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Abstract—Grid mapping is a well established approach for
environment perception in robotic and automotive applications.
Early work suggests estimating the occupancy state of each grid
cell in a robot’s environment using a Bayesian filter to recursively
combine new measurements with the current posterior state
estimate of each grid cell. This filter is often referred to as binary
Bayes filter (BBF). A basic assumption of classical occupancy
grid maps is a stationary environment. Recent publications
describe bottom-up approaches using particles to represent the
dynamic state of a grid cell and outline prediction-update
recursions in a heuristic manner. This paper defines the state
of multiple grid cells as a random finite set, which allows to
model the environment as a stochastic, dynamic system with
multiple obstacles, observed by a stochastic measurement system.
It motivates an original filter called the probability hypothesis
density / multi-instance Bernoulli (PHD/MIB) filter in a top-down
manner. The paper presents a real-time application serving as
a fusion layer for laser and radar sensor data and describes in
detail a highly efficient parallel particle filter implementation. A
quantitative evaluation shows that parameters of the stochastic
process model affect the filter results as theoretically expected
and that appropriate process and observation models provide
consistent state estimation results.

I. INTRODUCTION

The beginning of grid mapping approaches took place in
the field of robotics [1], [2]. A classic grid map divides the
environment into single grid cells and estimates the occupancy
probability for each cell. Since several measurements occur
over time, the grid map combines these measurements with
a Bayesian filter. A commonly used filter for this application
is the binary Bayes filter, which combines measurements to
estimate the binary state of a grid cell: free or occupied [3].
A restrictive assumption of the common binary Bayes filter
application is that the environment is stationary. Furthermore,
a common assumption of grid maps is the independence of
individual grid cells which facilitates a fast implementation at
the cost of approximation errors.

Today, grid maps are used in many automated vehicles [4],
[5], [6]. Due to their explicit free-space estimation and their
ability to represent arbitrarily shaped objects, grid maps are an
important tool for collision avoidance. Moreover, the spatial
grid structure provides a convenient fusion layer for data from
different range finding sensors [7], [8]. In vehicle environment
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perception, the assumption of a stationary environment is
obviously not fulfilled due to moving road users like vehicles
or pedestrians.

Recently, several approaches have been presented to com-
bine grid mapping and multi-object tracking. A well-known
example is an approach called simultaneous localization, map-
ping and moving object tracking (SLAMMOT) [9], which
retains a grid map and multiple object tracks at the same
time and assigns object detections either to the grid map or
to a tracked object. Other publications suggest associating
grid cells directly to object tracks [10] or detecting object
movement in multiple time frames of grid maps using a
post-processing step [11]. Further approaches combine grid
mapping and object tracking in a modular way [12], [13].

However, some of these approaches imply complicated
environment perception architectures and are therefore not an
appropriate choice for many applications. In 2006, Coué et
al. proposed the Bayesian occupancy filter (BOF) [14] which
uses a four-dimensional grid to estimate a two-dimensional
environment. Here, two grid dimensions represent the spa-
tial position and two grid dimensions represent the two-
dimensional velocity of the obstacles. Thus, the BOF estimates
object movement and explicitly considers it in its process
model. The BOF motivated many applications [7], [15], but
a problem is the high computational load caused by the large
number of grid cells necessary to represent the environment
appropriately.

An important improvement by Danescu et al. [16], [17]
suggested to represent the dynamic state of a grid cell with
particles resulting in a significant reduction of the computa-
tional load. In subsequent publications, Nègre et al. [18] and
Tanzmeister et al. [19] independently proposed to represent
only the dynamic part of a grid map with particles instead of
all occupied grid cells. In 2015, Nuss et al. suggested to use
the dynamic grid map as a fusion layer for laser and radar mea-
surements [20], which would improve the overall performance
of the dynamic grid map, especially the separation between
moving and static obstacles.

In summary, previous work on dynamic grid maps based on
particles shows promising results. Unfortunately, the proposed
filters lack a stochastically rigorous definition of a multi-object
state estimation problem. As such, they describe evolutionary
algorithms (survival of the fittest) rather than Bayesian filters.

A. Contributions of this Paper

This paper models the dynamic state estimation of grid
cells as a random finite set (RFS) problem. Finite set statistics
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(FISST) [21] provide a mathematical framework for the state
estimation of multiple dynamic objects in a Bayesian sense.
Well-known techniques from the field of FISST like the prob-
ability hypothesis density filter (PHD) [22] and the Bernoulli
filter (BF) [23] are applied to estimate the dynamic state of
grid cells. The resulting filter is called probability hypothesis
density / multi-instance Bernoulli (PHD/MIB) filter. Modeling
the estimation problem of a dynamic grid map in the random
finite set domain yields substantial advantages. It gives every
filter parameter a physical meaning and allows a generic
and stochastically rigorous filter design for various estimation
problems.

The key contributions of this paper are:
1) The definition of the dynamic state estimation of grid

cells as an RFS problem and the derivation of the
probability hypothesis density / multi-instance Bernoulli
(PHD/MIB) filter, which takes into account the special
form of measurement grids as they are common for grid
mapping approaches.

2) The realization of the PHD/MIB filter with particles and
an approximation in the Dempster-Shafer domain.

3) A detailed pseudo code description of a massively par-
allel, real-time capable approximation of the PHD/MIB
filter.

4) Results of experiments with real-world data and evalu-
ation of estimation error and consistency of the approx-
imated PHD/MIB filter.

B. Paper Structure

The remainder of this paper is structured as follows. Section
II gives an overview of published dynamic grid mapping ap-
proaches. Section III outlines mathematical basics of random
finite set statistics. The PHD/MIB filter is derived in Sect.
IV. A particle-based realization is presented in Sect. V and
approximated in the Dempster-Shafer domain in Sect. VI.
Section VII provides a detailed description of a highly-efficient
parallel implementation, followed by the evaluation in Sect.
VIII. Section IX presents the conclusion.

II. DYNAMIC GRID MAPPING: AN OVERVIEW

This section provides an overview of current static and dy-
namic grid mapping approaches and discusses their advantages
and drawbacks.

A. Static Grid Mapping

Classic occupancy grid maps divide the space into single
grid cells and estimate the occupancy probability of each grid
cell [1]–[3]. A binary grid cell state ok at time k is considered
either occupied or free: ok ∈ {O,F}. The grid map updates
the grid cell states when a new measurement arrives. For this
purpose, an inverse sensor model assigns a discrete, binary
occupancy probability pzk+1

(ok+1|zk+1) individually to each
grid cell based on the measurement zk+1 at time k + 1.
The result is called a measurement grid. To give a practical
example, consider a laser range measurement consisting of
several laser beams and the resulting measurement grid as

Fig. 1. Occupancy probabilities of two-dimensional grid cells, reasoning on
a multi-beam laser range measurement. Grid cells with a high probability of
being occupied are colored black, free grid cells are marked with white color.
Grid cells with an unknown state (same probability for both occupied and
free) are displayed in gray color.

depicted in Fig. 1. The inverse sensor model can be a heuristic
model or the result of a machine learning process [2]. Usually,
the position of the robot or vehicle in the grid map is estimated
by a dead reckoning approach [3].

The posterior occupancy probability po,k+1(ok+1) at time
k + 1 results from the last posterior occupancy probabil-
ity po,k(ok) at time k and the measurement-based estimate
pzk+1

(ok+1|zk+1) through [2]

po,k+1(ok+1) =

pzk+1
(ok+1|zk+1) · po,k(ok)

pzk+1
(ok+1|zk+1) · po,k(ok) + pzk+1

(ok+1|zk+1) · po,k(ok)
,

(1)

where p(o) = 1− p(o) denotes the probability of the counter
event of occupied or free, respectively.

This is often referred to as binary Bayes filter due to the
binary nature of the estimated state. Equation (1) holds if
the prior probability for occupancy and free is equal, the
measurements are independent of each other and the grid cell
state does not change over time. An alternative approach is the
forward sensor model, which estimates for each grid cell the
occupancy likelihood function gk+1(zk+1|ok+1) for the two
feasible occupancy events ok+1 ∈ {O,F}. Then the update
under the same assumptions as for (1) is given by

po,k+1(ok+1) =

gk+1(zk+1|ok+1) · po,k(ok)

gk+1(zk+1|ok+1) · po,k(ok) + gk+1(zk+1|ok+1) · po,k(ok)
.

(2)

Modeling likelihoods is more complicated than designing
inverse sensor models and usually also computationally more
expensive.

Equations (1) and (2) can be generalized to

po,k+1(ok+1) =
αzk+1

· po,k(ok)

αzk+1
· po,k(ok) + po,k(ok)

, (3)



(a) Posterior at k (b) Prediction for k + 1

(c) Measurement grid at k + 1 (d) Posterior at k + 1

Fig. 2. Different states of dynamic grid map estimation recursion.

where αzk+1
is the single measurement based occupancy

probability ratio

αzk+1
=
pzk+1

(ok+1|zk+1)

pzk+1
(ok+1|zk+1)

, pzk+1
(ok+1|zk+1) > 0, (4)

or the likelihood ratio

αzk+1
=
gk+1(zk+1|ok+1)

gk+1(zk+1|ok+1)
, gk+1(zk+1|ok+1) > 0, (5)

respectively. As a conclusion, the binary Bayes filter requires
either a likelihood ratio or a probability ratio for the update
step. It will be shown later in Sect. IV-G that the binary Bayes
filter (3) is a special case of the presented PHD/MIB filter,
namely for the assumption of zero velocity in a deterministic
process model.

B. Dynamic Grid Mapping

Since the assumption of a stationary environment is not
realistic for typical traffic scenarios, several approaches to
integrate object movement into grid maps have been pro-
posed recently. This section compares four contributions from
Danescu et al. [17], Tanzmeister et al. [19], Nègre et al. [18]
and Nuss et al. [20].

All mentioned publications about particle-based dynamic
grid maps estimate the occupancy probability and the dynamic
state of grid cells in the vehicle environment. Further, all
publications describe an algorithm consisting of a prediction
and an update step as depicted in Fig. 2 and apply a resampling
step to avoid degeneration.

