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Abstract

We introduce a new geometric robot routing problem which arises in data muling applications
where a mobile robot is charged with collecting data from stationary sensors. The objective is
to compute the robot’s trajectory and download sequence so as to minimize the time to collect
the data from all sensors. The total data collection time has two components: the robot’s travel
time and the download time. The time to download data from a sensor s is a function of the
locations of the robot and s: If the robot is a distance rin away from s, it can download the
sensor’s data in Tin units of time. If the distance is greater than rin but less than rout, the
download time is Tout > Tin. Otherwise, the robot can not download the data from s. Here,
rin, rout, Tin and Tout are input parameters. We refer to this model, which is based on recently
developed experimental models for sensor network deployments, as the two ring model, and the
problem of downloading data from a given set of sensors in minimum amount of time under this
model as the Two-Ring Tour (TRT) problem.
We present approximation algorithms for the general case which uses solutions to the Traveling
Salesperson with Neighborhoods (TSPN) Problem as subroutines. We also present efficient
solutions to special but practically important versions of the problem such as grid-based and
sparse deployments. The approach is validated in outdoor experiments.

1 Introduction

Research on Wireless Sensor Networks (WSNs) has been very active in the last two decades
with researchers focusing on issues ranging from deployments with coverage guarantees [22] to
the development of energy-efficient communication protocols to improve network lifetime [1].
Consequently, the technology advanced to the level that WSNs are now being routinely used
in environmental applications such as the monitoring of humidity levels to determine vineyard
irrigation levels [26]. In fact, commercial products are now available for building such systems.

Using mobility to improve ad-hoc networks [21, 36, 12] and WSNs is studied extensively in
the literature. In WSNs mobile entities can be used as data mules to collect data from sensor
nodes. From wireless communications perspective using robots as data mules has a number
of advantages over stationary WSNs: robots eliminate the need for deploying relay nodes to
collect data. This may drastically reduce the number of necessary nodes in large scale habitat
monitoring applications. In addition, since the robot can move close to the sensing node, the
energy consumed by the nodes for communication is decreased which, in turn, significantly
improves the network’s lifetime [29, 31].
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Most of the problems in this context are studied under the assumption that the data mule
is an uncontrolled entity. In [27], the authors present the details of a three tier sensor network
architecture. The real implementation of similar systems are presented in [19, 6]. If the mobility
model of the data mules is known before hand, this knowledge can be used to improve energy
consumption of the sensor nodes. Energy consumption can be reduced by using efficient protocols
and scheduling algorithms for the wireless sensor nodes [9, 18, 8, 3, 2]. A recent review on the
state of the art in exploiting sink mobility can be found in [15, 17, 33]

If the data mules is a controlled entity such as a robot, planning its path becomes a funda-
mental problem: Given the location of wireless devices, find the robot’s path (and a download
schedule) which minimizes the time to collect data from all nodes. If the download times are
identical and we force the robot to travel to the exact locations of the sensors, then the problem
is identical to the Traveling Salesperson Problem (TSP). However, traveling to the exact location
of each device is not necessary. If we assume that the time to download the data of sensor node
s is uniform inside a disk centered at s, the problem becomes similar to the geometric version
of TSP with Neighborhoods (TSPN): given n uniform disks on the plane, compute the shortest
path that touches all the disks [4, 13]. In multi-robot data-muling applications, rather than sim-
ply minimizing the tour length for each robot, the time spent in traveling and downloading must
be minimized. In our recent work, we presented an algorithm which balances the load shared by
the robots by minimizing the maximum time spent by the robots for data gathering [7].

Our recent field work [7] revealed that the uniform disk model does not always accurately
capture the time spent in downloading a fixed amount of data in data muling applications. In
general, modeling packet delivery performance is a difficult problem as the quality of wireless
communication depends on many parameters such as “the environment, the part of the frequency
spectrum under use, the particular modulation schemes under use and possibly on the commu-
nication devices themselves [35].” However, recent results in the WSN community [35, 10] show
that while the signal strength is a continuously decaying function, packet loss exhibits a step
behaviour in existing WSNs (cf. Figures 10 and 12 in [35]). This suggests that the following
two ring communication model models the dependency of communication quality on distance
accurately in most sensor network deployments. In this model, there are two concentric disks
centered at the sensor location. Inside the inner disk the communication is reliable thus the
expected download time is shorter. Between the boundaries of the inner and the outer disks,
communication is possible however due to increase in packet loss rate, the expected download
time increases.

