-art lossy compressor SZ, providing a more in-depth
understanding of the compression quality of SZ2 compared
with the prior works Qin et al. (2020); Krasowska et al.
(2021) that studied SZ2. SZ is widely used in the community,
but its compression ratio remains challenging to predict
because of its multiprediction-scheme approach. (iv) We
evaluate our proposed statistical compression ratio prediction
method on 6 real-world scientific simulation datasets and
4 kinds of synthetic samples (used to assess precisely the
CR response to different levels of controlled correlations).
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Figure 2. Scatter plots between true and out-of-sample
predicted compression ratios from the proposed statistical
models. Results are shown for the field velocity-x of Miranda for
SZ2 (top left), ZFP (top right), MGARD (bottom left), and Bit
Grooming (bottom right) with 10−5 absolute error bound.

We compare the prediction accuracy of our method with
other competitive statistical prediction methods (block
sampling and compressor-specific). Our method obtains a
very high prediction accuracy, as exemplified in Fig. 2
(median percentage of error of 2.8% for SZ2 Di and
Cappello (2016), 1.0% for ZFP Lindstrom (2014), 2.0%
for MGARD Ainsworth et al. (2019b), and 0.3% for
Bit Grooming Zender (2016)) across a wide range of
compression ratios from below 3 to above 50. (v) We
demonstrate a speedup for the two use cases above compared
to traditional procedures.

2 Background and related work

2.1 Lossy compressors for scientific data
Lossy compressors typically comprise (i) a decorrelation
step that exploits correlations present in the dataset to
transform the data into a more compressible one for the
following steps, (ii) an approximation/quantization step that
reduces the precision of the input data bringing the lossyness
in the compression pipeline, and (iii) an encoding step
that minimizes the number of bits used to represent the
approximation step outcomes. Different lossy compressors
leverage different decorrelation methods and thus have
different responses to correlation structures of the data.
We describe several leading lossy compressors in the
chronological order of their introduction, paying attention
to how each leverages spatial and entropy information.
Decorrelation steps in these compressors are based on
transformation, prediction, or rounding, providing a wide
range of compression behaviors in the study.

The ZFP compressor uses a near-orthogonal transform-
based approach for decorrelation Lindstrom (2014). This
approach represents each 4n block as a sum of possible
spatial patterns, where n is the number of dimensions
of the considered dataset. Values in each block are

converted to a shared fixed-point representation. After that,
a near-orthogonal transform is applied to the fixed-point
representation. The transformed data is then encoded such
that the least significant bits are truncated from each block
to achieve a desired size or quality. Because of this design,
ZFP has knowledge of neighboring information up to three
elements away in each direction.

The SZ series Liang et al. (2018a); Tao et al. (2018);
Zhao et al. (2021); Liang et al. (2018b); Liu et al. (2022)
of error-bounded lossy compressors relies on prediction as
a decorrelation principle. The SZ compressors generally
use a combination of a Lorenzo-prediction scheme, which
uses the immediate preceding values, and later a linear
regression Liang et al. (2018b), which fits a hyperplane in
each block of the dataset. If the prediction is close enough
to preserve the error bound in absolute, value-range relative
Liang et al. (2018b), or pointwise relative error bounds
Liang et al. (2018a) or to preserve a peak signal-to-noise
ratio bound Tao et al. (2018), then the value is stored
lossily; otherwise it is stored losslessly. The coding uses
the Huffman coding followed by an entropy encoding stage
performed via ZStandard or GZIP depending on the version
and configuration. For 2D data, SZ observes neighboring
information up to 15 elements with the regression-prediction
scheme and up to 1 or 2 elements with the Lorenzo-
prediction scheme, which increases the capacity to leverage
spatial features. If the value range of the data is less than the
error bound, SZ collapses all values to a special header. We
exclude this special case from our study because it is easy to
detect and does not leverage entropy or spatial relationships
in the data.

Bit Grooming, introduced in 2016 Zender (2016),
operates by setting the most insignificant bits in the
mantissa of IEEE floating-point values to either 0 or 1. The
resulting data are more compactly compressed by sequence-
recognizing compressors such as GZip or Zstandard.
The Digit Rounding compressor operates similarly to Bit
Grooming but instead rounds insignificant bits, as opposed to
setting them to 0 or 1 Delaunay et al. (2018). These methods
are largely unaware of spatial structures.

MGARD Ainsworth et al. (2018, 2019b,a) relies
on mathematical multigrid methods and a hierarchical
organization of the dataset. It decomposes data into
multilevel coefficients that represent recursively blocks until
the block is represented within the allowed tolerance. These
coefficients are then quantized and entropy coded with Zlib
and later Zstd. The coefficients represent regions of differing
sizes and potentially the entire dataset. MGARD captures
multilevel effects that SZ and ZFP may not, making it an
important comparison for our paper.

SZ, ZFP, and MGARD have notions of absolute error
bounds. The absolute error bound εabs is defined for any
value di in a dataset D with corresponding decompressed
value d̃i such that |d− d̃i| < εabs for a specified error bound.
Bit Grooming and Digit Rounding have alternate notions
of precision, a form of pointwise relative error bound,
which differs depending on the magnitude of the value. By
using the OptZConfig tool Underwood et al. (2022), one
can automatically determine corresponding absolute error
bounds accurately and efficiently.
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We consider only the TTHRESH compressor Ballester-
Ripoll et al. (2020) in Sect. 4.5 because it relies heavily on
the higher-order SVD and hence is the only relevant 3D+
context. It is also different in that it compresses the data as
a whole, rather than by blocks, thus allowing it to exploit
long-range correlations.

2.2 Existing methods for CR prediction
Several works in recent years have attempted to estimate CR
of lossy compressors for UCs in parallel computing. The
vast majority of prior approaches are white-box approaches
such as Liang et al. (2019b); Lu et al. (2018); Qin
et al. (2020); Liang et al. (2019a); Tao et al. (2019b).
Techniques in Qin et al. (2020); Lu et al. (2018) operate
by respectively constructing a Gaussian distribution and a
deep neural network using internal statistics acquired from
the compressors. For example, Lu et al. Lu et al. (2018) use
specific implementation details such as the number of nodes
in the Huffman tree in order to estimate CR for SZ1.4, hence
depending on the compressor-prediction performance and
the entropy of a particular dataset. Moreover, this approach
requires the execution of almost the entire compression
pipeline, except writing the final output buffer of SZ1.4. The
authors also assume that the number of Huffman nodes can
be approximated by a Gaussian distribution. Such techniques
may not generalize and require expert knowledge about the
compressor to formulate. Furthermore, they are tied to the
evolution of the compressor; for example, the new prediction
procedures in SZ such as regression and interpolation were
introduced after this work.

Techniques in Liang et al. (2019b,a); Tao et al. (2019b)
utilize a simpler model, albeit with less predictive power.
These techniques attempt to predict whether SZ2 or ZFP
has a better average bit rate (bits/symbol) for a given set
of blocks of data. Therefore, these techniques do not need
to be accurate as long the predicted 1st place ranking of
compressors remain accurate. These prior works leverage
sampling to reduce the volume of data to consider. Our work
does not yet leverage sampling because of the possibility of
the sensitivity to the block size; we leave this for future work.