1) State Representation: All mentioned publications rep-
resent the dynamic state of grid cells with particles, but the
interpretation of a particle differs: [17] and [20] directly use

the number of particles or the sum of particle weights in a grid
cell as a measure for the occupancy probability of the grid cell.
In contrast, [18] propagates an additional discrete probability
distribution for the events free, static occupancy and dynamic
occupancy for each grid cell. The particles then represent a
velocity distribution for the dynamic case. The same events
are used in [19] within a Dempster-Shafer framework [24].
To avoid aliasing problems, particles represent velocity and
position of an occupancy in a grid cell in all mentioned
publications, so the dynamic state of a grid cell is four-
dimensional.

2) Prediction Step: All mentioned publications assume a
process model with constant velocity and constant direction
and propagate each single particle accordingly. All particles
that are predicted into a certain grid cell represent the predicted
dynamic state of the grid cell. However, the exact quantitative
reasoning about the resulting predicted occupancy probability
varies. Intuitively, the higher the number of particles or particle
weights predicted into a grid cell, the higher is the predicted
occupancy probability. An example is depicted in Fig. 2b.

3) Update Step: Updating the occupancy probability of
a grid cell with a measurement grid is generally a binary
Bayes problem and solved either by equation (1) or (2) or
by equivalent update steps in the Dempster-Shafer framework
[19], [20]. Due to the lack of a mathematically rigorous
definition of a particle, all publications use different methods
to normalize the particle weights in a grid cell after the update
step to provide a consistent representation of the occupancy
and the dynamic state of a grid map.

4) Resampling: All mentioned publications apply a resam-
pling step to avoid degeneration. Similar to classic particle
filters, the resampling step chooses to eliminate some particles
and reproduce others instead, based on their weight. After the
resampling step, all particles are assigned the same weight.

5) Initialization: If a measurement grid cell provides a high
occupancy probability (or occupancy likelihood, in the forward
case), but no particles were predicted into the corresponding
grid cell, new particles must be initialized to represent the dy-
namic state of the grid cell. The initial distribution depends on
the environment setting, but usually the velocity of movements
is limited, e.g. by the maximum speed of a vehicle.

Neither [17] nor [19] describe the initialization step to any
further detail than mentioned here. In a realistic scenario, a
grid cell is not either empty or fully populated, but mostly
something in between. Then the question arises how to di-
vide the weight between predicted and initialized particles.
Intuitively, the weight for newly initialized particles should
rise with increasing measurement occupancy and decreasing
predicted occupancy. Heuristic examples are provided by [18]
and [20].

6) Occluded Areas: In practical applications, a grid map
contains a high ratio of occluded and therefore unobserved
grid cells. Populating unknown areas of the grid map with
particles would result in a huge computational load. To avoid
this, all mentioned publications only initialize particles in grid
cells with a certain measured occupancy probability.



C. Discussion
The discussed particle-based BOFs show promising results.

However, from a theoretical point of view many open ques-
tions remain. A prerequisite for Bayesian state estimation is
the definition of a state space, a stochastic process describing
the state transition and a stochastic observation process. All
mentioned papers directly describe the propagation of particles
without defining the estimation problem first. As a result, it is
unclear what a particle represents. All mentioned publications
explain that a particle represents a hypothesis for the dynamic
state of an individual grid cell. However, during the prediction
step, particles from various cells are predicted into another grid
cell and jointly represent the state of the destination cell. The
particles are not assigned to a specific object, instead they
represent a hypothesis for the existence and state of a whole
group of objects.

In other words, the particles jointly represent a set of
occupied grid cells, where the number of occupied grid cells is
a random process itself and must be estimated too. This cannot
be explained with single-object Bayesian estimation theory.
As a consequence, previous work cannot motivate prediction
or update equations for a well-defined estimation problem.
Especially the initialization of new particles remains unclear.

From a theoretical point of view, an environment containing
a random but limited number of objects is a random finite set
(RFS) [21]. The finite set statistics (FISST) are a mathematical
framework providing a basis for Bayesian state estimation of
multiple objects. The following section gives an introduction
to the basics of FISST required for the derivation of dynamic
grid mapping as an RFS estimation problem.

III. RANDOM FINITE SET STATISTICS

This section outlines the main concepts of finite set statistics
and the multi-object Bayes filter. For further details, the reader
is referred to [21] or [23].

A random finite set (RFS) is a finite set-valued random
variable, i.e., a realization of an RFS consists of a random
number of points or objects whose individual states are given
by random vectors x ∈ X where X denotes the single-object
state space. Thus, an RFS is represented by

X = {x(1), . . . , x(n)}
where n ≥ 0 is a random variable and the special case n = 0
results in the empty set X = ∅.

The cardinality distribution of an RFS is given by an
arbitrary discrete distribution and the probability for an RFS
representing exactly n objects is denoted by ρ(n). For each
cardinality n > 0, the RFS contains a set of probability density
functions (PDFs)

{fn(x(1), . . . , x(n)), n ∈ N | ρ(n) > 0},
i.e., the RFS supports several different state distributions for
a single cardinality. Since an RFS is order independent, the
multi-object probability density function (MPDF) is given by

π(X = {x(1), . . . , x(n)}) ={
ρ(0) if X = ∅,
n! · ρ(n) · fn(x(1), . . . , x(n)) otherwise,

(6)

where the factor n! accounts for all possible permutations of
the vectors x(1), . . . , x(n).

Since the number of objects is also a random variable, the
set integral [21]∫

π(X)δX = π(∅)+
∞∑
n=1

1

n!

∫
π(x(1), . . . , x(n))dx(1) · · · dx(n) (7)

has to be applied for the integration over an MPDF.

A. Multi-Object Bayes Filter

Conventional multi-object tracking is typically realized us-
ing several instances of a Kalman filter [25]. This provides an
analytical solution to the single-object Bayes filter in case of
Gaussian distributed states and measurements as well as linear
motion and measurement models. The multi-object Bayes
filter [21] is a generalization of the single-object Bayes filter
which handles the uncertainty in the number of objects in a
mathematically rigorous way.

If the multi-object density at time k is given by πk(Xk),
the predicted multi-object density is obtained by applying the
Chapman-Kolmogorov equation:

π+(Xk+1) =

∫
f+(Xk+1|Xk)πk(Xk)δXk. (8)

Here, f+(Xk+1|Xk) denotes the multi-object transitional den-
sity which captures the appearance and disappearance of
objects in addition to the movement of persisting objects. For
a shorter notation, the index ”+” expresses a prediction step
from time k to time k + 1, often noted as k + 1|k.

The measurement update of the predicted multi-object den-
sity using a set of measurements Zk+1 is realized by applying
Bayes’ rule to yield

πk+1(Xk+1|Zk+1)=
γk+1(Zk+1|Xk+1)π+(Xk+1)∫

γk+1(Zk+1|Xk+1)π+(Xk+1)δXk+1
,

(9)

where the integral in the denominator is a set integral as
defined in Eq. (7). Similar to the multi-object transitional
density in the prediction step, the multi-object likelihood
function γk+1(Zk+1|Xk+1) has to incorporate the uncertainty
of the measurement process, i.e., it has to model missed
detections and false alarms.

A realization of the multi-object Bayes filter is possible
using Sequential Monte Carlo (SMC) methods (e.g. [21], [26],
[27]) or Generalized Labeled Multi-Bernoulli distributions
[28], [29]. Further, several approximations like the Probability
Hypothesis Density (PHD) filter [22], [23], [30], the Cardi-
nalized PHD filter [31], [32], the Cardinality Balanced Multi-
Bernoulli Filter [33] and the Labeled Multi-Bernoulli filter
[34] have been proposed during the last decade.
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Fig. 3. Left: Real-world objects and corresponding point objects. Right: The
number of point objects per real-world object equals the number of grid cells
occupied by the real-world object.

B. PHD and Bernoulli RFS

The PHD filter approximates the full multi-object density
using the first statistical moment which is given by its intensity
distribution or probability hypothesis density (PHD) [22]:

D(x) = E

{∑
w∈X

δ(x− w)

}
=

∫ ∑
w∈X

δ(x− w)π(X)δX.

(10)

Here, E{·} denotes the expectation. Since D(x) is an inten-
sity distribution, the integral over D(x) corresponds to the
expected number of targets in this area.

An important multi-object distribution for the remainder of
this contribution is the Bernoulli RFS. A Bernoulli RFS [21]
is typically used to model scenarios where an object either
exists with an existence probability r or does not exist with a
probability of 1−r. If the object exists, its spatial distribution is
given by the single-object PDF p(x). Consequently, the multi-
object probability density follows

π(X) =


1− r if X = ∅,
r · p(x) if X = {x},
0 if |X| ≥ 2.

The intensity function or PHD of a Bernoulli RFS, which
corresponds to the first statistical moment, is given by the
product of the existence probability and the spatial distribution
[21]:

D(x) = r · p(x). (11)

IV. THE PROBABILITY HYPOTHESIS DENSITY /
MULTI-INSTANCE BERNOULLI (PHD/MIB) FILTER

This section proposes to model the dynamic grid map using
random finite set theory which facilitates to combine the
Bernoulli filter and the PHD filter to recursively estimate the
state of dynamic grid cells. These filters cover fundamental
problems like object initialization or modeling of hetero-
geneous measurements in an elegant way. The result is a
recursion called probability hypothesis density / multi-instance

PHD Representation of Joint  
RFS of Point Objects  

PHD Prediction Step for 
Persistent Point Objects 

Approximation as Bernoulli 
RFS for Grid Cell 1 

Approximation as Bernoulli 
RFS for Grid Cell N … 

Bernoulli Prediction Step for 
New-Born Object 

Bernoulli Prediction Step for 
New-Born Object 

Bernoulli  Update Step Bernoulli  Update Step 

Transformation to PHD 
Representation of Joint RFS 

of Point Objects 

… 

… 

Fig. 4. Processing scheme of the PHD/MIB filter.