Collecting data under two-ring communication model is a new optimization problem which
we call Two-Ring Tour Problem (TRT). In this version of the problem the tours are no longer
optimal TSPN paths visiting uniform disks. An optimal tour is the one which trades-off between
downloading from the outer disk or going further to download from the inner disk with shorter
download time (Figure 1).

OPT

Figure 1: A TRT instance. Each sensor has a two ring communication model. If the robot enters
the inner disk (shaded region), it downloads data faster than downloading from the outer disk. For
this instance the optimal solution visits a mixture of inner and outer disks.

Our Contributions: We first study the general case of collecting data from sensors on the
plane. In Section 3.1, we present a (p + q)-approximation where p and q are the approximation
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factors for TSPN and k-TSPN problems (These problems will be defined shortly). Next we
present easy to implement polynomial algorithms for TRT which have approximation factors
O(Tout/Tin) and O(rout/rin) (Section 3.2 and Section 3.3).

We also study the following special cases for TRT problem: non-intersecting outer disks and
grid-based deployments both of which occur frequently in practical applications. When the outer
disks are non-intersecting, we present a constant factor approximation algorithm (Section 4.1)
based on a novel lower bound presented in Theorem 1. When sensors are deployed uniformly on
a grid (with possibly intersecting disks), we formalize the problem as an integer linear program,
solve the relaxed version (linear program) optimally and show how it can be rounded to obtain a
4-approximation (Section 4.2). In Section 5, we present results from a field experiment performed
using a ground robot.

We start the paper with an overview of related work on data mules (Section 1.1), and TSP and
TSPN problems (Section 1.2), and give a formal definition of the TRT problem in Section 1.3.

1.1 Related Work on Data Mules

Using data mules as controllable agents has recently received the attention of the researchers in
the networking community. In [20] the authors consider the control of the robot’s velocity along a
fixed path to improve transmission quality. Similarly [28] study the speed control problem for the
data mule when it is downloading data from a sensor while traveling within its communication
range. In both works, the authors do not address the path planning problem.

In [30], the authors present heuristics to improve data latency and data aggregation rate in
a data mule system where mobile agent is responsible for collecting data from cluster heads.
[32] presents a heuristic for minimizing path length of a data mule to collect data from spatially
separated WSNs. In our work we focus on the travel time of the mobile agents and we present
algorithms with theoretical performance guarantees. In our previous work [29], we implemented
a system which uses TSP and k-TSP algorithms to find efficient strategies for multiple data
mules. A similar system is designed for an underwater data muling system in [14]. In [34],
the authors formulate the problem of collecting sensor data using a single robot as an instance
of the TSP with neighborhoods (TSPN) problem. In [7], we presented multi-robot algorithms
which also used the disk model but took both the distance traveled and download time into
consideration. In all of the above work, the communication range is either modeled as a single
point or a disk. In our present work we use a realistic communication model (the two-ring model)
and address the tour time which incorporates both the traveling times and the download times.

1.2 Related Work on TSPN and Variants

The Traveling Salesman Problem (TSP) is one of the most widely studied combinatorial opti-
mization problems. Even though TSP in its general form is inapproximable, the metric version
admits a constant factor approximation [11]. The Euclidean version in any fixed dimension ad-
mits a Polynomial Time Approximation Scheme (PTAS) [24, 5]. A generalization of TSP which
received significant recent attention is TSP with Neighborhoods (TSPN) [4, 13]. In a TSPN
instance, instead of n points we are given n neighborhoods (a neighborhood is a bounded region).
The goal is to find a minimum cost tour which visits at least one point in each neighborhood.

Arkin and Hassin [4] introduced TSPN and presented a (3
√

2+1)p approximation algorithm
for the case when neighborhoods are equal length parallel segments (Here, p is the approxima-
tion ratio for TSP). For neighborhoods which are translates of a convex region, they gave a
(
√

72 + 32 + 1)p approximation algorithm.
The version of TSPN where the neighborhoods are uniform disks has many applications.

In fact, the TRT problem, introduced here, is a generalization of this problem which in turn
generalizes Euclidean TSP.

Dumitrescu and Mitchell presented constant factor approximation algorithms for TSPN with
uniform disks [13]. In this work, they start with the case where the disks are disjoint. They
show that a TSP tour that visits the centers of the disks is an O(1)-approximation to the TSPN
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tour. In Section 2, we present a novel lower bound for TSPN with uniform disks which is
of independent interest and is used in the analysis of algorithms presented in Section 3.3 and
Section 4.1.