Black-box approaches have been proposed to estimate
compressor configurations that will result in a given
CR Underwood et al. (2022, 2020) for SZ2, ZFP, and
MGARD. These approaches leverage black-box techniques
that construct a piecewise linear model of the domain to
locate a specific CR by minimizing the anticipated error.
The techniques are relatively expensive, requiring many
invocations of the compressors to get a good estimate of the
CR for future points, thus limiting their usability.

Recently, a few works have investigated spatial and
temporal statistical predictors of CR. In Krasowska et al.
(2021), global and local spatial correlation ranges that
are estimated via a variogram are explored as candidate
statistical predictors for CR. No CR prediction setup is
proposed, however; and, as shown in Fig. 4, the spatial
correlation on its own is insufficient to fully characterize 2D
slices in terms of CR. In Moon et al. (2022) a prediction
setup solely based on statistics of the data is proposed
for a discrete cosine transform-based lossy compressor and
applied to environmental time series. The mean, variance,
and skewness are considered, as well as statistical properties

of the time series, such as stationarity test outputs, time
differences, and their spread. Several prediction techniques
from ML/AI are compared. The study shows promising CR
prediction accuracy; however, it is dedicated to time series
and requires large amounts of data to train as they rely on
neural network models.

We will evaluate our approach in comparison to
the leading methods that predict compression ratio in
Section 4.6.

2.3 Data
In the following, we investigate real-world scientific data
from parallel applications as well as synthetic 2D-Gaussian
samples with a known and controllable correlation structure.
Gaussian samples provide a proof of concept, since their
spatial correlation structures and intensities are explicitly
known. We increase their complexity to mimic more realistic
properties of real-world datasets and to generate challenging
use cases.

2.3.1 Scientific datasets We explore 2D and 3D slices
of 3D and 4D datasets. We analyze several datasets from
the Scientific Data Reduction Benchmark Zhao et al.
(2020), which have been produced by a variety of scientific
simulations - many parallel. The effects of lossy compression
on these datasets on these applications have been extensively
investigated Cappello et al. (2019). We study in more detail
a few fields (i.e., variables) from several datasets (typically
a collection of several fields). In the following, we focus
mostly on 2D slices from each field for various reasons:
(a) this approach eases the visual inspection and intuition
of spatial correlation and patterns, (b) the manipulation
of statistical predictors defined in Sect. 3.1 is easier in
2D, and (c) slicing creates samples that are used to
train statistical prediction models without using block-size
dependent techniques as in Qin et al. (2020). We slice 3D
and 4D datasets along their slowest incrementing dimension
to make more data available for training. This approach is
not unreasonable since many communities (such as CESM)
view their data slice by slice.

Miranda† is a radiation hydrodynamics code designed
for large-eddy simulation of multicomponent flows with
turbulent mixing. Each field is of dimension 256×384×
384. We reduce our focus to 2D slices 384×384 of its
velocity-x (also denoted Vx below) and density (also denoted
De below) fields that respectively represent fluid velocity
along the x-axis and fluid density (fields of velocities along
y- and z-axis, viscosity, pressure and diffusivity are also
available). We consider several climate simulation data
from SDRBench, in particular, data from the Community
Earth System Model (CESM)‡ atmospheric simulation code.
Most CESM fields are 2D (1800×3600), and we focus on
the cloud fraction, denoted CLOUD hereafter. Data from
Hurricane-ISABEL§ is also studied. This dataset comes
from simulations of Isabel, the strongest hurricane of the

†https://wci.llnl.gov/simulation/computer-codes/
miranda
‡http://www.cesm.ucar.edu
§http://sciviscontest-staging.ieeevis.org/2004/
data.html
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Table 1. Datasets

Name Dataset Size Domain

Miranda 384× 384× 256 Hydrodynamics
Hurricane 500× 500× 100 Weather
CESM 3600× 1800× 1 Climate
SCALE-LetKF 1200× 1200× 96 Weather
Nyx 512× 512× 512 Cosmology
QMCPack 96× 96× 115× 288 Quantum Monte Carlo

Figure 3. Top: 2D slices from Miranda velocity-x (left) and
SCALE-LetKF U (right). Bottom: 2 types of Gaussian samples:
single-correlation sample (left) and multiscale samples spatial
weights with fixed correlation ranges (right).

2003 Atlantic hurricane season. Each field is a 3D array
of 100×500×500, and we consider 500×500 slices of the
field U that is the east-west wind component. Additionally,
the pressure and wind U fields of dimension 1200×1200
from the rainfall simulation SCALE-LetKF¶ are investigated.
Figure 3 shows example slices of Miranda’s velocity-x and
SCALE-LetKF’s U. More illustrations of these datasets
are available in Zhao et al. (2020). We also investigate
data coming from NYX||, a compressible cosmological
hydrodynamics simulation code. Fields are represented by
3D arrays 512×512×512. We focus on 2D slices of the
velocity-x field of size 512×512 particle velocity along the
x-axis. QMCPack** is an open source ab initio quantum
Monte Carlo package for analyzing the electronic structure
of atoms, molecules and solids. Each simulated orbital is 3D
field (96×96×115) in single-precision. See Table 1 for a
summary, all data are dense, structured-grid, and IEEE 32 bit
floating point. These datasets have various sizes of 2D slices
that influence the compression’s performance. However, we
observe consistent results of compression ratio prediction for
various slice sizes.

2.3.2 Single- and multiscale Gaussian samples To
assess precisely the response of CR to different levels
of controlled correlations and to generate 2D samples
independent from one another (hence free from the slicing
procedure), we generate 2D Gaussian samples 1028×1028.
We simulate samples with a single correlation length and
samples with multiple correlation ranges as weighted sums
of single-correlation samples, similar to an SVD of spatial

and spatiotemporal fields Hannachi et al. (2007), X =
L∑
l=1

ωlUl with L ≥ 1 and:

· Ul is a 2D Gaussian sample with a squared-exponential
correlation Σ(xi, xj)=σ

2 exp(−|xi − xj |2/a2
l ), where the

variance σ2 is set to 1, al is the correlation range that is
known and varied for the experiments, and xi are the spatial
grid points of the 2D slices.
· The weights (ωl)l∈L are specified in two ways:

1. ωl is scalar and fixed at values in [0.6, 1.2].
2. ωl=(det∗(2πΩ))

− 1
2 e−

1
2 (x−µ)TΩ+(−1−µ) is a 2D spa-

tial Gaussian weight, taking values in [0, 1] with x=
(xi, xj) varied 2D-mean µ and fixed diagonal Ω to
create various spatial patterns in the weights.

· L=1, 3; when L = 3, if the weights ω are scalar, al are fixed
or randomly drawn as a mixture of short, medium, and strong
correlations. We restrict our focus to L=3 different scales for
simplicity. This provides four types of Gaussian samples: (1)
single-correlation samples, multiscale correlation samples
with (from simplest to most complex); (2) scalar weights
and fixed correlation ranges; (3) spatial weights and fixed
correlation ranges; and (4) spatial weights and random
correlation ranges. The simplest and most complex are
exemplified in Fig. 3. Multiscale samples with scalar weights
have a uniform contribution over the 2D slice of each single-
correlation sample, whereas samples generated with spatial
weights exhibit more spatial heterogeneity as the spatially
varying weights ω enforce different areas of the 2D slice
to have different correlation strengths; see the bottom-right
panel of Fig. 3.