Bernoulli (PHD/MIB) filter. First, the environment model and
the estimation problem are defined. Based hereon, the filter
steps are outlined and the prediction and update equations of
the PHD/MIB filter are derived.

A. Environment Definition and Filter Recursion Outline

The PHD/MIB filter estimates a random finite set consisting
of so-called point objects. The relation between point objects
and real-world objects depends on an underlying grid map
and is shown in Fig. 3. A real-world object consists of at
least one but possibly several point objects. The number of
corresponding point objects per real-world object equals the
number of grid cells occupied by the real-world object.

To provide an example for the state x of a point object,
let x be a two-dimensional position and a two-dimensional
velocity:

x = [px py vx vy]T. (12)

However, the object state can be arbitrarily extended and
can include additional attributes such as object height, color,
semantic class, etc.

The goal of the PHD/MIB filter is to estimate the multi-
object state of the point objects in a vehicle environment,
which includes an estimate of the occupancy state of grid
cells, as will be explained below. In the course of the filter
recursion, the PID/MIB filter represents the random finite set
of point objects in different forms. An overview of the filter
recursion is depicted in Fig. 4. The posterior state is uniquely
represented by its probability hypothesis density (PHD). The
PHD/MIB filter prediction step simply applies the PHD filter
prediction. In order to update the predicted RFS state with a
measurement grid, the PHD/MIB filter approximates the point
object state in each grid cell as a Bernoulli RFS and carries
out the update step independently for each grid cell. Finally,
the PHD/MIB filter transfers all instances of Bernoulli sets to
a joint PHD to represent the posterior state. The individual
filter steps are detailed below.
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Fig. 5. Exemplary PHD of a traffic situation. Here, only the subspace of the
two-dimensional position is visualized.

B. Multi-Object State Transition in PHD representation

The PHD/MIB filter expresses the posterior multi-object
state of time step k by its PHD Dk(xk). In practical ap-
plications, PHDs are commonly represented by particles or
Gaussian mixtures. However, the following derivation is inde-
pendent of its practical representation form. Figure 5 shows an
exemplary PHD of a traffic situation using contour lines of a
Gaussian mixture. The birth process of point objects is defined
by the birth PHD γb(xk+1) and the persistence probability of
each point object is denoted by pS. The standard prediction
step of a PHD filter is then given by [22]

D+(xk+1) = γb(xk+1)+

pS

∫
f+(xk+1|xk)Dk(xk)dxk, (13)

where f+(xk+1|xk) is the single-object transition density. An
example for a process model which defines a transition density
is the constant velocity (CV) model given by

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

xk + ξk, (14)

where ξk is the process noise and T is the time interval
between k and k + 1.

Since new-born objects will be handled in Bernoulli form,
the prediction step of the PHD/MIB filter is only required to
handle persisting objects and consequently simplifies to

Dp,+(xk+1) = pS

∫
f+(xk+1|xk)Dk(xk)dxk. (15)

Here, the lower index p symbolizes the affiliation to persistent
objects.

C. Approximation as Bernoulli Distributions

The PHD/MIB filter approximates the predicted PHD
Dp,+(xk+1) of persisting objects by multiple instances of
independent Bernoulli RFSs, one for each grid cell. The
interpretation is that each grid cell can either be occupied (a
point object exists in the grid cell) of free (no point object

exists in the grid cell). Each Bernoulli RFS instance models
the possibility of object birth and the observation process
including clutter. The birth process model is identical to the
standard Bernoulli filter. The clutter process is different and
will be derived for the special form of a measurement grid.
The following part describes the Bernoulli filter steps for a
single grid cell denoted by c.

The predicted Bernoulli RFS for a persistent point object in
grid cell c is given by

π
(c)
p,+(Xk+1)=

r
(c)
p,+ if Xk+1 =∅,

r
(c)
p,+ · p

(c)
p,+(xk+1) if Xk+1 ={xk+1},

(16)

where r(c)
p,+ is the predicted existence probability of a persistent

point object, p(c)
p,+(xk+1) is the predicted PDF of its state, and

r
(c)
p,+ = 1−r(c)

p,+. The upper index (c) denotes values which are
different for individual cells. From the definition of the PHD
it follows that

r
(c)
p,+ = min

 ∫
xk+1∈c

Dp,+(xk+1)dxk+1, 1

 , (17)

where the set {xk+1|xk+1 ∈ c} is the subset of R4 associated
to grid cell c. Here, the limitation to a maximum value of 1 is
a required approximation since the PHD prediction does not
consider that each grid cell cannot be occupied by more than
one point object. Further, the spatial distribution within the
grid cell is given by

p
(c)
p,+(xk+1) =

Dp,+(xk+1)

r
(c)
p,+

for all xk+1 ∈ c and r
(c)
p,+ > 0.

(18)

D. Bernoulli RFS Birth Model

The standard Bernoulli filter defines the following birth
model [23]: If no object exists at time step k, the existence
probability of a new-born object at time step k+1 is given by
the prior birth probability pB. If an object exists at time step
k, the existence probability of a new-born object at time k+1
is zero, independent of the survival of the old object. In the
case of a new-born object, the single-object spatial birth PDF
is given by pb(xk+1).

The PHD/MIB filter assumes the same birth process as the
standard Bernoulli filter. This results in the predicted existence
probability r(c)

b,+ of a new-born object with 1

r
(c)
b,+ = pB ·

(
1− r(c)

p,+

)
. (19)

1Formally, the probability of a birth event in time step k + 1 depends on
the existence probability of an object in time step k for the Bernoulli filter
[23]. For simplicity, equation (19) neglects that fact and directly relates to the
predicted existence probability for time step k + 1. This is appropriate for
process models with a high persistence probability (pS ≈ 1).



Considering both cases of a persistent or new-born object
leads to the predicted Bernoulli RFS

π
(c)
+ (Xk+1) ={
1− r(c)

b,+ − r
(c)
p,+ if Xk+1 = ∅,

r
(c)
b,+ · pb(xk+1) + r

(c)
p,+ · p

(c)
p,+(xk+1) if Xk+1 = {xk+1}.

(20)

Note that the predicted Bernoulli RFS π
(c)
+ (Xk+1) represents

both the predicted dynamic distribution and the predicted
occupancy probability of the corresponding grid cell. The pre-
dicted occupancy probability p(c)

o,+(Ok+1) equals the combined
predicted existence probability r

(c)
+ of a persistent or a new-

born point object in the grid cell, so by definition of the
Bernoulli RFS it follows:

p
(c)
o,+(Ok+1) = r

(c)
+ = r

(c)
b,+ + r

(c)
p,+. (21)

E. Bernoulli Observation Process

The standard Bernoulli filter expects Poisson distributed
clutter detections [23]. Since in practical applications a mea-
surement grid cell usually does not contain more than one
measurement, this is not feasible.

The PHD/MIB defines the following Bernoulli RFS obser-
vation process instead: A measurement grid map provides an
observation for each grid cell based on sensor data at time
step k+1. The observation process of one grid cell is assumed
independent of other grid cells.

In each grid cell either one measurement z(c)
k+1 or no mea-

surement occurs. The probability that a measurement occurs in
the occupied grid cell c is the cell-specific and time-dependent
true positive probability p(c)

TP,k+1 ∈ (0, 1). The probability that
a measurement occurs in the empty cell c is the false positive
probability p

(c)
FP,k+1 ∈ (0, 1). The PDF of a false positive

measurement is given by the clutter density pcl(z).
A true positive measurement is associated to the point

object in the grid cell with the association probability p(c)
A,k+1.

In this case its distribution is defined by the single-object
likelihood function g

(c)
k+1(zk+1|xk+1). If the measurement is

not associated to the point object, its PDF is also defined by
the clutter density pcl(z).

In practical terms, each measurement grid cell c contains
the following data: the individual, time-dependent true positive
and false positive probabilities p(c)

TP,k+1 and p
(c)
FP,k+1. In case

a measurement occurred in the cell it additionally provides
the single-object likelihood function g(c)

k+1(zk+1|xk+1) and the
corresponding association probability p(c)

A,k+1.

The resulting multi-object likelihood γ(c)
k+1(Zk+1|Xk+1) for

the measurement grid cell c calculates to

γ
(c)
k+1(Zk+1 = ∅|Xk+1 = ∅) = p

(c)
FP,k+1,

γ
(c)
k+1(Zk+1 = {zk+1}|Xk+1 = ∅) = p

(c)
FP,k+1 · pcl(zk+1),

γ
(c)
k+1(Zk+1 = ∅|Xk+1 = {xk+1}) = p

(c)
TP,k+1,

γ
(c)
k+1(Zk+1 = {zk+1}|Xk+1 = {xk+1}) =

p
(c)
TP,k+1

[
p

(c)
A,k+1 · g

(c)
k+1(zk+1|xk+1) + p

(c)
A,k+1 · pcl(zk+1)

]
︸ ︷︷ ︸

=:g
(c)
A,k+1(zk+1|xk+1)

.

(22)

F. Multi-Object Bayes Update Step

Ultimately, inserting the predicted Bernoulli RFS (20)
and the multi-object likelihood (22) into the general multi-
object update (9) leads to the posterior multi-object PDF
π

(c)
k+1(Xk+1|Zk+1):

π
(c)
k+1(Xk+1 = ∅|Zk+1 = ∅) =

p
(c)
FP,k+1 · r

(c)
+

µ
(c)
{∅}

,

π
(c)
k+1(Xk+1 = {xk+1}|Zk+1 = ∅) =

p
(c)
TP,k+1 · π

(c)
+ ({xk+1})

µ
(c)
{∅}

,

π
(c)
k+1(Xk+1 = ∅|Zk+1 = {zk+1}) =

p
(c)
FP,k+1 · pcl(zk+1) · r(c)

+

µ
(c)
{z}

,

π
(c)
k+1(Xk+1 = {xk+1}|Zk+1 = {zk+1}) =

p
(c)
TP,k+1 · g

(c)
A,k+1(zk+1|xk+1) · π(c)

+ ({xk+1})

µ
(c)
{z}

. (23)

Using (7), the normalization constants calculate to

µ
(c)
{∅} =

∫
γ

(c)
k+1(Zk+1 = ∅|Xk+1)π

(c)
+ (Xk+1)δXk+1

= p
(c)
FP,k+1 · r

(c)
+ + p

(c)
TP,k+1 · r

(c)
+ (24)

and

µ
(c)
{z} =

∫
γ

(c)
k+1(Zk+1 = {zk+1}|Xk+1)π

(c)
+ (Xk+1)δXk+1

= p
(c)
FP,k+1 · pcl(zk+1) · r(c)

+

+ p
(c)
TP,k+1

∫
g

(c)
A,k+1(zk+1|xk+1) · π(c)

+ ({xk+1})dxk+1.