For the general case where the disks can be intersecting, Dumitrescu and Mitchell first com-
pute a maximal independent set I of the input set (in other words, they compute a maximal
set of non-intersecting disks). They form a tour which visits the centers of disks in I, and tra-
verses their perimeters (to visit disks not included in I). It is shown that the length of this tour
is within a constant factor of the optimal TSPN tour. In Section 3.3, we use this strategy of
computing an independent set and visiting these disks as a subroutine to compute a TRT tour.

In more recent work, Mitchell showed that when the disks are disjoint, TSPN admits a PTAS.
The result generalizes to other “fat” regions on the plane [25]. The algorithm can be modified
to yield a PTAS for k-TSPN algorithm where the goal is to find the shortest tour which visits at
least k disks out of n disks in the input. k-TSPN with uniform (intersecting) disks also admits
a PTAS [23].

Elbassioni et al. presented a constant factor approximation algorithm for intersecting fat
convex objects of comparable diameters where the tour is restricted to visit each object only at
a finite set of specified points [16].

1.3 Problem Definition

Let S = {s1, . . . , sn} be a given set of the locations of n sensors. For each sensor s ∈ S, define
Din as the inner disk (i.e. the disk centered at s with radius rin) and Dout as the outer disk
(with radius rout). The download time inside the inner disk is Tin and the download time inside
Dout−Din is Tout. Without loss of generality, we scale the distances so that the robot’s maximum
velocity is one unit.

The objective is to find a tour which visits either the inner disk or the outer disk of each
sensor and minimizes the total time taken to travel and download data from all sensors. We
refer to this problem as the Two-Ring Tour Problem (TRT). We also assume that the robot
stops first and then downloads the data. Observe that the robot can reduce the total time of the
tour by at most half if it downloads while travelling. Therefore our results yield approximation
algorithms for simultaneous download model (increased by a factor 2) as well.

rin

rout

Tin

Tout

Din

Dout

Figure 2: The two ring model. Download time is Tin in disk Din while it is Tout in the region
Dout − Din.

The TRT problem is a generalization of the Eucledian TSP problem which is an NP-complete
problem. This implies that the there is no algorithm which can solve the TRT problem in
polynomial time unless P = NP . For such problems, approximation algorithms can be used
to get an approximate solution. An approximation algorithm is an algorithm which runs in
polynomial time on the size of input and guarantees that the solution is close to the optimal
value. For minimization problems like TRT, an α−approximation algorithm gives a solution
which is at most α times of the optimal value regardless of the input instance. Before we present
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algorithms for TRT, we investigate some of the structural properties of TRT instances.

2 Structural Properties

In this section, we present some basic properties of an optimal TRT solution.

Proposition 1 |Cin| ≥ |C∗

out|, where |Cin| is any tour that visits all inner disks, and C∗

out is
the optimal TSPN tour visiting outer disks.

Proposition 1 follows from the fact that any tour that visits the inner disks also visits the
outer disks. Using Proposition 1 we obtain a lower bound on the cost of the optimal solution to
the TRT problem.

Proposition 2 OPT ≥ |C∗

out| + nTin , where OPT is the cost incurred by the optimal TRT
tour.

The first term on the right side of the inequality in Proposition 2 is the lower bound on the
travel time taken by the optimal tour that visits all the sensors, while the second term is the
lower bound on the time to download data from all the sensors.

The following result yields a lower bound on the travel component of the optimal solution.
We will use this lower bound in some of the approximation algorithms presented later in this
paper.

i

Lemma 1 For any three non-overlapping, equal-size disks on the plane, the length of any path
that visits all three disks is lower bounded by αr, where r is the radius of the disks and α = 0.4786.

Proof. Let τ∗ be the optimal TSPN solution visiting n > 2 disks. Let D1,D2 and D3 be three
consecutive disjoint disks on τ∗ with centers c1, c2 and c3 respectively. Consider the segment of
τ∗ which visits these disks. τ∗ either touches the boundary of a disk or it crosses the boundary
twice. For each disk Di, we identify a point ti which is either the touching point or one of the
points where τ∗ crosses Di as follows (see Figure 3):

- If τ∗ touches D2, pick the touching point as t2, otherwise pick one of the two points on the
boundary of D2 arbitrarily which is crossed by τ∗

- If τ∗ touches D1, pick the touching point as t1, otherwise pick the closest crossing point to
t2 as t1 (similarly choose t3)

We will present a series of transformations on the disk locations such that the length of τ∗

will not increase. Afterwards, we will present a lower bound on |t1 t2|+ |t2 t3| in the transformed
version which also applies to the original instance before the transformations.