2.4 Problem formulation and design overview
We build a CR prediction framework (Sect. 3.2) for the
compressors described above, based on selected statistics of
the data that serve as statistical predictors (Sect. 3.1). The CR
is the ratio of the original data size to the compressed data
size. From the studied compressors, CRs are extracted for
error bounds among 10−5, 10−4, 10−3, and 10−2 in absolute
error mode. Most results are shown for a single error bound
that is prescribed by the user following user constraints
and reconstruction quality or that provides realistic CRs
for the data value range. CRs exhibit various ranges of
value depending on the compressor, error bound, and data
properties. Bit Grooming and Digit Rounding are run in
absolute error bounds thanks to the correspondence provided
by OptZConfig discussed above. To mimic most operational
conditions, we focus on CRs less than or equal to 100.
In practice, few users work with higher compression ratios
(except for visualization, which is not a target UC of this
study). Cappello et al. Cappello et al. (2019) report UCs
with CRs around 150 and up to 1000 for data summary
and visualization Biswas et al. (2021). Nonetheless, our
framework shows flexibility toward high-CR cases. For
instance, running our method with CR up to 2000 leads

¶https://scale.riken.jp/scale-rm/
‖https://amrex-astro.github.io/Nyx
∗∗qmcpack.org
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to a difference in prediction accuracy of 1% for a field of
SCALE-LetKF with CR greater than 100. Similar tests for
Miranda lead to an average difference of accuracy of 6.3%
for SZ, 4.3% for ZFP, and 7.5% for MGARD, indicating the
robustness of our method to high-CR settings. Compressors
are run with their default parameters (including default block
size) and in absolute error mode. Software and compressor
versions are the latest available on Spack with an extra
repository Underwood (2020). All experiments are run on
a node with two 32-core Intel(R) Xeon(R) Gold 6148 CPU
@ 2.40 GHz and 384 GB of RAM and an Nvidia v100 GPU.
The operating system is Linux CentOS 8 with compiler GCC
8.4.1.††

3 Statistical prediction of compression
ratios

This section describes the identified statistical predictors
based on spatial correlation and entropy and its quantized
versions (Sect. 3.1). To predict CRs from selected statistical
predictors, one needs to mathematically formalize the
relationship between the CR and its predictors. Regression
models are natural candidates since they express and
approximate a response variable as a combination of
identified predictors. In Sect. 3.2 we describe the linear and
spline regressions that model the relationship between CR
and its statistical predictors, along with the validation setting
and metrics used to evaluate the quality of CR predictions
(Sect. 3.3).

3.1 Statistical predictors of compression ratios
We describe statistical predictors that likely influence the
decorrelation step Cappello et al. (2019) of the studied lossy
compressors. Correlation structures and patterns in the data
are expected to influence the decorrelation step and hence the
compressibility. Hereafter, the identified statistical predictors
show a strong complementarity, providing a flexible set
of predictors to CR. Rounding-based compressors do not
necessarily have a decorrelation step; we will see that the
entropy then plays an important role in these cases.

3.1.1 Spatial correlation and SVD A few, recent studies
show spatial correlation is intuitively an influential factor
of transformation- and prediction-based compressors. In
Klöwer et al. (2021), the concept of bitwise real information
(BIR) is introduced as the mutual information of bits
in adjacent grid points. In particular, the stronger the
association with neighboring bits, the greater the BIR. In
Krasowska et al. (2021), global and local measures of
spatial correlation are introduced as explanatory variables
of the CR. We next consider a proxy for spatial correlation
based on the SVD‡‡ Hannachi et al. (2007) that reduces
computation times compared with estimating correlation
range via a variogram Matheron (1963). Specifically,
the local variogram estimation on large slices of NYX
(1200×1200) from Krasowska et al. (2021) takes 17s
whereas the SVD takes 0.44s.

The SVD of a m×n-matrix X provides the following
decomposition: X=UΣV ∗ with U an m×m complex
unitary (UU∗=Im) matrix (left singular vectors), Σ an
m×n rectangular diagonal matrix with non-negative real
numbers on the diagonal (diagonal entries σi = Σii are the

Figure 4. Relationship between compression ratios (y-axis)
and their statistical predictors (x-axis). Statistical predictors are
shown in the following order: SVD-truncation level (top x-axis),
standard deviation (central x-axis), and their ratio SVD-trunc

σ
(bottomx-axis). Results shown for Miranda velocity-x (left) and
CESM cloud (right) fields. Each dot represents CR and statistics
computed in a single 2D slice of each dataset. The quantized
entropy is displayed through a color scale in the bottom panels.
All results are for SZ2 (right) and ZFP (left) with absolute error
bound 10−5 following user requirements.

singular values), and V an n×n complex unitary (V V ∗=In)
matrix (right singular vectors). We consider the percentage of
singular values needed to recover 99% of the total variance
of X , which is proportional to

∑min(n,m)
i=1 σ2

i , when X has
mean-corrected columns. We use this truncation level as a
proxy to spatial correlation range and denote it as “svd-
trunc” in the following. The SVD-trunc is associated with the
spatial correlation of a field. Small truncation levels indicate
highly correlated fields for which few singular modes are
needed to capture most of the variability In contrast, high
truncation levels indicate that a high number of singular
modes is required to capture most of the variability and

††For more details see the reproducibility code: https://github.
com/FTHPC/Correlation_Compressibility.
‡‡SVD is linked to the Karuhnen–Loeve (KL) decomposition and its empiri-
cal version, the principal component analysis. KL orthogonally diagonalizes
the covariance, hence provides a fully decorrelated representation in the
Gaussian case, maximizing the coding gain Gersho and Gray (2012).
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hence a weakly correlated field. Analogous concepts for 3D
datasets are discussed in the next paragraph, and associated
results of CR predictions are presented in Sect. 4.5. Figure 4
highlights almost one-to-one associations between CRs and
SVD-truncation levels for both compressors and datasets.
Highly correlated slices lead to high CRs and vice versa.
However, different CR values can be associated with the
same SVD-truncation level. Section 3.1.3 and following
discuss the resolution of this.

3.1.2 3D-spatial correlation and high-order SVD The
high-order SVD (HOSVD) is a type of Tucker decompo-
sition Tucker (1963) for tensors and is seen as the exten-
sion of SVD to a higher-order tensor context Kolda and
Bader (2009). In Sect. 4.5 we consider third-order (3D)
real-valued tensors in RI×J×K . The Tucker decomposition
provides a core tensor G and matrices A(i) alongside each
mode (dimension) i, for i = 1, ..., N (N = 3 in the third-
order/3D case), which expresses a third-order tensor X as
X = G×1 A

(1) ×2 A
(2) ×3 A

(3), where ×i is the ith-mode
product performing a matrix-like product on the ith-mode of
the left hand-side tensor. The HOSVD of an N -order tensor
X , the core tensor G, and matrices A(i) are calculated by
unfolding dimension-i to arrange the dimension-i fibers (a
fiber is a generalization of column to tensors) as columns
into a 2D-matrix on which a traditional SVD is used. A(i)

consists of the left singular vectors of this SVD. Kolda and
Bader Kolda and Bader (2009) highlight the non-uniqueness
in algorithms to choose the dimension of the core tensor G.
Our method in Sect. 3.1 operates by sorting and selecting
singular values from each unfolded matrix such that the total
contribution of the squared singular values exceeds 90% per
dimension.