(25)

The posterior π(c)
k+1(Xk+1) is a Bernoulli RFS and represents

both the dynamic state and the occupancy probability of
the corresponding grid cell. According to the definition of a
Bernoulli RFS, the posterior occupancy probability of grid cell
c is

p
(c)
o,k+1(Ok+1) = r

(c)
k+1 =

∫
xk+1∈c

π
(c)
k+1({xk+1}) dxk+1. (26)

After the update step, the PHD/MIB filter transforms all
Bernoulli RFS instances into a joint PHD again. The joint
PHD is simply the sum of all Bernoulli RFS instances:

Dk+1(xk+1) =

C∑
c=1

π
(c)
k+1(Xk+1 = {xk+1}), (27)

where c denotes the index of the corresponding grid cell of
each Bernoulli RFS instance and C is the total number of grid
cells. This closes the recursion.



G. Relation between PHD/MIB filter and binary Bayes filter

The proposed PHD/MIB filter is a generalization of the
binary Bayes filter which does not rely on the assumption of
a static environment. Consequently, the filter equations should
simplify to the well-known equations of the binary Bayes filter
for a static process model.

Proposition: Assume a deterministic, static process model in
the PHD/MIB filter, so that the predicted intensity distribution
for time step k + 1 is equivalent to the posterior distribution
at time k, i.e.

D+(xk+1) = Dk(xk) ∀ xk+1 = xk ∈ X. (28)

Further, assume the measurement likelihood g(c)
k+1(zk+1|xk+1)

and the clutter density pcl(zk+1) are equal uniform distribu-
tions in a limited subset Zs of the measurement space, i.e.

g
(c)
k+1(zk+1|xk+1) = pcl(zk+1) =

{
θ if zk+1 ∈ Zs,

0 otherwise,
(29)

where θ > 0 is constant. Then the propagation of the posterior
occupancy probability r(c)

k = p
(c)
o,k(ok = Ok) at time k to the

posterior occupancy probability r(c)
k+1 = p

(c)
o,k+1(ok+1 = Ok+1)

at time k+1 of the PHD/MIB filter reduces to the generalized
binary Bayes update (3)

p
(c)
o,k+1(Ok+1) =

α
(c)
zk+1(Ok+1) · p(c)

o,k(Ok)

α
(c)
zk+1(Ok+1) · p(c)

o,k(Ok) + p
(c)
o,k(Fk+1)

,

(30)

with

α(c)
zk+1

(Ok+1)=


p
(c)
TP,k+1

p
(c)
FP,k+1

if Zk+1 = ∅,

p
(c)
TP,k+1

p
(c)
FP,k+1

if Zk+1 = {zk+1}.
(31)

Recall that O and F are the two possible cases occupied
and free, respectively of the occupancy state o.

Proof: Due to the static process model (28), the Bernoulli
distribution for each grid cell does not change during the
prediction step:

π
(c)
+ = π

(c)
k . (32)

In case of no measurement in grid cell c, i.e. Zk+1 = ∅, the
posterior existence probability of an oject in grid cell c is given
by

r
(c)
k+1

(26)
=

∫
xk+1∈c

π
(c)
k+1({xk+1}|∅) dxk+1

(23),(32)
=

∫
xk+1∈c

1

µ
(c)
{∅}

· p(c)
TP,k+1 · π

(c)
k ({xk+1}) dxk+1

(24),(32)
=

p
(c)
TP,k+1 · r

(c)
k

p
(c)
FP,k+1 · r

(c)
k + p

(c)
TP,k+1 · r

(c)
k

(33)

and for Zk+1 = {zk+1} it follows

r
(c)
k+1

(26)
=

∫
xk+1∈c

π
(c)
k+1({xk+1}|{zk+1}) dxk+1

(23),(32)
=

∫
xk+1∈c

p
(c)
TP,k+1

µ
(c)
{z}

· g(c)
A,k+1 · π

(c)
k ({xk+1}) dxk+1

(25),(29),(32)
=

p
(c)
TP,k+1 · g

(c)
A,k+1 · r

(c)
k

p
(c)
FP,k+1 · pcl · r(c)

k + p
(c)
TP,k+1 · g

(c)
A,k+1 · r

(c)
k

(29)
=

p
(c)
TP,k+1 · r

(c)
k

p
(c)
FP,k+1 · r

(c)
k + p

(c)
TP,k+1 · r

(c)
k

.� (34)

V. PARTICLE REALIZATION OF THE PHD/MIB FILTER

The PHD/MIB filter can be realized in different ways. A
main characteristic of the realization is the representation form
of the state PHD. This section describes the particle realization
of the PHD/MIB filter.

A. Posterior Representation

Particles are random samples of the posterior PHD at time
step k. A particle set consists of ν particles and their weights
{x(i)

k , w
(i)
k }νi=1. Together they approximate the posterior as

Dk(xk) ≈
ν∑
i=1

w
(i)
k δ(xk − x(i)

k ). (35)

Here, δ is the Dirac delta function which satisfies∫
f(x)δ(x)dx = f(0). (36)

B. Prediction of Persistent Objects

To represent predicted persistent objects, the prediction
draws particles by sampling the proposal density qk+1:

x
(i)
p,+ ∼ qk+1(·|x(i)

k ,Zk+1). (37)

The index p depicts that these particles represent a persistent
point object. The remaining part of the section assumes it is
possible to sample from the transition density f+, which is
used as proposal density:

qk+1(xk+1|x(i)
k ,Zk+1) = f+(xk+1|x(i)

k ). (38)

The sampling provides the predicted particle set
{x(i)

p,+, w
(i)
p,+}νi=1 for time step k + 1, where the particle

weights are multiplied with the persistence probability:

w
(i)
p,+ = pS · w(i)

k . (39)

The set represents the predicted PHD of persistent point
objects:

Dp,+(xk+1) ≈
ν∑
i=1

w
(i)
p,+δ(xk+1 − x(i)

p,+). (40)



C. Transition from a PHD to Multiple Instances of Bernoulli
RFSs

As depicted in Fig. 4, the PHD/MIB filter now transforms
the representation form from the joint PHD to individual,
independent Bernoulli RFSs for each grid cell. Accordingly,
the following steps are carried out for each grid cell c
individually.

Let

{x(i,c)
p,+ , w

(i,c)
p,+ }

ν
(c)
p,+
i=1 (41)

be the set of particles predicted into grid cell c at time step
k + 1. The symbol ν(c)

p,+ represents the number of particles
predicted into grid cell c at time step k + 1.

To keep the notation simple, consider the set (41) as already
truncated, i.e., the sum of weights does not exceed 1. If the
sum of predicted particle weights in one grid cell exceeds 1,
the weights must be normalized to sum up to a number smaller
than 1.

According to (17), the sum of predicted particle weights in
grid cell c then gives the predicted existence probability r(c)

p,+
of a persistent object in cell c:

r
(c)
p,+ =

ν
(c)
p,+∑
i=1

w
(i,c)
p,+ ∈ [0, 1]. (42)

D. Prediction of New-Born Objects

According to (20), the predicted existence probability r(c)
b,+

of a new-born object in grid cell c is given by

r
(c)
b,+ = pB ·

(
1− r(c)

p,+

)
. (43)

Predicted new-born objects in grid cell c are represented by
the particle set

{x(i,c)
b,+ , w

(i,c)
b,+ }

ν
(c)
b,+
i=1 . (44)

The particles of this set are sampled from the birth distri-
bution:

x
(i,c)
b,+ ∼ pb(·). (45)

The number of new-born particles ν
(c)
b,+ for each grid cell

c is a design parameter of the system. It should be chosen
individually for each grid cell, depending on the probability
of a birth event.

Since the new-born particle weights sum up to the predicted
existence probability r

(c)
b,+ (19) of a new-born object in grid

cell c, the weight of each new-born particle is given by

w
(i,c)
b,+ =

r
(c)
b,+

ν
(c)
b,+

. (46)

E. Predicted Bernoulli RFS

Together, the persistent and the new-born particle sets
represent the predicted Bernoulli RFS π(c)

+ (Xk+1) in grid cell
c:

π
(c)
+ ({xk+1}) ≈

ν
(c)
p,+∑
i=1

w
(i,c)
p,+ δ(xk+1 − x(i,c)

p,+ )

+

ν
(c)
b,+∑
i=1

w
(i,c)
b,+ δ(xk+1 − x(i,c)

b,+ ) (47)

and

π
(c)
+ (∅) = 1− r(c)

p,+ − r
(c)
b,+. (48)

F. Particle Update

Assume a measurement grid map taken at time step k + 1
provides for each grid cell an observation as stated above in
Sect. IV. The update step adapts the weights of the particle
set (47).

The update rules for persistent and new-born particles are
identical. The notation system uses the weight symbol w∗ with
∗ ∈ {p,b} in equations that are identical for both persistent
particle weights wp and new-born particle weights wb.