In the first transformation, we will replace points t1 and t3. In the second transformation,
we will move disks D1 and D3 in such a way that D2 touches both disks. Both of these transfor-
mations will be done without increasing the total distance. Finally, we will establish the lower
bound by optimizing the location of t2.

Let t′1 be the point that segment [t2 c1] crosses the boundary of D1. By moving t1 to t′1, we
do not increase the total distance (see Figure 3). Same observation can be applied for t3 and t′3.

If either |t1 t2| or |t2 t3| is greater than or equal to 0.4786r, lower bound holds since the
total distance is at least as claimed. If both distances are less than 0.4786r then we do the
following transformation. Without loss of generality, let us assume that D1 is to the left of
D3 (see left of Figure 4). If D1 touches D2, we do not move D1. Otherwise, we rotate D1

along t2 in counterclockwise direction until D1 touches D2. Similarly, if D3 does not touch D2,
initially, we rotate it in clockwise direction until it touches D2. Note that this transformation
is only a rotation and does not change the total distance. This transformation is shown in
Figure 4 (Middle).

In this transformed version of the problem, we formulate the total distance in terms of
parameters θ = ∠t2 c2 c′3 and β = ∠c′1 c2 c′3 where c′1 and c′3 are centers of transformed disks

5



t1

t2

t3

t′
1

t′
3

c1

c2

c3

D1

D2

D3

Figure 3: Three non-overlapping disks lying in a plane. The part of the optimal TSPN tour t1, t2, t3
which visits disks D1, D2 and D3, respectively. Without increasing the total distance, we can
transform t1 to t′

1
and t3 to t′
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Figure 4: Left: Initial configurations of circles where |t′
1

t2|, |t2 t′
3
| < 0.4786r. Middle: After

rotation without changing the total distance, D2 touches both D1 and D3. Right: The configuration
where the total distance is minimum and equals to 0.4786r.

D1 and D3. Since t2 is on the boundary of D2, we can define all possible locations of t2 in
terms of θ. Since |t1 t2| is less than 0.4786r, we can show that the angle ∠c′1 t2 c2 is greater
than π/2. Using the same fact on |t2 t3|, we can show that the angle ∠c′3 t2 c2 is greater than
π/2. Together with the previous inequality, we establish that t2 is inside the triangle △c′1 c2 c′3.
Using the same distance constraints, we can show that β is upper bounded by π/2. Moreover,
since all disks are non-overlapping, it is lower bounded by π/3 (the configuration when all disks
touch each other). The total distance can be expressed as:

f(θ, β) = r
(

√

5 − 4 cos(θ) +
√

5 − 4 cos(β − θ) − 2
)

(1)

To minimize Equation 1, we first solve for ∂f/∂θ = 0. This yields θ = β/2 . The cor-

responding minimum value is 2r
(

√

5 − 4 cos(β/2) − 1
)

. The value f(β/2, β) over the interval
π
3
≤ β < π

2
is minimized when β = π/3. These two values yield a configuration where all the

circles touch each other and t2 is in the middle of tangent points. This configuration is shown
in right of Figure 4. In this configuration the total distance is 0.4786r which will be used in
Theorem 1 to find a lower bound on the tour length.

We use Lemma 1 to find a lower bound on any tour of non-overlapping, equal-sized disks in
a plane. This lower bound is used for analysis of algorithms presented in subsequent sections.

Theorem 1 Any tour τ of n disjoint, equal-sized disks of radius r, satisfies

|τ | ≥ n

2
αr, (2)
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where α = 0.4786 and n ≥ 3.

Proof. Take the tour τ . It will give an order of sensors in which to visit them. Let the order be
s1, s2, s3 , . . . , sn. From Lemma 1 we know that the cost of every sub-path Pi which joins si, si+1

and si+2 in τ , is lower bounded by αr for every i ∈ 1, n. Also |τ | ≥ 1

2

∑n

i=1
|Pi|. Therefore

|τ | ≥ n
2
αr.

3 The General Case

In the general case, the communication disks of sensors are placed arbitrarily on the plane
possibly overlapping. This section presents three algorithms for this case.