3.1.3 Standard deviation In addition to accounting for the
correlation strength between grid points, we consider the
standard deviation σ of each slice as an overall measure
of the entire slice’s variability and an indicator of its
value range. The central panels of Fig. 4 highlight the
relationship between σ and the CR, since slices with high
variance are less compressible than slices with low variance.
We note that σ and the CR present a cleaner one-to-
one association than the association between svd-trunc and
the CR. For some datasets, however, σ is insufficient to
fully describe the CR as a single predictor. The SVD-
truncation level is then combined with the σ via the ratio
SVD-trunc

σ in order to improve the one-to-one association

between the CR and SVD-trunc
σ . In Fig. 4 the benefit of

considering σ is illustrated since the SVD-truncation level
(top panels) does not discriminate all the CRs as they
align vertically for similar values of SVD-truncation levels.
In contrast, on the bottom panels, the ratio SVD-trunc

σ
enables us to discriminate these points and suppress vertical
alignments, hence improving the predictive power of the
ratio SVD-trunc

σ over the SVD-truncation level. In the

following, we use the logarithm of SVD-trunc
σ because σ

may be small.

3.1.4 Entropy The entropy is viewed as an upper bound,
associated with encoding, on the compression ratio for
lossless compressors Shannon and Weaver (1948). It is
defined as H (D) = −

∑
i∈D (P (di) log2 P (di)), where

P (di) is the probability of the symbol di occurring in the
dataset D. It provides a good estimate of occurrence for
compressibility purposes in a dataset, as it multiplies the
relative frequency of a symbol by an idealized number
of bits that could be used to represent the symbol. A
key limitation of entropy is that it does not account for
loss of information. The bottom panels of Fig. 4 illustrate
the benefit of considering the entropy and its quantized
version, as discussed below. The bottom left panel exhibits
different intensity (via different colors) of the quantized
entropy on the different forks of the scatterplot, indicating the
complementarity of the ratio SVD-trunc

σ and the quantized
entropy. Similarly, the bottom left panel suggests a regime
switch in the scatterplot for different intensity of the
quantized entropy. Variants of the entropy Claramunt (2005);
Wang and Zhao (2018) attempt to capture spatial patterns
by representing the data topologically or as a graph and
using notions of distance to scale the contributions of
individual symbols in the encoding. We leave extensions of
our quantized entropy concept to future work.

3.1.5 Quantized statistics Next we apply quantization
to the data prior to computing entropy. Quantization is a
process that maps a continuous domain onto a discrete
domain. One of the most common forms of quantization
is linear quantization, which is formulated as Q(di, εabs) =
bdi/εabsc ∗ εabs, where bxc is the floor function and εabs
is the chosen number of subdivisions of the domain. We
use this operation as a computationally inexpensive way to
account for the maximum information loss after applying an
absolute error bound, and we then compute the remaining
entropy. Considering this lossyness allows for a clearer
picture of how compressible the data is. We define the
quantized entropy as the entropy of the quantized data. In
Fig. 4, for both compressors (SZ on the left and ZFP on
the right) and datasets, several values of CRs are associated
with the same value of SVD-trunc

σ (dots aligning vertically),

indicating that SVD-trunc
σ may not be sufficient on its own

to fully characterize the CR. However, the corresponding
quantized entropy has different intensity (represented by
different colors) indicating that SVD-trunc

σ and quantized
entropy are complementary to characterize CRs. For the
studied compressors and datasets, similar trends are observed
between the CR and the identified statistical predictors
SVD-trunc

σ and quantized entropy.

Key findings: Statistical predictors SVD-trunc
σ and quan-

tized entropy together provide complementary explanatory
power (Fig. 4) for CR from studied compressors and
datasets.

3.2 Linear and spline regressions
To predict CRs, we rely on regression models to model the
relationship between the CR and its statistical predictors
from Sect. 3.1. For each compressor and each dataset
field, regression models are fitted between the statistical
predictors and associated compression ratios. We consider
two regression models in this work: contributions of the
individual predictors from Sect. 3.1 and their interaction
as we observed their complementarity. We first consider a
linear regression model because it provides the most intuitive
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setting with comprehensive parameters (further investigated
in Sect. 4.4):

log(CR) = a+ b× log(q-ent) + c× log

(
SVD-trunc

σ

)
+d× log(q-ent)× log

(
SVD-trunc

σ

)
+ ε,

(1)

where ε is a Gaussian random variable with mean 0 and
standard deviation σeps. Coefficients a, b, c, d, and σeps are
estimated by least-squares estimation with the R-function lm.
However, as relationships between the CR and its statistical
predictors exhibit nonlinearity depending on the datasets (see
Fig. 4), a spline regression, often called generalized additive
model or GAM, is also considered to account for more
complex dependencies between the CR and its predictors:

log(CR) = s(log(q-ent)) + s

(
log

(
SVD-trunc

σ

))
+ti

(
log(q-ent), log

(
SVD-trunc

σ

))
+ ε,

(2)

where s is a cubic spline and ti a tensor product spline
that models the interaction between the two predictors.
Spline regressions are typically used when relationships
between the response variable and its predictors exhibit
more complexity than linear or polynomial behaviors. Cubic
splines are one of the most commonly used splines as they
provide flexibility and regularity via piecewise third-order
polynomials, while maintaining computational efficiency
(coefficients computation reduces to a tridiagonal linear
system). The number of knots to represent splines and tensor
product splines is kept small (at 3) to prevent overfitting
and because the number of data points is limited (between
30 and 199). The R-package mgcv is used to fit the
spline regressions and perform prediction Wood (2017).
For both regression models, we consider the logarithm
of CRs in order to correct skewness of the data and
approximate a Gaussian distribution. Reported results on
predicted CRs are transformed back to the original scale.
We also analyze the statistical significance of the proposed
statistical predictors. In the context of linear regression,
least absolute shrinkage and selection operator (LASSO) is
typically used and acts as an L1-regularizer inducing sparsity,
hence improving prediction accuracy. LASSO regression

analysis is expressed as min
β∈Rp

{
1

N
‖y −Xβ‖22 + λ‖β‖1

}
with y the response variable (here log(CR)),X the predictors
and β the regression coefficients to be estimated. In practice,
λ is estimated for each dataset in a cross-validated setup. We
use the R-package glmnet to perform the LASSO analysis.
For spline regressions, a double-penalty method has been
proposed in Marra and Wood (2011); it is implemented in
the R-package mgcv and returns a p-value indicating the
statistical significance of each predictor. However, it does
not provide a quantitative contribution of each predictor.
Consequently, we discuss predictor contribution for the
linear regression model only. For both models, statistical
predictors are standardized by removing their mean and

dividing by their standard deviation. This approach enables
us to directly compare their relative importance to CRs via
the estimated regression coefficients. We have an insufficient
quantity of data to consider other methods such as random
forest or neural networks, as in Moon et al. (2022).