In case a measurement occurred in measurement grid cell c,
unnormalized adapted particle weights w̃(i,c)

∗,k+1 are calculated
according to (23):

w̃
(i,c)
∗,k+1 = p

(c)
TP,k+1 · g

(c)
A,k+1(zk+1|x(i,c)

∗,+ ) · w(i,c)
∗,+ . (49)

The normalized weights are given by

w
(i,c)
∗,k+1 =

w̃
(i,c)
∗,k+1

µ
(c)
{z}

(50)

with (25)

µ
(c)
{z} ≈ p

(c)
FP,k+1 · pcl(zk+1) · r(c)

+

+

ν
(c)
p,+∑
i=1

w̃
(i,c)
p,k+1 +

ν
(c)
b,+∑
i=1

w̃
(i,c)
b,k+1. (51)

In case no measurement occurred in measurement grid cell c,
the update rule for both the persistent and new-born particles
to calculate adapted weights w(i,c)

∗,k+1 is according to (23):

w
(i,c)
∗,k+1 =

p
(c)
TP,k+1

p
(c)
TP,k+1 · r

(c)
+ + p

(c)
FP,k+1 · r

(c)
+

w
(i,c)
∗,+ . (52)

Notice that for multi-object distributions, normalization
does not mean all particle weights sum up to 1. Instead, the
sum of updated particle weights equals the posterior existence
probability r

(c)
k+1 of a point object in grid cell c at time

step k + 1, which is also the posterior occupancy probability
p

(c)
o,k+1(Ok+1) of the grid cell:

r
(c)
k+1 = p

(c)
o,k+1(Ok+1) =

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1 +

ν
(c)
b,k+1∑
i=1

w
(i,c)
b,k+1. (53)



The posterior Bernoulli RFS π
(c)
k+1(Xk+1) of grid cell c is

given by:

π
(c)
k+1({xk+1}) ≈

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1δ(xk+1 − x(i,c)

p,k+1)

+

ν
(c)
b,k+1∑
i=1

w
(i,c)
b,k+1δ(xk+1 − x(i,c)

b,k+1) (54)

and

π
(c)
k+1(∅) = r

(c)
k+1 = 1− r(c)

k+1. (55)

G. Joint PHD Representation

The PHD/MIB represents the posterior multi-object state
of all point objects in the environment by its PHD. The
transformation from multiple instances of Bernoulli RFSs to
a joint PHD is given by (27)

Dk+1(xk+1) ≈
∑

i∈[1,ν
(c)
p,k+1],c∈[1,C]

w
(i,c)
p,k+1δ(xk+1 − x(i,c)

p,k+1)

+
∑

i∈[1,ν
(c)
b,k+1],c∈[1,C]

w
(i,c)
b,k+1δ(xk+1 − x(i,c)

b,k+1). (56)

Usually, particle filter realizations of a PHD filter provide
only the persistent part of the posterior PHD as output [23].
Depending on the application, new-born particles considerably
increase the uncertainty of the estimated state of objects. So
it is often beneficial to consider their influence on the state
estimation only after another recursion.

H. Resampling

For many applications it is important to keep the overall
number of used particles constant. Therefore, the PHD/MIB
filter resamples the constant number of ν particles from the
joint posterior particle set. For each particle, the probability to
be drawn is proportional to its weight. Let {x(i)

k+1, w
(i)
k+1}νi=1

be the set of resampled particles and their weights. The new
weights of the particles are all equal and normalized to sum
up to the same value as the posterior weights of the persistent
and the new-born particles together:∑

i∈[1,ν]

w
(i)
k+1 =

∑
i∈[1,ν

(c)
p,k+1],c∈[1,C]

w
(i,c)
p,k+1

+
∑

i∈[1,ν
(c)
b,k+1],c∈[1,C]

w
(i,c)
b,k+1. (57)

VI. REAL-TIME APPROXIMATION WITH
DEMPSTER-SHAFER THEORY OF EVIDENCE

For some application scenarios, the presented particle real-
ization of the PHD/MIB filter might not be real-time capable.
A possible reason are huge unobserved areas in grid maps.
Since the presented particle realization of the PHD/MIB filter
represents potential point objects in unobserved areas with
particles, it requires a large number of them. All mentioned
publications of particle-based dynamic grid maps [17]–[20]

use particles only for occupied grid cells, not for unobserved
grid cells. One possibility to distinguish between unobserved
and occupied cells is to use Dempster-Shafer masses of
evidence [24], [35], [36] instead of occupancy probabilities.
Both [19] and [20] create particles only in areas with evidence
for occupancy.

This section presents a coarse approximation of the particle-
based PHD/MIB filter, applying the Dempster-Shafer theory of
evidence. The resulting approximation will be referred to as
DS-PHD/MIB filter. The DS-PHD/MIB filter is able to run
with a substantially reduced number of particles compared to
the original PHD/MIB filter and is also easier to implement.
An efficient, massively parallelized implementation of the DS-
PHD/MIB filter will be presented in Sect. VII.

A. State Representation

An introduction to the Dempster-Shafer theory of evidence
and grid maps can be found in [4], [37], [38]. The DS-
PHD/MIB filter represents the occupancy state of a grid cell
with a basic belief assignment (BBA) m : 2Ω → [0, 1]. The
frame of discernment Ω contains the events occupied and free:
Ω = {O,F}. So each grid cell stores a mass for occupied
m(O) and a mass for free m(F ). The propagation of these
masses over time are carried out separately. The propagation
of the mass for free is estimated as in a static grid map.
The propagation of the mass for occupied is motivated by
the PHD/MIB filter.

The DS-PHD/MIB filter represents the posterior state of
an individual grid cell c at time k with the particle set

{x(i,c)
k , w

(i,c)
k }ν

(c)
k
i=1 and the mass for free m(c)

k (Fk). Here, the
sum of particle weights represents the mass for occupied:

m
(c)
k (Ok) =

ν
(c)
k∑
i=1

w
(i,c)
k . (58)

The occupancy probability p(c)
o,k(O) in a grid cell is given by

the pignistic transformation

p
(c)
o,k(Ok) = m

(c)
k (Ok) + 0.5 · (1−m(c)

k (Ok)−m(c)
k (Fk)).

(59)

The distribution of the particles approximates the spatial PDF
p

(c)
k (xk) of a point object in grid cell c:

p
(c)
k (xk) ≈ 1

m
(c)
k (Ok)

ν
(c)
k∑
i=1

w
(i,c)
k δ(xk − x(i,c)

k ). (60)

B. Prediction

The DS-PHD/MIB filter applies (14) and (39) to predict par-
ticles to the next time step. In analogy to the PHD/MIB filter

(41), let {x(i,c)
p,+ , w

(i,c)
p,+ }

ν
(c)
p,+
i=1 be the set of particles predicted

into cell c at time step k+1. Again, the predicted weights are
truncated, so the sum of predicted weights in one grid cell is
limited to 1.



Fig. 6. A simple occupancy measurement grid originated by a laser measurement with multiple beams. The red lines represent laser beams that hit obstacles at
their ends. The grid on the left-hand side provides an occupancy probability pzk+1 (ok+1|zk+1) for each grid cell. The middle figure and the figure on the right-
hand side show the same occupancy measurement grid represented by evidences for occupied mzk+1 (Ok+1|zk+1) (middle) and free mzk+1 (Fk+1|zk+1)
(right), respectively. The pignistic transformation of the Dempster-Shafer grid results in the classical grid on the left-hand side [20]. The DS-PHD/MIB filter
initializes new particles only in green grid cells.

The DS-PHD/MIB filter estimates the predicted occupancy
mass of grid cell c by

m
(c)
p,+(Ok+1) =

ν
(c)
p,+∑
i=1

w
(i,c)
p,+ . (61)

The predicted mass for free is modeled as in a static grid
map and given by

m
(c)
p,+(Fk+1) = min

[
α(T )m

(c)
k (Fk) , 1−m(c)

p,+(Ok+1)
]
,

(62)

where the discount factor α(T ) ∈ [0, 1] models the decreas-
ing prediction reliability, depending on the time interval T
between two update steps. Since the sum of masses cannot
exceed 1, the predicted free space evidence is limited accord-
ingly.

C. Update

The PHD/MIB filter considers both the existence probability
and the spatial distribution of point objects in a joint Bayesian
innovation step, formally derived as a Bernoulli filter. The DS-
PHD/MIB filter does not formally derive the update step, but
uses heuristically designed, simplified update equations with
the goal of modeling the probabilistic update equations of the
PHD/MIB filter as close as possible in the Dempster-Shafer
domain.

The DS-PHD/MIB approximation updates the existence
probability of a point object in grid cell c independently of
its spatial distribution. Accordingly, the DS-PHD/MIB filter
expects the following information in each measurement grid
cell:
• The observed occupancy BBA m

(c)
zk+1 : 2{O,F} → [0, 1],

• the spatial likelihood function g(c)
k+1(zk+1|xk+1), and

• the association probability p(c)
A,k+1 between the likelihood

function g(c)
k+1(zk+1|xk+1) and the point object.

Figure 6 shows an example for a measurement grid with
occupancy BBAs. An example for a likelihood function

g
(c)
k+1(zk+1|xk+1) and the association probability p

(c)
A,k+1 in

measurement grid cells can be found in [20], where it results
from radar doppler measurements.

1) Existence Update: The DS-PHD/MIB filter approxi-
mates the existence update by simply combining the predicted
BBF m

(c)
p,+ and the observed BBA m

(c)
zk+1 of the correspond-

ing measurement grid cell with the Dempster-Shafer rule of
combination (see [4]):

m
(c)
k+1 = m

(c)
p,+ ⊕m(c)

zk+1
. (63)

2) Birth Model: The DS-PHD/MIB filter splits the mass
for occupied into two parts: occupied by a persistent object
and occupied by a new-born object, denoted as:

m
(c)
k+1(Ok+1) = %

(c)
p,k+1 + %

(c)
b,k+1. (64)

Assume the PHD/MIB filter updates the state of a point ob-
ject with a uniformly distributed likelihood g(c)

k+1(zk+1|xk+1).
Then the relation between the updated existence probability
r

(c)
b,k+1 of a new-born object and the updated existence proba-

bility r(c)
p,k+1 of a persistent object results in

r
(c)
b,k+1

r
(c)
p,k+1

=
r

(c)
b,+

r
(c)
p,+

=
pB

[
1− r(c)

p,+

]
r

(c)
p,+

. (65)

Analogously, the DS-PHD/MIB models the relation between
masses for a new-born and a persistent object as

%
(c)
b,k+1

%
(c)
p,k+1

=
pB

[
1− %(c)

p,k+1

]
%

(c)
p,k+1

. (66)

Combining (64) and (66) delivers the resulting masses for a
new-born and a persistent object:

%
(c)
b,k+1 =

m
(c)
k+1(Ok+1) · pB

[
1−m(c)

p,+(Ok+1)
]

m
(c)
p,+(Ok+1) + pB

[
1−m(c)

p,+(Ok+1)
] , (67)

%
(c)
p,k+1 = m

(c)
k+1(Ok+1)− %(c)

b,k+1. (68)



3) Spatial Update: The DS-PHD/MIB filter provides three
particle sets to approximate the posterior spatial distribution
p

(c)
k+1(xk+1). The first particle set represents a persistent object

and results from the set predicted into grid cell c, denoted as

{x(i,c)
p,+ , w

(i,c)
p,+ }

ν
(c)
p,+
i=1 . It is updated by multiplying the weights

with the spatial measurement likelihood g
(c)
k+1(zk+1|xk+1).