Our first algorithm uses algorithms for TSPN and k-TSPN problems as subroutines. If TSPN
solution is p-approximate and k-TSPN solution is q-approximate then our algorithm gives a
(p + q)-approximate solution for the TRT problem. For example, we can use the PTAS for
k-TSPN [23, 25] and PTAS for TSPN from [13] to get a (2 + ǫ)-approximate solution for TRT
(where ǫ can be made arbitrarily small at the expense of running time).

PTAS algorithms are generally difficult to implement and they have high running times in
practice. Therefore, we present two algorithms which are easy to implement and have approxi-
mation ratios of O(Tout

Tin

) and O( rout

rin

) where Tout > Tin > 0. In practice, the ratios Tout

Tin

and rout

rin

are expected to be small, therefore the two algorithms are relevant for the real world instances
of TRT.

3.1 General Approximation Algorithm

Let C∗ be the optimal tour, SI be the set of sensors whose inner disks are visited by C∗, and
SO be the remaining sensors whose outer disks are visited by C∗. We have |SI |+ |SO| = n. The
total cost of this tour is OPT = |C∗| + |SI |Tin + |SO|Tout where Tin and Tout are the download
times from the inner and outer disks of a single sensor.

Let f(k) be the cost incurred by an algorithm A which computes a k-TSPN tour of inner
disks using a q-approximation algorithm and visits these sensors. Afterwards, A downloads data
from the remaining sensors by visiting their outer disk. We claim that the cost incurred by A
for k = |SI | is a (p + q)-approximation. In other words, f(|SI |) ≤ (p + q)OPT .

To see this, first observe that C∗ is a k-TSPN tour (with k = |SI |) of the inner disks and
therefore, the optimal k-TSPN tour of all the inner disks is no longer than C∗. Let C∗

1 be
the optimal k-TSPN tour. By the previous argument, |C∗

1 | ≤ |C∗|. Since we are using a q-
approximation algorithm for k-TSPN, the tour C1 given by this algorithm will be of length at
most q|C∗

1 |.
Next, let C∗

2 be an optimal TSPN tour of the outer disks of sensors not visited by C1. This
tour will be shorter or equal in length than the optimal tour C∗

out which visits all the outer disks,
i.e., |C∗

2 | ≤ |C∗

out|. But the length of the optimal tour of the outer disks is a lower bound on the
length C∗ (Proposition 1). Therefore, |C∗

out| ≤ |C∗|. We compute a p−approximate TSPN tour
by using a p-approximation algorithm for the TSPN problem. If C2 is the tour given by this
algorithm, then we have |C2| ≤ p|C∗|

Therefore, the total cost incurred by |C1 ∪ C2| is

f(|SI |) = |C1| + |C2| + |SI |Tin + |SO|Tout

≤ q|C∗| + p|C∗| + |SI |Tin + |SO|Tout

≤ (p + q)OPT

Finally, we observe that mink f(k) ≤ f(|SI |). Therefore, by picking the value of k which
minimizes f(k) provides a (p + q)-approximation. Algorithm 1 implements the steps mentioned
above. It iterates over all possible values of k (from 1 to n) and picks the one for which the total
cost is minimized.
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Algorithm 1 GENERAL APPROX ALGORITHM

TOUR ← φ
minCost ← BIGNUMBER
for k = 1 to n do

C1 ← k-TSPN tour of the inner disks
S ← { sensors visited by C1}
C2 ← TSPN tour of the outer disks of the sensors not included in S
cost ← |C1| + |C2| + kTin + (n − k)Tout

if minCost > cost then

TOUR ← C1 ∪ C2

minCost ← cost
return TOUR

Mitchell presents PTAS algorithms for both TSPN and k-TSPN problems [25]. If we use
these algorithms for the case when the outer disks are disjoint, then we get p = (1 + ǫ/2) and
q = (1+ ǫ/2). In that case our algorithm yields a (2+ ǫ)-approximation factor. In the remaining
case (intersecting outer disks), we can use the constant factor approximation algorithm for the
outer disks [13] to find a TSPN tour (p = 11.5) and the the PTAS for inner disks which yields
an approximation algorithm with factor (12.15 + ǫ) for TRT.

3.2 O(Tout

Tin

)-approximation

The algorithm presented in this section is appropriate for the case when the download times of
the inner and the outer disks are comparable. For this scenario, we show that the strategy of
visiting just the outer disks of the sensors yields an O(Tout

Tin

)-approximation for TRT.
First, we use a TSPN algorithm (e.g. [13]) to find a TSPN tour Cout of all the outer disks.