3.3 Prediction setup and quality evaluation
metrics

As discussed earlier, only CRs below 100 are considered in
the study, since larger ones are rarely achieved in practice
due to the user’s quality constraints. Eq. 1 and 2 are fitted
separately on each set of 2D slices for each field of the
datasets and fitted separately for each compressor’s CRs. To
ensure that models are not overfitted and to reduce biases by
randomizing the validation steps, we perform a k-fold cross-
validation with k varying between 8 and 10 depending on the
data size. The data are randomly split into k subsets (folds);
(k−1) folds are used to train the regression models, and
the remaining fold is used to test and evaluate the model in
prediction. In cross-validation, training and testing folds are
permuted k times; this procedure provides a systematic and
unbiased way to assess out-of-sample prediction error Hastie
et al. (2009). For each of the k testing folds, we assess the
prediction quality by computing several evaluation metrics
between predicted CRs and true CRs: the linear correlation
and median absolute percentage error (MedAPE) with the
absolute percentage error defined as APE(true, pred)=100×
|CRtrue − CRpred|

|CRtrue|
and interpretable in %. The MedAPE

offers robust estimate of the accuracy not effected by
extremely accurate or inaccurate estimates. To complement
the MedAPE, we report the correlation strength, which
is not robust to outliers for several datasets in Table 2
suggesting our approach doesn’t feature extreme outliers
(contra Table 5). We provide confidence intervals based on
10% and 90% quantiles and computed over the k folds for
the MedAPE. For ease of reading, confidence intervals for
the correlation are not shown but available from our scripts.
We summarize this in Algorithm 1
Algorithm 1 Prediction Error Evaluation and Quantification
Procedure
Require: D: Dataset, e: error bound

medape← []
for train, test ∈ kfold(D) do

true cr← [], metrics← []
for d ∈ train do

true cr.append(size(compress(d,e))
metrics.append([svd(d), qent(d,e)])

end for
model← train(true cr, metrics)
ape← []
for d ∈ test do

true cr← size(compress(d,e))
metrics← [svd(d), qent(d,e)]
pred cr← predict(model, metrics)
ape.append(100 (true cr - pred cr) / true cr)

end for
medape.append(median(ape))

end for
return quantile(medape, [0.1, 0.5, 0.9])
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4 Prediction accuracy results
In this section we discuss results of CR prediction using
our method. We focus on prediction results from the spline
regression Eq. (2), except for Sect. 4.4, since it is more
flexible and provides, on average, higher prediction accuracy.
For Gaussian samples, models (1) and (2) provide similar
results. For challenging datasets such as the Miranda density,
however, the model (1) can lead to a 25% less accurate
prediction compared with (2). First, we discuss prediction
results for Gaussian samples as a proof of concept on several
compressors (Sect. 4.1). We highlight very competitive CR
prediction accuracy that is nonetheless challenged by the
increasing complexity of the samples. We then explore three
different compressor-prediction schemes of SZ3 that are run
exclusively (Sect. 4.2); SZ2 typically uses several of them
dynamically during a single compression. This enables us
to further explore the impacts of the statistical predictors
on SZ’s different compressor-prediction schemes as well as
compare SZ2 with SZ3 and exclusive compressor-prediction
schemes. In section 4.3, we provide CR prediction results
for various studied datasets and compressors highlighting
the robustness of the choice of statistical predictors and our
prediction method. We discuss results in order to open the
discussion toward bridging the CR prediction across error
bounds and compressors for single-scale Gaussian samples.
We compare our method to existing ones on Section 4.6.
Finally, Section 4.5 provides results extended to 3D datasets.
All the CR prediction results presented in the following are
computed in the cross-validation setting described in Sect.
3.3.

4.1 CR predictions for different types of
Gaussian samples

We begin our evaluation with a consideration of predictions
of CR on Gaussian samples. Because we can parameterize
the Gaussian samples as described in Section 2.3.2 we
can use them to evaluate the response of our model to
particular types and strengths of correlation in the data to
be compressed.

Figure 5 gathers the distribution of absolute percentage
prediction (out-of-sample) error of CR derived following the
cross-validation procedure defined in Sect. 3.3 for various
Gaussian samples. Since no user specification is available
for this data, we choose an absolute error bound of 10−3,
a common error bound of users, which provides realistic
CRs while appropriate to the value range of the samples.
Overall, the prediction error is very low on the synthetic
benchmark data, providing a proof of concept of our method.
We notice a slight decreasing trend in the prediction accuracy
of the CR (although still competitive) from type 2 to type
4, as the complexity of the spatial heterogeneity increases
from scalar to spatial weights and from fixed to random
correlation ranges. Gaussian samples of type 4 are the most
challenging because correlation scales are picked randomly
and aggregated with spatial weights creating samples with
strong spatial heterogeneity that may not be encountered
in most continuous scientific simulations. These samples
challenge the chosen statistical predictors and highlight the
need to account for heterogeneous multiscale information,
as pointed out by Krasowska et al. (2021). SZ shows higher

errors for samples of Type 1 than for the other sample
types, this is due to the fact that CRs observed in Type 1
samples have a much wider range than the other ones, hence
larger prediction errors. Rounding-based compressors Digit
Rounding and Bit Grooming show the most prediction error
(although 75% of errors is below 10%) likely due to the fact
that these compressors do not leverage spatial structures.
Key findings: CR predictions show competitive accuracy
(maximum 8% of MedAPE) on benchmark Gaussian
samples and robustness as sample complexity increases.

4.2 CR prediction for SZ’s
compressor-prediction schemes

In this section, we provide CR-prediction results for
SZ3 running with a fixed exclusive compressor-prediction
scheme in the compression. Because we can choose the
compressor-predictor scheme in SZ3, we can use SZ3
to consider how robust our method is to variation in a
compression scheme and show the robustness of the accuracy
of its predictions over the evolution of a compressor.

We consider the three compressor-prediction schemes
introduced over time to the SZ series: Lorenzo (v1),
regression (v2), and interpolation (v3). We compare the
results with those from SZ2 running with dynamic selection
between regression and Lorenzo which is the hardest case
to predict accurately. This enables to further understand the
response of SZ’s various individual compressor-prediction
scheme to statistical predictors and goes further than existing
studies Qin et al. (2020); Krasowska et al. (2021) that focus
on SZ1.4, which is missing the regression and interpolation
schemes. These two compressor-prediction schemes have
been critical in improving compression ratios at high-
compression use cases Liang et al. (2018b); Zhao et al.
(2021).