This leads to the unnormalized updated weights

w̃
(i,c)
p,k+1 = g

(c)
k+1(zk+1|x(i,c)

p,+ ) · w(i,c)
p,+ . (69)

The particle states remain unchanged:

x
(i,c)
p,k+1 = x

(i,c)
p,+ . (70)

The normalized particle weights are given by

w
(i,c)
p,k+1 = p

(c)
A,k+1 ·µ

(c)
A ·w̃

(i,c)
p,k+1 +

(
1− p(c)

A,k+1

)
·µ(c)

A
·w(i,c)

p,+ ,

(71)

with

µ
(c)
A =

ν
(c)
p,+∑
i=1

w̃
(i,c)
p,k+1


−1

· %(c)
p,k+1 (72)

and

µ
(c)

A
=

ν
(c)
p,+∑
i=1

w
(i,c)
p,+


−1

· %(c)
p,k+1 =

%
(c)
p,k+1

m
(c)
p,+(Ok+1)

. (73)

Equation (71) considers that with a probability of (1−p(c)
A,k+1),

the likelihood function g(c)
k+1(zk+1|x(i,c)

p,+ ) is not associated with
the point object in the grid cell. In this case, the weight update
and normalization step serves solely to normalize the predicted
particle weights in such a way that they sum up to the posterior
persistent occupancy pass %(c)

p,k+1.
The second and third particle sets represent new-born

objects. For computational efficiency reasons, they are only
created in grid cells where the corresponding measurement
grid cell reports a mass for occupied: m(c)

zk+1(Ok+1) > 0. The

second particle set {x(i,c)
A,k+1, w

(i,c)
A,k+1}

ν
(c)
A,k+1

i=1 represents a new-
born object under the assumption that the spatial measurement
z

(c)
k+1 in grid cell c is associated to the point object in

grid cell c. The particles are sampled from the probability
density function p

(c)
xk+1(xk+1|z(c)

k+1) of the state xk+1 given
the measurement z(c)

k+1 in grid cell c:

x
(i,c)
A,k+1 ∼ p

(c)
xk+1

(·|z(c)
k+1). (74)

The weight of each particle in the second set can directly be
calculated to

w
(i,c)
A,k+1 =

p
(c)
A,k+1 · %

(c)
b,k+1

ν
(c)
A,k+1

. (75)

Details about creating a probability density function
p

(c)
xk+1(xk+1|z(c)

k+1) of the state xk+1 given the measurement
z

(c)
k+1 can be found in [23], p. 38.

The third particle set {x(i,c)

A,k+1
, w

(i,c)

A,k+1
}
ν
(c)

A,k+1

i=1 represents a
new-born object under the assumption that the spatial mea-
surement z(c)

k+1 in grid cell c is not associated to the point
object in grid cell c. The particles of this set are sampled
from the birth distribution bk+1(xk+1):

x
(i,c)

A,k+1
∼ bk+1(·) (76)

The weight of each particle in the third set can directly be
calculated to

w
(i,c)

A,k+1
=

(
1− p(c)

A,k+1

)
· %(c)

b,k+1

ν
(c)

A,k+1

. (77)

When creating the second and the third particle set, the
individual particle numbers ν(c)

A,k+1 and ν
(c)

A,k+1
of each grid

cell should relate to their corresponding occupancy masses.
Finally, the posterior spatial state distribution of the point

object in grid cell c at time k + 1 is given by

p
(c)
k+1(xk+1) ≈ 1

m
(c)
k+1(Ok+1)

ν
(c)
k+1∑
i=1

w
(i,c)
k+1δ(xk+1 − x(i,c)

k+1),

(78)

where the set {x(i,c)
k+1 , w

(i,c)
k+1}

ν
(c)
k+1

i=1 is the union of all three
particle sets created in the spatial update step. The grid cell
additionally stores the posterior mass for free m(c)

k+1(Fk+1) as
calculated in (63), which completes the posterior state together
with the particle set.

D. Resampling

The resampling step is identical to the resampling step of
the original PHD/MIB filter.

VII. PARALLEL IMPLEMENTATION

This section describes an implementation of the particle-
based DS-PHD/MIB filter with a focus on massively parallel
processing systems such as graphics processing units.

A. Parallelization Challenges

Particles can naturally be processed in parallel, but here
a challenge is to assign each particle to its corresponding
grid cell in an efficient way. The assignment is necessary to
predict the grid cell occupancy mass (61) and to calculate
the normalization factor during the update step (71). Another
challenge is to calculate statistical moments of grid cells as
mean and variance of the velocity in a balanced way: the
calculation time should be independent of the number of
particles assigned to a grid cell.

The proposed solution sorts the particles after the prediction
step according to the grid cell index they have been predicted
into. Sorting particles has a time complexity quasilinear in
the number of particles. Although the parallelization potential
of sorting is somewhat limited, there are sophisticated sorting
algorithms capable of achieving a high throughput especially
on massively parallel architectures [39]. The availability of
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Fig. 7. Overview of the PHD/MIB implementation, broken down into seven
steps.

a sorted particle array has several advantages: First, the
assignment of sorted particles to grid cells is straightforward
as will be detailed below. Furthermore, particle state values
can be efficiently accumulated in separate arrays, similar to an
integral image data structure [40]. This facilitates calculation
of a grid cell’s statistical moments with a computational
complexity independent of the number of particles assigned
to the cell.

Another advantage of sorting particles is a simple overall
implementation since all remaining advanced problems can
then be solved with standard routines. Highly efficient parallel
implementations of these routines are available for graphics
processing units, where for the parallel implementation of the
particle-based DS-PHD/MIB filter sampling of random num-
bers [41], sorting [42] and accumulation have been employed.

B. Implementation Details

In the following, implementation details of the proposed
parallel algorithm are described. The auxiliary data struc-
tures rendering the algorithm particularly efficient are given
as follows. All particles and grid cells are stored in the
particle array and grid cell array arrays, respectively. As-
sume a measurement grid map with the same dimensions as
the grid map is already available and measurement grid cells
are stored in the array meas cell array. Details about efficient
measurement grid calculation can be found in [43]. For mod-
eling noise processes, a sufficient amount of random numbers
is sampled beforehand during idle times and stored in extra
arrays. The parallel DS-PHD/MIB recursion is summarized in
Fig. 7 and outlined in the following sections.

1) Particle Prediction: Algorithm 1 provides pseudo code
for the particle prediction. The algorithm predicts all particles
in parallel applying equations (14) and (39). This includes
calculating the new grid cell index of each particle after
prediction. The appropriate amount of random numbers should
be sampled in a separate step in advance, so the prediction step
just needs to look them up.

2) Assignment of Particles to Grid Cells: Pseudo code for
the particle assignment is given in Algorithm 2. First, the

algorithm sorts all particles according to the grid cell index
they have been predicted into. Each grid cell can store two
particle indices. They represent the first and last index of the
particle group that has been predicted into the grid cell. For
the assignment, each particle checks if it is the first or the last
particle of a group with the same index. If so, it writes its
index into the according grid cell. Since there can only be at
most one first or last particle per grid cell, the assignment can
run in parallel without any writing conflicts.

3) Grid Cell Occupancy Prediction and Update: Algorithm
3 details the occupancy update. The goal of this step is
to calculate for each grid cell the predicted and updated
occupancy BBA. First, the algorithm accumulates in paral-
lel all particle weights and stores the result in the array
weight array accum. The remaining part of the algorithm is
carried out in parallel for all grid cells. Each cell reads two
values from weight array accum. The first value is the accu-
mulated particle weight of all preceding grid cells excluding
its own weight, the second value is the accumulated particle
weight of all preceding grid cells including its own weight. The
cell simply subtracts the first value from the second value to
calculate its predicted occupancy mass according to (61) with
constant time complexity. The predicted free mass is calculated
according to (62).

Each cell reads the observed occupancy BBA from the
corresponding measurement grid cell and combines it with
its predicted occupancy BBA according to (63) to calculate
its updated occupancy BBA. This enables the grid cell to
separate the posterior occupancy mass m(c)

k+1(Ok+1) into the
part %(c)

p,k+1 for a persistent object and the part %(c)
b,k+1 for a

new-born object. Each cell stores the part %(c)
b,k+1 for a new-

born object in a separate array, which will be used later to
calculate the number of newly drawn particles for this cell.