Let p be the approximation factor for this algorithm and p ≥ 1. Since the tour visits the outer
disks, the robot downloads data from the sensors with the download speed of Tout. Therefore,
the approximation factor of the algorithm is:

|Cout| + nTout

OPT
≤ |Cout| + nTout

|C∗

out| + nTin

≤ p|C∗

out| + nTout

|C∗

out| + nTin

≤ p
|C∗

out| + nTout

|C∗

out| + nTin

≤ p
Tout

Tin

(3)

The first inequality in Equation 3 comes from Proposition 2. TSPN approximation directly
yields the second inequality. Therefore, our algorithm has an approximation factor of O(Tout

Tin

).

3.3 O( rout

rin

)-approximation

For some problem instances the ratio of radii may be better than the ratio of download times. In
such cases if the ratio of radii is small, we can find an efficient algorithm with the approximation
factor of order O( rout

rin

).
In this algorithm, first we compute a maximal non-overlapping set I of the outer disks. For

this we use Algorithm 2. Then we find a TSPN tour CI
out of the disks in I. For each disk A ∈ I,

we define the set of sensors whose outer disks intersect with A as SA. Next, we will show how
we can extend CI

out such that it visits all the inner disks of the sensors in SA. In the following,
we assume that |I| ≥ 3.
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Let D be a disk of radius 2rout and is co-centered with A. All the sensors in SA lie on or in
D. We traverse D in concentric circles which are distance rin apart as shown in Figure 5. This
will ensure that all the inner disks of the sensors in SA are visited.

Algorithm 2 PARTITION ALGORITHM(S)

I ← φ
while S 6= φ do

Pick a outer disk D of a sensor ∈ S.
I ← I ∪ D
SD ←{ sensor with outer disk D′ ∈ S : D′ ∩ D 6= φ}
S ← S − SD

return MIS set I and all partitions SD.

A

rinrin

2rout

CI
out

CI
out

DA

Figure 5: In all inner-disk visits, the algorithm chooses to sweep the 2rout size disk centered at A
in concentric circles which are rin apart.

Let dA be the extra distance traveled in this process and let k = ⌊ 2rout

rin

⌋. Then, dA =
∑k

i=1
2πirin = πrink(k + 1) = 2πrout(k + 1). The cost of this tour is |CI

out| + mdA = |CI
out| +

2mπrout(k + 1), where m = |I|. This gives us the approximation ratio

|CI
out| + mdA + nTin

|Cout
∗| + nTin

≤ |CI
out| + mdA

|Cout
∗|

=
|CI

out|
|Cout

∗| +
2mπrout(k + 1)

|C∗

out|

≤ p +
2mπrout(k + 1)

m
2

routα

= p +
4π(k + 1)

α
(4)

In the second inequality we use p as the approximation ratio for the TSPN algorithm and the
lower bound on C∗

out is obtained from Theorem 1. Finally, this gives us an O( rout

rin

) approximation
algorithm under the requirement that |I| ≥ 3.

4 Special Cases

In this section, we consider efficient solutions for some practical sensor deployments. In the first
scenario, we consider a sparse network deployment where communication disks do not overlap.
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In the second scenario, we consider a common network topology where the sensors are deployed
uniformly over a grid.

4.1 Non-Overlapping Outer Disks

In this section we consider the case when all the outer disks are non-overlapping. Our algorithm
is simple. We compute a TSPN tour Cin of inner disks and download data from inner disks with
cost of Tin at each disk. This tour can be computed by visiting centers of the disks in polynomial
time with (1 + ǫ) approximation using PTAS given in [13].

When n = 1, the solution is trivial. For n = 2, all possible cases (visiting both inner disks,
both outer disks or one inner and one outer disk) can be calculated and the one giving the
minimum cost is picked. For n ≥ 3 we present the following lemma.