In Fig. 6, we show scatterplots of true and (out-
of-sample) predicted CRs that are computed in cross-
validation (see Sect. 3.3). We expect both data to match
along the first diagonal. Overall, SZ2 and SZ3 with
fixed exclusive compressor-prediction schemes provide a
very good matching between true and predicted CRs and
very low median percentage error, as displayed on each
panel. This highlights the robustness of our CR-prediction
method to complex compression schemes as SZ2 runs with
a dynamic selection of prediction schemes and its CR
predictions remain as accurate as predictions for SZ3 with
single-prediction mode. We note that different compressor-
prediction schemes tend to provide different values of
CRs hence leading to different quality of CR prediction.
However, we notice that across datasets SZ3 achieves only
marginally higher CR than does SZ2 with dynamic selection
of prediction schemes (with accurate associated prediction).
This highlights the optimality of SZ2’s dynamic selection of
prediction modes. Furthermore, we observe that SZ3 with
exclusive regression-prediction scheme tends to generate
lower CRs (although well predicted by our technique) than
the other exclusive prediction schemes and lower than SZ2
with dynamic selection of prediction schemes. This is well
captured by SZ2 with dynamic selection of compressor-
prediction schemes. Indeed, for Miranda fields a maximum
of 9.5% of blocks per 2D slice are predicted with regression,
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Figure 5. Distribution of absolute percentage error |CRtrue−CRpred|
|CRtrue| for the 4 types of Gaussian samples. CR predictions are

shown for SZ (grey), ZFP (red), MGARD (green), Digit Rounding (blue), and Bit Grooming (turquoise). White crosses represent the
mean of absolute percentage error per box, black lines represent the median, and box outlines represent the 25th (Q1) and 75th
(Q3) quantiles. Upper and lower whiskers are min(max(x),Q3+1.5(Q3-Q1)) and max(min(x),Q1-1.5*(Q3-Q1)) with x: data of
interest; typically more than 95% of the data is contained within the whiskers. Maximum errors are either the upper whiskers or the
most up outlier.

Table 2. Correlations and MedAPE (%) for CR prediction with spline regression in 8-fold cross-validation; 10% and 90% quantiles
of MedAPE are reported in parentheses.

Miranda Vx abs 10−5 Miranda De abs 10−5

Corr. MedAPE (%) Corr. MedAPE (%)
SZ2 0.998 2.8 (0.9,3.8) 1.0 1.3 (0.7,19.8)
ZFP 0.999 1.0 (0.6,1.7) 0.995 2.1 (0.6,6.7)
MGARD 0.999 1.9 (1.8,2.7) 1.0 6 (2.0,10.2)
Digit Rounding 0.995 0.2 (0.1,0.2) 0.953 11.9 (7.0,13.1)

NYX Vx abs=10−2 SCALE U abs=10−3

Corr. MedAPE (%) Corr. MedAPE (%)
SZ2 0.176 1.0 (0.9,1.0) 0.710 9.7 (7,12.3)
ZFP 0.75 0.9 (0.9,1.0) 0.162 3.1 (2.5,6.6)
MGARD 0.701 0.2 (0.2,0.2) 0.655 3.7 (1.4,5.8)
Digit Rounding 0.331 7.0 (6.2,8.1) 0.918 1.2 (1.0,1.94)

CESM cloud abs=10−5 Hurricane U abs=10−2

Corr. MedAPE (%) Corr. MedAPE (%)
SZ2 1 1.94 (1.3,2.7) 0.876 2.4 (1.3,3.6)
ZFP 1 0.5 (0.2,0.9) 0.957 0.8 (0.5,1.3)
MGARD 1 0.8 (0.3,1.1) 0.947 0.9 (0.4,1.2)
Digit Rounding 1 1.6 (1.1,3.1) 0.493 1.3 (0.6,2.4)

for CESM-cloud the median percentage is 5.7%,for the
pressure field of SCALE-LetKF, this maximum percentage
per 2D slice drops to 0.05% and for Gaussian samples,
the median percentage of use of regression is 93.5%. This
suggests that our CR prediction technique could be used
to complement the selection steps performed in SZ2 when
used with dynamic selection and serve as a proxy for
selecting prediction schemes. This is left for future work.
Our proposed CR-prediction technique performs equally
well from high CRs observed on Miranda velocity-x field
to low CRs observed on the SCALE-LetKF pressure field.
In practice compression on the SCALE-LetKF pressure field
would be performed with relative error bound because of the
very high values of the fields. However, we keep the absolute
error bound for consistency of the study.

The importance of the different statistical predictors
(quantized entropy, SVD trunc

σ and their interaction) is
analyzed via a LASSO analysis for the linear regression
(that provides an overall trend approximation) as
discussed in Sect. 3. SZ2 and SZ3 with its fixed exclusive
compressor-prediction schemes exhibit similar trends in the
statistical predictor importance. Predictor importance varies
significantly across datasets; however, in each case both
spatial correlation and entropy information are significant,
either as separate predictors or through their interaction
term. This highlights the flexibility of the proposed CR
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Figure 6. True (x-axis) and out-of-sample predicted (y-axis) CR
for SZ2 with dynamic selection of compressor-prediction
scheme (black dot) and 3 prediction schemes run individually in
SZ3: interpolation (red), Lorenzo (green), and regression (blue).
CR prediction performed with spline regressions. Results shown
for an 8-fold cross-validation procedure (all predicted folds and
corresponding truth are shown) in absolute error bound for
individual fields of Miranda (10−5), Type 1 Gaussian samples
(10−3), CESM-cloud 10−5 and SCALE-LetKF pressure (10−3).
Median absolute percentage error of the CR prediction are
plotted in each panel for each compressor.

prediction model and the choice of statistical predictors.
Key findings: CR-prediction methods show similar
prediction accuracy (with less than 5% difference) for
the complex SZ2 with dynamic selection of compressor-
prediction scheme and SZ3 with fixed compressor-
prediction scheme, highlighting the versatility of the CR-
prediction method.

4.3 CR prediction for additional compressors
and datasets

In this section, we broaden our examination to assess the
accuracy of our approach for a variety of different datasets
and compressors to demonstrate the robust viability and
accuracy of our approach.

Figure 2 shows examples of CR predictions through
matching of out-of-sample predictions with true CR. The
linearity of the plot shows that we accurately predict the
compression ratio for variety of compressors using a variety
of underlying principles.

In Table 2, we collect metrics discussed in Sect. 3.3
for compressors with different principles: prediction-
based (SZ2), transformation-based (ZFP), multigrid-based
(MGARD), and rounding-based (Digit Rounding) with
additional datasets. Miranda’s density and SCALE-LetKF’s
U field show the least prediction accuracy because of their
spatial heterogeneity. SCALE-LetKF’s U field presents a lot
of spatial heterogeneity with small-scale features blended
with large-scale ones; see Fig. 3. On the other hand,
Miranda’s density exhibits a “polka-dot-like” structure (see

Table 3. Predictor importance for SZ from 8-fold
cross-validation of LASSO regression. Coefficients shown in
absolute values to be interpreted as a relative importance to
compression ratio prediction. The dot · indicates an insignificant
predictor to CR according to LASSO criteria.

q-ent. SVD
σ q-ent*SVD

σ

Miranda Vx abs 10−5 1.10 · 0.48
CESM cloud abs 10−5 0.69 0.01 0.02
Gaussian 1-scale abs 10−3 0.04 0.12 0.03
SCALE pressure abs 10−3 0.01 0.12 0.02

Fig. 5 of Zhao et al. (2020)). This is highlighted in the
predictor contributions where quantized entropy and its
interaction with SVD truncation are the most significant
statistical predictors for SZ2, ZFP, and MGARD.