4) Update of Persistent Particles: The update of persis-
tent particles is described in Algorithm 4. Each particle has
stored its corresponding grid cell index during the predic-
tion step, which is assumed the same as the corresponding
measurement grid cell index. All persistent particles calcu-
late in parallel their unnormalized updated weight according
to (69). These weights are then accumulated in the array
weight array accum. Recall that each grid cell has already
stored the index range of its corresponding particles in Algo-
rithm 2. Consequently, in a parallel for loop, each grid cell can
look up the accumulated weight of its updated, unnormalized
particles in weight array accum analogously to Algorithm 3.
Each grid cell uses the result to calculate its normalization
component µ(c)

A (72) and stores it. The other normalization
component µ(c)

A
as given by (73) can directly be calculated

and stored in the grid cell. In the next parallel for loop over
all particles, each particle uses the grid map as a lookup table
for its normalization components µ(c)

A and µ(c)

A
and normalizes

itself (71).
5) Initialization of New Particles: Algorithm 5 depicts

pseudo code for the particle initialization. New particles are
stored in the array birth particle array. The total number of
new particles for all grid cells νb remains constant over time,
which is feasible for many real-time applications. The goal of



Algorithm 1 Particle Prediction
1: particle array . This array stores particles including weight and corresponding grid cell index (constant size ν)
2: grid cell array . This array stores the grid cells (constant size C)
3: p S . Persistence probability of point objects, is a design parameter of the process model
4: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all particles
5: predict(particle array, i, p S) . Applies (14) and (39), calculates new grid cell index and stores it inside the particle

Algorithm 2 Assignment of Particles to Grid Cells
1: weight array . This array will be an additional storage for the particle weights (constant size ν)
2: sort(particle array) . Sorts by the grid cell index the particle has been predicted into
3: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all particles
4: j ← get grid cell idx(particle array[i]) . Reads the grid cell index of the predicted particle
5: if is first particle(particle array, i) then . Checks if i is the first particle of a group with same grid cell index
6: set particle start idx(grid cell array, j, i) . Sets i as particle start index of grid cell j in grid cell array
7: if is last particle(particle array, i) then . Checks if i is the last particle of a group with same grid cell index
8: set particle end index(grid cell array, j, i) . Sets i as particle end index of grid cell j in grid cell array
9: weight array[i]← get particle weight(particle array[i]) . Copies weight of particle i to weight array at index i

Algorithm 3 Grid Cell Occupancy Prediction and Update
1: meas cell array . This array stores the measurement grid cells (constant size C)
2: born masses array . This array will store the mass for a new-born object per grid cell (constant size C)
3: p B . Birth probability of point objects, is a design parameter of the process model
4: weight array accum← accumulate(weight array) . Inclusively accumulates all particle weights to weight array accum
5: for j ∈ {0, . . . , length(grid cell array)− 1} do . Parallel for loop over all grid cells
6: start idx← get particle start idx(grid cell array[j]) . Gets start index in particle array of cell j
7: end idx← get particle end idx(grid cell array[j]) . Gets end index in particle array of cell j
8: m occ pred← subtract(weight array accum, start idx, end idx) . Calculates predicted occupancy mass of cell j (61)
9: m free pred← predict free mass(grid cell array[j]) . Predicts free mass of cell j (62)

10: m occ up← update o(m occ pred,m free pred,meas cell array[j]) . Combination to posterior occ. mass (63)
11: m free up← update f(m occ pred,m free pred,meas cell array[j]) . Combination to posterior free mass (63)
12: rho b← separate newborn part(m occ pred,m occ up, p B) . Calculate new-born part of posterior occupancy mass (67)
13: rho p← m occ up− rho b . Calculates remaining persistent part of posterior occupancy mass (68)
14: born masses array[j]← rho b . Stores new-born part of posterior occupancy mass of cell j in born masses array
15: store values(rho b, rho p,m free up, grid cell array, j) . Stores updated BBA in grid cell j

Algorithm 4 Update of Persistent Particles
1: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all persistent particles
2: weight array[i]← update unnorm(particle array, i,meas cell array) . Calculates unnormalized weight update (69)
3: weight array accum← accumulate(weight array) . Accumulates unnormalized weights of persistent particles
4: for j ∈ {0, . . . , length(grid cell array)− 1} do . Parallel for loop over all grid cells
5: start idx← get particle start idx(grid cell array[j]) . Gets start index in particle array of cell j
6: end idx← get particle end idx(grid cell array[j]) . Gets end index in particle array of cell j
7: m occ accum← subtract(weight array accum, start idx, end idx) . Calculate accumulated unnormalized updated particle weight of cell j
8: rho p← get pers occ mass(grid cell array[j]) . Gets persistent part of posterior occupancy mass of cell j
9: mu A← calc norm assoc(m occ accum, rho p) . Calculates normalization component for the case of an associated measurement (72)

10: mu UA← calc norm unassoc(grid cell array[j]) . Calculates normalization component for the case of an unassociated measurement (73)
11: set normalization components(grid cell array, j,mu A,mu UA) . Stores mu A and mu UA as normalization components in grid cell j
12: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all persistent particles
13: weight array[i]← normalize(particle array[i], grid cell array) . Normalizes particle weights (71)

Algorithm 5 Initialization of New Particles
1: birth particle array . This array will be the storage for new-born particles for this recursion (constant size νb)
2: particle orders array accum← accumulate(born masses array) . Accumulates mass part of new-born object of each cell
3: normalize particle orders(particle orders array accum, νb) . Normalizes the particle orders to a total number of νb
4: for j ∈ {0, . . . , length(grid cell array)− 1} do . Parallel for loop over all grid cells
5: start idx← calc start idx(particle orders array accum, j) . Calculates first index in birth particle array of cell j
6: end idx← calc end idx(particle orders array accum, j) . Calculates last index in birth particle array of cell j
7: num new particles← end idx− start idx + 1 . Stores number of new particles for cell j
8: p A← get assoc probability(meas cell array[j]) . Reads association probability to spatial measurement of cell j
9: nu A← calc num assoc(num new particles, p A) . Calculates number of new associated particles (79) and (80)

10: nu UA← num new particles− nu A . Calculates number of new unassociated particles
11: w A← calc weight assoc(nu A,p A, born masses array[j]) . Calculates weight of an associated new particle (75)
12: w UA← calc weight unassoc(nu UA,p A, born masses array[j]) . Calculates weight of an unassociated new particle (77)
13: store weights(w A,w UA, grid cell array, j) . Stores weights for new particles in cell j
14: for i ∈ {start idx . . . start idx + nu A} do . For loop over new associated particles of cell j
15: set cell idx A(birth particle array, i, j) . Sets j as grid cell index of new particle i with flag for associated
16: for i ∈ {start idx + nu A + 1 . . . end idx} do . For loop over new unassociated particles of cell j
17: set cell idx UA(birth particle array, i, j) . Sets j as grid cell index of new particle i with flag for unassociated
18: for i ∈ {0, . . . , length(birth particle array)− 1} do . Parallel for loop over all new-born particles
19: initialize new particle(birth particle array, i, grid cell array) . Initializes new-born particle i according to (74) or (76)



Algorithm 6 Statistical Moments of Grid Cells
1: vel x array . Separate storage for the velocity in x-direction of particles (constant size ν)
2: vel y array . Separate storage for the velocity in y-direction of particles (constant size ν)
3: vel x squared array . Separate storage for the squared velocity in x-direction of particles (constant size ν)
4: vel y squared array . Separate storage for the squared velocity in y-direction of particles (constant size ν)
5: vel xy array . Separate storage for the multiplied velocities in both directions of particles (constant size ν)
6: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all persistent particles
7: w← weight array[i] . Stores the updated, normalized weight of the persistent particle i
8: vel x← get vel x(particle array[i]) . Stores x-velocity of particle i
9: vel y← get vel y(particle array[i]) . Stores y-velocity of particle i

10: vel x array[i]← w ∗ vel x . Stores weighted x-velocity of particle i
11: vel y array[i]← w ∗ vel y . Stores weighted y-velocity of particle i
12: vel x squared array[i]← w ∗ vel x ∗ vel x . Stores weighted squared x-velocity of particle i
13: vel y squared array[i]← w ∗ vel y ∗ vel y . Stores weighted squared y-velocity of particle i
14: vel xy array[i]← w ∗ vel x ∗ vel y . Stores weighted product of x- and y-velocity of particle i
15: vel x array accum← accumulate(vel x array) . Accumulates velocities in x-direction
16: vel y array accum← accumulate(vel y array) . Accumulates velocities in y-direction
17: vel x squared array accum← accumulate(vel x squared array) . Accumulates squared velocities in x-direction
18: vel y squared array accum← accumulate(vel y squared array) . Accumulates squared velocities in y-direction
19: vel xy array accum← accumulate(vel xy array) . Accumulates product of velocities in x- and y-direction
20: for j ∈ {0, . . . , length(grid cell array)− 1} do . Parallel for loop over all grid cells
21: rho p← get pers occ mass(grid cell array, j) . Gets persistent part of posterior occupancy mass in grid cell j
22: start idx← get particle start idx(grid cell array[j]) . Gets start index in particle array of cell j
23: end idx← get particle end idx(grid cell array[j]) . Gets end index in particle array of cell j
24: mean x vel← calc mean(vel x array accum, start idx, end idx, rho p) . Applies (81)
25: mean y vel← calc mean(vel y array accum, start idx, end idx, rho p) . Applies (81)
26: var x vel← calc variance(vel x squared array accum, start idx, end idx, rho p,mean x vel) . Applies (83)
27: var y vel← calc variance(vel y squared array accum, start idx, end idx, rho p,mean y vel) . Applies (83)
28: covar xy vel← calc covariance(vel xy array accum, start idx, end idx, rho p,mean x vel,mean y vel) . Applies (84)
29: store(grid cell array, j,mean x vel,mean y vel, var x vel, var y vel, covar xy vel) . Store stochastic moments in grid cell j

Algorithm 7 Resampling
1: rand array . Array with sorted, equally distributed random numbers (constant size ν)
2: idx array resampled . Array with indices of resampled particles (constant size ν)
3: particle array next . Particle array for the next time step (constant size ν)
4: joint weight array accum← accumulate(weight array, birth weight array) . Accumulates normalized particle weights
5: idx array resampled← calc resampled indeces(joint weight array accum, rand array) . Calculates resampled particle indices
6: for i ∈ {0, . . . , length(particle array)− 1} do . Parallel for loop over all persistent particles of the next time step
7: particle array next[i]← copy particle(particle array, birth particle array, idx array resampled[i]) . Copy resampled particle

this algorithm is to initialize for each grid cell a certain number
of new particles, which is proportional to the new-born part of
its updated occupancy mass %(c)

b,k+1. Therefore, the algorithm
accumulates new-born occupancy masses of all grid cells in the
array particle orders array. Then it normalizes each value of
the array to sum up to the discrete number νb. The normalized
array then serves as a lookup table to be used by each grid cell
to find out its first and last corresponding index in the array
birth particle array, as well as the individual number of new
particles ν(c)

b,k+1 assigned to grid cell c in this time step.