Lemma 2 Given n equal size disk of radius r, where n ≥ 3, one can compute a TSPN tour Cin

of the inner disks such that
|Cin| + nTin

|C∗

out| + nTin

≤ (1 + ǫ)(1 +
4

α
) (5)

Proof. We observe that any outer disk TSPN tour can be converted in to an inner disk TSPN
tour by extending it at most 2(ro − ri) in length at each disk. From this observation we get

|C∗

in| ≤ |C∗

out| + 2n(ro − ri) ≤ |C∗

out| + 2nro, (6)

where C∗

in is the optimal inner disk TSPN tour. Therefore,

|Cin| + nTin

|C∗

out| + nTin

≤ (1 + ǫ)
|C∗

in|
|C∗

out|
≤ (1 + ǫ)

(

1 +
2nro

|C∗

out|

)

≤ (1 + ǫ)(1 +
4

α
) (7)

Equation 7 is obtained by applying the lower bound obtained in Theorem 1 to Equation 6. The
(1 + ǫ)-approximation is obtained by the PTAS for finding TSPN tour of non-overlapping equal
size disks given in [13].

This gives us the following result.

Theorem 2 A TSPN tour of inner disks is a factor (1 + 4

α
)-approximation for TRT with non-

overlapping outer disks (α = 0.4786).

4.2 Grid Based Deployment

In this section, we consider a common scenario where n2 sensors are deployed on the vertices of
an n × n grid. Let us define a boustrophedon path as a path that goes back and forth along a
fixed direction (vertical or horizontal) until it touches the boundary. For the case of grid-based
deployment, there exists an optimal solution OPT which follows a boustrophedon path. In other
words, assuming OPT starts from the top left corner of the grid, first it moves right until it
reaches the first vertical line, then follows the vertical line downwards until the bottom of the
grid. It then moves right to a vertical line and follows it upwards until it reaches the top and
so on. Therefore if we compute the set of vertical lines traversed by OPT, we can construct the
TRT path. Note that this path does not necessarily go through each sensor location (centers of
the disks), it simply intersects one of the disks of each sensor.

We restrict the candidate vertical lines to the set of tangent lines L. Each sensor introduces
four vertical tangent lines: two tangent to the outer disk and two tangent to the inner disk. It is
easy to show that if there exists a solution where there is a vertical line in between two tangent
lines in L then we can replace this line with one of its neighbor tangent lines to achieve the same
cost. Figure 6 shows an instance (only one row) and its vertical tangent lines. From now on, we
focus on selecting a subset of L such that the total time is minimized.
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Figure 6: Sensors are arranged on an n × n grid. For each sensor, draw vertical tangents. Two for
the outer disk and two for the inner disk. The number of tangents = m ≤ 4n. The stabbing lines
are chosen from this set of tangents.

LP-formulation

For each column i where 1 ≤ i ≤ n, we define four binary variables: x4i−3 for the left outer
tangent line, x4i−2 for the left inner tangent line, x4i−1 for the right inner tangent line and x4i

for the right outer tangent line. We set xj = 1 if and only if the tangent line xj is traversed. We
define a variable yi such that yi = 1 iff the robot visits the inner disks of sensor column i.

For each column at least one tangent line should be visited hence we have (i) x4i−3 +x4i−2 +
x4i−1 + x4i ≥ 1. Moreover, if one of the inner tangent lines is visited then yi should be set to 1.
We satisfy this by the following two constraints: (ii) yi ≤ x4i−2 + x4i−1 and (iii) yi ≤ 1.

Finally we define the cost of the solution. Let C be the cost of traveling a stabbing line, Tin

(resp. Tout) be the cost of downloading from inner (resp. outer) disks from an entire column.
The total download time is

C

4n
∑

j=1

xj + (Tin − Tout)

n
∑

i=1

yi + nTout

The integer solution to the above cost function under constraints (i)-(iii) gives us the optimal
solution for the uniform case. The complete integer linear program solution is given below:

minimize

C

4n
∑

j=1

xj + (Tin − Tout)

n
∑

i=1

yi + nTout

such that

x4i−3 + x4i−2 + x4i−1 + x4i ≥ 1 1 ≤ i ≤ n

yi ≤ x4i−2 + x4i−1 1 ≤ i ≤ n

yi ≤ 1 1 ≤ i ≤ n

xi, yi ∈ {0, 1}

Next we show that the relaxed version of this ILP can be rounded to obtain a 4-approximation.
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Relaxation and Rounding

We relax xj and yi by replacing the binary constraints with xj ≥ 0 and yi ≥ 0. Let OPT (LP ) be
the cost incurred by the optimal solution to the relaxed version. After solving the LP relaxation,
we round the solution as follows: If xj ≥ 1

4
we set it to one. Otherwise, we set it to zero. These

are the vertical lines that will be traversed. We then use the values of xj to determine the values
of yi. Let SOL be the cost incurred by this integer solution, and OPT (ILP ) be the cost incurred
by the optimal binary solution. Observe that OPT (LP ) ≤ OPT (ILP ) and SOL ≤ 4OPT (LP ).
Therefore SOL ≤ 4OPT (ILP ).