Figure 7 shows further explorations of the prediction
error distributions for several fields of SCALE-LetKF (fields
providing enough datapoints to fit regression robustly).
Median and mean absolute percentage prediction errors are
consistent with previous results and consistent with averages
over all predicted fields. Most maximum errors remain
acceptable and competitive. All maximum error predictions
are less than 30% for SCALE-LetKF. Results are consistent
with other datasets.

Additionally, we discuss the sensitivity of the CR
prediction accuracy to the training dataset size. For instance,
reducing the training set for SCALE-LetKF U from 70% to
20% of the full dataset leads to a decreased MedAPE by
34% for SZ, 39% for ZFP, 79% for MGARD, and 26% for
Digit Rounding. However, results vary depending on how
compressors and datasets create homogeneity in the training
set. For instance, for Miranda Vx the best MedAPE results
are achieved with around 30% of the entire set as a training
set. This holds promises for 3D settings with fewer available
samples.

Finally, in Table 3, the importance of the different pre-
dictors (quantized entropy, SVD trunc

σ and their interaction)
is analysed via a LASSO analysis for the linear regression
(that provides an overall trend approximation) as discussed in
Sect. 3 and for SZ. Predictors importance vary significantly
across datasets; however in each case both spatial correlation
and entropy information are significant either as separate
predictors or as an interaction term. This highlights the
flexibility of the proposed regression model and the choice
of predictors.
Key findings: Median percentage error is overall low (less
than 12%) across compressors and datasets, highlighting
the flexibility and accuracy of the method.

4.4 Toward CR characterization across
compressors

Understanding the strength of the relationships between our
predictors and compression ratios could enable a possible
path to providing a model of compress-ability across
compressors and enable us to describe which aspects of data
are best captured by a particular compressor. In Figure 8,
we compare coefficients of the regression Eq. (1) for the 8
compressors and 4 absolute error bounds (10−5, 10−4, 10−3,
10−2). Regressions are fitted on Gaussian samples with a
single-scale correlation since they serve as a benchmark. To
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Figure 7. Distribution of absolute prediction error |CRtrue−CRpred|
|CRtrue| for fields of SCALE-LetKF. CR predictions shown for SZ (grey),

ZFP (red), MGARD (green), and Digit Rounding (blue). Numbers in parentheses correspond to the average and maximum error
over all shown fields. White crosses represent the mean of absolute percentage error per box, black lines reprresent the median,
and the box outlines represent the 25th (Q1) and 75th (Q3) quantiles. Upper and lower whiskers are min(max(x),Q3+1.5(Q3-Q1))
and max(min(x),Q1-1.5*(Q3-Q1)) (x: data of interest). Maximum errors are either the upper whiskers or the most up outlier.

Figure 8. Coefficients (y-axis) of the linear regression Eq. (1)
fitted on single-scale Gaussian samples for 8 compressors
(different colors). Regressions are fitted independently for each
compressor and each error bound (x-axis), lines between points
only help the reading and do not represent functional fits.
Coefficients can be interpreted relatively as predictors have
been normalized.

ease the reading, we show results for the linear regression.
One can imagine a similar plot for the spline regression
Eq. (2) with the estimated spline coefficients. Regression
predictors have been normalized, one can then interpret their
relative importance via the estimated coefficients.

Regression predictors have been normalized so estimated
coefficients represent their relative importance. For most
compressors, transitions from one error bound to another

are simple and smooth and can be represented by a low-
order polynomial function. This raises the opportunity of
future work to build statistical models to predict CR and
account for the error bound as a parameter. Regression
coefficients a, b, c, and d would be modeled and fitted
as functions of the error bound, enabling CR prediction
across error bounds via a statistical model. This indicates
the varying importance of the predictors with changing error
bounds. The intercept a naturally increases as the error bound
decreases since CRs increase. The coefficient c for most
compressors, the importance of the predictor SVD-trunc

σ
increases or plateaus as the error bound increases, indicating
that for more permissive error bounds, compression relies
more on spatial correlations. This increasing trend is also
observed for the other predictors. Moreover, similar trends
are shared by several compressors, providing information
to understand compressibility across compressors. Digit
Rounding and Bit Grooming are almost insensitive to
the interaction term between the quantized entropy and
SVD-trunc

σ and rely the most on the quantized entropy.
This is expected since Bit Grooming and Digit Rounding
do not account for spatial factors. ZFP and MGARD exhibit
similar linear trends across error bounds, whereas SZ2 with
dynamic selection of prediction mode and SZ3 with fixed
prediction modes tend to show almost quadratic behaviors
across error bounds. Note that SZ3-regression and SZ2 show
similar overall trends; the reason is that for this dataset
SZ2 has at least a median of 90% blocks predicted by
regression across error bounds. Overall, the importance of
the quantized entropy (slope b) is less as a single predictor
than as an interaction term (slope d). This corroborates
Fig. 4 showing complementary skills of SVD-trunc

σ and
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Figure 9. Scatterplots of true and out-of-sample predicted CR
from spline regressions. Results are shown for 3D events of the
QMCPACK dataset for SZ2 (left) and ZFP (right) with 10−2

absolute error bound. These plots show a MedAPE of 4.1 and a
MaxAPE of 24

Table 4. Prediction accuracy metrics for SZ2, ZFP, MGARD, Bit
Grroming, and TTHRESH’s CR. MedAPE (%) with 10% and
90% quantiles are reported for QMCPACK data.

Compressor MedAPE (10% APE, 90% APE)
SZ2 4.5 (3.2, 5.7)
ZFP 1.7 (1.3, 3.5)
MGARD 0.6 (0.4, 1.3)
BitGrooming 7.4 (5.0, 9.3)
TTHRESH 24.8 (15.7, 27.7)

the quantized entropy as explanatory variables of the CR.
Key findings: Compressibility patterns characterized via
regression coefficients show consistency depending on
compressor type and smooth transitions across error
bounds.

4.5 CR prediction results for 3D datasets
While many scientific datasets are 2D, there are also many
3D scientific datasets, and it is important to also be able to
predict compression ratios on these datasets. In this section,
we assess our performance on 3D datasets. Prediction
is performed out-of-sample following the cross-validation
procedure described in Sect. 3.3. We now additionally
consider TTHRESH which is designed for only for 3D and
higher dimensional data.

We present an exemplar in Figure 9 which shows the
quality of CR statistical predictions for the 3D dataset
QMCPACK. While the spread of the accuracy appears higher
than what is observed in Figure 2, the MedAPE is still quite
small at 4.1% which is consistent with the results presented
elsewhere in the paper.

Broadening our consideration, the overall quality of CR
predictions remains competitive across most compressors
as observed on Table 4 in particular for SZ2, ZFP, and
MGARD. While the CRs for TTHRESH are the most
challenging to predict with our method but still have much
less error than other fast methods had for other compressors
(e.g., Table 5) which incur MedAPE errors at or above 76%
representing a 3× improvement in MedAPE for TTHRESH.

Similar associations and complementarity between 3D
statistical predictors and CR are observed on other datasets
such as Miranda, but we do not have enough samples to fit
our regression model. Future work will focus on sampling
3D datasets to create samples in order to fit statistical
prediction models.

Table 5. Prediction accuracy metrics for prior work on SZ2.
MedAPE (%) with 10% and 90% quantiles are reported for
Miranda Vx and CESM CLOUD.

Miranda Vx CESM CLOUD
Our method 2.8 (0.9, 3.8) 1.9 (1.3, 2.7)
OptZConfig
Underwood
et al. (2022)

28 (17, 121) 26 (12, 58)

Block sampling
Tao et al.
(2019b)

90 (82, 93) 76 (41, 82)

Method from
Lu et al. (2018)

193 (157, 276) 1398 (713, 1570)

Key findings: Extension to 3D data of CR statistical
predictions remains competitive for SZ, ZFP, MGARD,
and Bit Grooming. Predictions for TTHRESH are less
accurate , but still substantially better than using block
sampling estimation.

4.6 Accuracy comparison to prior work
In this section, we compare against the state-of-the-art
estimation methods. For more information on these methods
see Section 2.2. We present results here on SZ2 which is the
hardest compressor to predict correctly, but results on other
compressors are similar.

Table 5 provides SZ2 CR-prediction accuracy for several
fields via block sampling Liang et al. (2019b); Tao et al.
(2019b), via the compressor-specific method from Lu et al.
(2018), OptZConfig Underwood et al. (2022), and our
approach. Predictions from each method are implemented
from their codes.

Results from these three other methods are not as
competitive as our method; in particular, block sampling
systematically underestimates CRs whereas Lu et al.
(2018)’s method systematically overestimates them. It is
important to note that the next most accurate approach by
Underwood et al. (2022) is substantially slower – we explore
the performance aspect more fully in Section 5. Note that Lu
et al. (2018)’s method was designed mainly for 1D datasets;
and, as discussed earlier, block-sampling techniques were
designed to predict only whether SZ or ZFP would provide
higher CR and leverage the compressor block size.
Key findings: Our approach is at least an order of
magnitude more accurate than prior approaches with at
least a 10× improvement over OptZConfig, and at least
32× than block sampling, and 69× than Lu et al. (2018).

5 Performance analysis of our approach vs
prior work

An accurate method to predict compress-ability is limited if it
cannot be used to accelerate applications using compression.
This section investigates the performance and feasibility
of using our approach for the two use cases from the
introduction. Use case 1: Determine a configuration of a
compressor that achieves a specified CR Underwood et al.
(2020). Use case 2: Determine which of a set of compressors
achieves the best CR Tao et al. (2019b).

We include the GPU versions of SZ, ZFP, and MGARD
here for performance comparison but omit their quality
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Figure 10. Runtime for use case 1 and use case 2 on SCALE-LetKF V: Our GPU-based approach is the fastest, with 3.4 s for use
case 1 (UC1) and 2.0 s for use case 2 (UC2). Compressors take more time in use case 1 because they are iteratively executed in
OptZConfig Underwood et al. (2022). Even without access to a GPU, our CPU-based implementation is faster than all CPU
compressors for use case 1 except SZ2 and ZFP at 39.2s. TTHRESH is especially slow in use case 1, taking 341 seconds. There
are 12 implementations of use case 1 and 4 of use case 2

results because of lack of space and in implementation
issues in some of the GPU compressors (i.e. segfaults). Only
ZFP’s GPU implementation ran without crashes on our entire
testing sets, and ZFP’s GPU implementation only supports
fixed rate, which is by definition trivial to estimate CR but
has lower quality than error bounded modes. We specifically
use SCALE-LetKF V data for our test because it has the
largest buffers in our dataset and thus a worse case for our
approach due to the runtime complexity of the SVD.

For use case 1, we compare against OptZConfig
Underwood et al. (2022) in a warm-start case Underwood
et al. (2020). OptZConfig is able to target a specific
compression ratio by iteratively executing the compressor
and using black-box global optimization to configure the
compressor appropriately to achieve the specified target.
By warm start, we assume that we already have a trained
model for both OptZConfig and our approach for other data
from this field. In contrast to OptZConfig, we present our
approach implemented on both CPUs and GPUs. In both
implementations, we still use the optimization approach from
OptZConfig; but instead of using the actual compressor, we
use our statistical approach to estimate the CR. Since the
SVD or HOSVD portion is independent of the error bound,
we execute this code only once; however, the quantized
entropy and our inference code is run for each error bound.
We report the wall-clock time for each segment of the
process; sum is the total time taken.

For use case 2, we compare against running each
compressor once to determine which has the greatest CR Tao
et al. (2019b). We still assume a warm start where we have
trained on other data from the same field. In this case, we

need to run both the SVD/HOSVD and quantized entropy
only once and our inference code once per compressor we
compare against. We report the wall-clock time for each
segment of the process; sum is the total time taken.

All compressors were compiled with default flags
and latest versions from Spack. Our implementations
for both versions of our metrics are parallel and
written in Julia, whereas the inference code is written
in R. The implementation of the quantized entropy is
straightforward from its definition with a parallel reduction.
The implementation of the SVD/HOSVD is also reasonably
straightforward, with the bulk of the parallelism expressed
via a parallel LAPACK library: MKL for the CPU,
cuSOLVER for the GPU. Note that our time to estimate does
not vary based on compressor and that we achieve equivalent
quality estimates from both our method and the baselines so
we do not present them here.

For use case 1, our GPU-based approach achieves sub-
stantial speedups compared with executing the compressors
and our approach on the CPU, with speedups between 10×
and 1.25× for GPU compressors, 100.0× to 8.9× over the
CPU compressors, and 11.2× over the CPU parallel version
of our code. Even the slower CPU version outperforms the
compressors with OptZConfig in 5 of 7 CPU compressors.
For use case 2, our GPU-based approach achieves a 50×
speedup with all compressors and still a 21.5× speedup
excluding the two slowest compressors and a 4× speedup
with just the fastest two. The CPU-based approach is still
able to achieve a 1.3× speedup when 4 or more compressors
are used and 4.9× speedup with all compressors. In both
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cases we observe similar prediction accuracy as reported in
earlier sections.

6 Conclusion
We propose an accurate statistical method to predict CR
of lossy compressors using statistical properties of data
that is agnostic to compressor internals. Compressor-free
statistical predictors are based on spatial correlation, entropy,
and lossyness via SVD-based and entropy-based predictors
which enables speedups compared to the existing literature.
CR prediction accuracy is highly competitive in terms of
prediction accuracy, with very low percentage error for the
studied compressors. Our method demonstrates robustness
to a variety of compressors which rely on differing operating
principles. We even show accurate CR predictions for SZ2,
highlighting the robustness of the method to the dynamic
selection of compressor-prediction schemes in SZ2. Future
work should focus further on the generalizability of the
method to reduce dependence on samples, types of bounds,
and compressors principles.

This method enables speedups in both automated tuning
of compressors to find a desired compression ratio (use case
1, Underwood et al. (2020)) as well as quickly determining
which compressor out of a groups of compressors will
achieve the greatest CR (use case 2, Tao et al. (2019b)).
Both use cases have been used to accelerate IO for parallel
computing.
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