We now show that the rounding gives a feasible solution. To see this, observe that due to
constraint (i), one of x4i−3, x4i−2, x4i−1 and x4i is at least 1

4
. Therefore, after rounding at

least one of these stabbing lines is selected, which means that data from every sensor column is
collected.

5 Experiments

We performed experiments using wireless sensors (telosB motes) and a custom-built robot. First,
we obtained the model parameters. Figure 7 shows the average download times as a function of
distance from the sensor. For each distance value d, we moved the base mote on a disc centered
at the sensor mote location with radius d. In each trial, we downloaded 100 packets and recorded
their download times. The blue line in the figure shows the average download times and the red
error bar shows the minimum and maximum download times observed during each trial. The
download times show us that until a distance of 30 feet (gray line) the communication between
sensor and base motes is reliable and the download times are short. However beyond 30 feet the
communication becomes very unreliable: long download times up to as much as 22 seconds were
observed. Beyond 45 feet there was no communication.
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Figure 7: Download speed vs distance for communication between two sensor motes.

Next, we conducted real experiments with a robot to compare the performance of various
TRT tours. We used an outdoor robot developed in our lab to collect data from four telosB
sensors. These sensors were deployed on the corners of a square field of size 70x70 feet (See
Figure 8). The inner disk radius was set to 18 feet and the outer disk radius was chosen 30 feet.

We tested three natural strategies and compared their performances. In the first strategy the
robot followed a TSP tour which visits the centers. In the second and third strategies, the robot
visited the outer and inner disks respectively. In each visit the robot downloaded 100 packets
and the time to download varied according to the packet loss.
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Download Travel Total

Visit Disk Centers 8 140 148
Visit Outer Disks 50 64 114
Visit Inner Disks 9 119 128

Table 1: Table showing the download and travel times from the three strategies.

First we treated the TRT problem as a TSP problem and made the robot visit the sensor
locations. In this case the total download time was 8 seconds where as the travel time was 140
seconds (see Figure 9 and Table 1). In the second experiment, the robot visited the outer disks
which dropped the tour time from 148 seconds to 114 seconds. In this case the download time
and the travel time were 50 seconds and 64 seconds respectively. In the last experiment, the
robot followed an inner disk tour. The download time drastically decreased from 50 seconds to
9 seconds in this case. However, the travel time increased from 64 seconds to 119 seconds and
the overall tour time increased by 14 seconds to 128 seconds.

The experiment demonstrates that the wireless range can be exploited to reduce data gather-
ing time, and paying attention to the inner and outer disk parameters can yield further savings.

18 feet

30 feet

robot

sensor 1 s.2

s.3 s.4

70 feet

inner disk
outer disk

inner disk tour
outer disk tour

center tour

Figure 8: Left: An outdoor robot developed in our lab was used in the experiments for validating
the two-ring model. Right: The setup of the experiment.

6 Concluding Remarks

In this paper, we introduced a novel robot routing problem that arises in wireless applications
where a mobile entity is charged with downloading data from a set of nodes in the least amount
of time. The novelty of the formulation lies in the way download time is modeled: two concentric
disks around each sensor with different download times. The mobile entity must decide which
disk to visit for each sensor, and spend the corresponding time to download its data.

For the general case, we first presented an algorithm whose approximation is a function of
the approximations to k-TSPN and TSPN problems. We also presented two polynomial time
algorithms whose performance ratios are proportional to the ratio of the two radii or the ratio
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Figure 9: Left: A snapshot from the experiment. Right: Download and travelling time of the
following strategies: visit outer disk, visit inner disks and visit disk centers.

of the download times. As demonstrated in an experimental setting, these two parameters are
usually small in some practical scenarios.

For two special but common cases of the problem (uniform deployment and sparse deploy-
ments where the outer disks are disjoint), we presented constant factor approximation algorithms.

Generalization of TRT problem to polygonal environments possibly with obstacles remains
an open research problem. If the obstacles do not intersect with the communication disks, some
of the algorithms in this paper can be extended to solve this case (in particular the algorithms in
Sections 3.2 and 3.3). When obstacles intersect with the communication disks, the problem be-
comes even harder. Our future work includes solving the TRT problem in complex environments,
and extensions to multiple robots.
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