Each grid cell splits this number into the number ν(c)
A,k+1 of

new particles which are associated to the spatial measurement
g

(c)
k+1(zk+1|xk+1) and the number ν(c)

A,k+1
of new particles

which are not associated. The relation is given by

ν
(c)
A,k+1

ν
(c)

A,k+1

=
p

(c)
A,k+1

1− p(c)
A,k+1

, (79)

and

ν
(c)
A,k+1 + ν

(c)

A,k+1
= ν

(c)
b,k+1. (80)

Each grid cell also calculates and stores the weights for
associated (75) and unassociated (77) new particles. As a next
step, each grid cell iterates over all its assigned new particles

and defines it as an associated or unassociated particle, re-
spectively, and sets the particle grid cell index. Finally, each
particle initializes itself with a random initial state within its
grid cell. Again, enough random numbers should be sampled
in a separate step in advance so the initialization step just
needs to look them up. This time, each particle uses the grid
map as a lookup table for its initial position and weight.

6) Statistical Moments of Grid Cells: Algorithm 6 calcu-
lates the first two statistical moments of the two-dimensional
velocity [vx vy]T in a grid cell, considering all updated, nor-
malized, persistent particles. If grid cell c contains a certain
number of particles, the mean velocity component in x-
direction v(c)

x can be approximated by

v(c)
x ≈ 1

%
(c)
p,k+1

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1 · v

(i,c)
x,p,k+1, (81)

and analogously for the component in y-direction. The symbol
v

(i,c)
x,p,k+1 denotes the velocity x-component of a posterior

persistent particle x(i,c)
p,k+1 in grid cell c.

Recall that %(c)
p,k+1 is the persistent part of the posterior

occupancy mass, which equals the sum of updated, normalized



weights w(i,c)
p,k+1 of persistent particles in grid cell c:

%
(c)
p,k+1 =

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1. (82)

The variance of the velocity component in x-direction can
be approximated by

σ2(c)
vx
≈ 1

%
(c)
p,k+1

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1 ·

(
v

(i,c)
x,p,k+1

)2

−
(
v(c)

x

)2

,

(83)

and analogously for the component in y-direction. The covari-
ance of the velocity components in x- and y-direction can by
approximated by

σ(c)
vxvy
≈ 1

%
(c)
p,k+1

ν
(c)
p,k+1∑
i=1

w
(i,c)
p,k+1 · v

(i,c)
x,p,k+1 · v

(i,c)
y,p,k+1

− v(c)
x · v(c)

y . (84)

Since particles are sorted by their grid cell index, the calcu-
lation of all sums in equations (81), (82), (83), and (84) can
be realized by parallel accumulation of the according values.
A parallel for loop over all grid cells then only subtracts the
corresponding accumulated values. Again, the computational
complexity is constant for each cell, independent of the
individual number of particles in the cell at time step k + 1.
This is optimal with respect to load balancing between threads.

7) Resampling: Particles are resampled according to Al-
gorithm 7 to avoid degeneration. The resampling step accu-
mulates the normalized weights of persistent and new-born
particles in the array joint weight array accum. It draws ν
sorted random numbers which are equally distributed between
0 and the sum of all particles and stores the random numbers in
the array rand array. Each random number falls into a certain
interval of accumulated weights, which corresponds to a cer-
tain particle index. For each random number in rand array, the
corresponding particle is chosen and copied into the particle
array for the next time step particle array next.

VIII. EVALUATION

This section evaluates the Dempster-Shafer approximation
of the PHD/MIB filter (DS-PHD/MIB filter) with real-world
sensor data. The goal is to investigate if the DS-PHD/MIB
filter performs as expected in different scenarios. A focus lies
on the effect of the birth probability, which will be varied in
all experiments.

A test vehicle equipped with laser and radar sensors is
used for recording measurement data. In a first experiment,
an object approaches the ego vehicle with varying speed. The
evaluation examines the speed estimation performance and
consistency of the DS-PHD/MIB filter. In a second experiment,
the ego vehicle follows a dynamic object and the evaluation
investigates the ability of the DS-PHD/MIB filter to separate
dynamic and static obstacles in the vehicle’s environment.
The evaluation also determines the effect of fusing radar and
laser data in comparison to using laser data only. Finally, the

TABLE I
OVERVIEW OF THE EXPERIMENTAL PARAMETERS OF THE DS-PHD/MIB

FILTER. HERE, SD IS AN ABBREVIATION FOR STANDARD DEVIATION.

Parameter Symbol Value

Grid map edge size - 120 m
Grid cell edge size - 0.1 m
Number of consistent particles ν 2 · 106
Number of new-born particles per step νb 2 · 105
Persistence probability pS 0.99

SD velocity new-born particles σB,v 4 m/s
SD process noise position σp 0.02 m

T/s
SD process noise velocity σv 0.8m/s

T/s
Birth probability pB 0.005 ... 0.1

Fig. 8. Velocity estimation test scenario: A Segway approaches the test
vehicle. The estimated mean velocity of every grid cell is visualized as a
blue vector.

computation time of the parallel implementation with varying
numbers of particles is analyzed.

A. Experiment Configuration

The test vehicle is equipped with a Valeo four-layer laser
scanner with an opening angle of 120 degrees in the front
bumper. Additionally, two short range Delphi single beam
mono pulse radars facing to the front left and front right
sides cover a similar area. The vehicle speed and yaw rate
are available via CAN messages, so the ego movement of the
test vehicle can be compensated in the grid map.

The grid map covers an area of 120 m by 120 m with the test
vehicle in the center. Each grid cell measures 10 cm by 10 cm.
Table I shows the parameter set of the DS-PHD/MIB filter. The
parallel implementation is tested on an Nvidia GTX980 GPU,
supported by a single core of an Intel i7 processor.

B. Velocity Estimation of a Moving Object

In this test scenario, a Segway approaches the test vehicle
starting from a distance of ca. 50 m, see Fig. 8. The Segway
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Fig. 9. Velocity estimation results under variation of the birth probability pB.
The Segway reaches the short range radar field of view after a time of ca.
5 s. Fusion with radar further improves the velocity estimation.

accelerates slowly, drives with almost constant speed and then
decelerates strongly. The set of grid cells representing the
Segway is denoted S. The experiment evaluates the mean
velocity v(S)

x of these grid cells:

v(S)
x =

∑
c∈S

1

|S|
v(c)

x . (85)

The x-component of the estimated velocity is aligned to the
longitudinal axis of the test vehicle.

Figure 9 shows the results of the experiment. In the begin-
ning the Segway accelerates slowly. Since the process model
assumes constant velocity, the estimated velocity is delayed
during the acceleration phase. During the constant velocity
phase, the estimation converges closely to the real velocity
for birth probabilities pB = 0.005 and pB = 0.02. Choosing
a process model with a higher birth probability of pB = 0.1
results in a persistent bias of the estimated velocity. The reason
is that the mean of the birth distribution is zero, so new-born
particles generally distort the velocity estimation towards zero.
The results show that choosing an appropriate birth probability
is important for the velocity estimation performance of the
filter.

Fusion of radar data which contains Doppler measurements
further improves the velocity estimation. In this realization,
the Segway reaches the radar field of view at a time of ca.
4 s. Before that point in time, the Segway is outside the radar
range and only rarely detected by radar. Radar Doppler mea-
surements reduce even small remaining bias effects and lead
to a much faster convergence during the strong deceleration
phase in the end. The small peak after 12 s is assumed to
be caused by a movement of the person riding the Segway,
commonly referred to as micro-Doppler.

C. Consistency of the DS-MIB/PHD filter

This section evaluates the consistency of the DS-MIB/PHD
filter in dependency of the birth probability pB, focusing on
the x-component of the estimated velocity. The DS-MIB/PHD

0 2 4 6 8 10 12 14
0

2

4

6

Time in s

St
an

da
rd

de
vi

at
io

n
σ
(S

)
v

x
in

m
/s

Laser and radar, pB = 0.02

Laser only, pB = 0.02

Laser only, pB = 0.005

Laser only, pB = 0.1

Fig. 10. Estimation standard deviation σ
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component provided by the DS-PHD/MIB filter under variation of the birth
probability pB.
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Fig. 11. Normalized estimation error squared (NEES) ε of the estimated
velocity x-component under variation of the birth probability pB.

filter provides for each grid cell the estimation variance σ2(c)
vx

.
The experiment considers the combined distribution of the set
S of all grid cells representing the Segway as a Gaussian
mixture. Hence the combined variance σ2(S)

vx
of the Segway

is given by

σ2(S)
vx

=
∑
c∈S

1

|S|

(
σ2(c)
vx

+ v2(c)
x

)
− v2(S)

x . (86)

This corresponds to the variance of all particles representing
the Segway.

Figure 10 shows the standard deviation σ(S)
vx of the velocity

x-component of the Segway provided by the DS-MIB/PHD
filter. The test scenario is the same as used for the velocity
estimation. The uncertainty increases with the birth probability
pB due to the high number of new-born particles in the
dynamic object.

To evaluate the consistency of the DS-PHD/MIB filter, the
experiment calculates the normalized estimation error squared



Fig. 12. Test scenario for separation of static and dynamic grid cells. The color
code represents the direction of movement, the color saturation is determined
by the Mahalanobis distance between the velocity distribution and the velocity
v = 0 in a grid cell.

(NEES) ε, given by [44]:

ε =

(
v

(S)
x − v(S)

x

)2

σ2(S)
vx

, (87)

where v(S)
x is the true velocity x-component of the Segway.

Figure 11 shows the result of the consistency test and
compares the NEES ε to the 95% level [44]. The applied
process model (14) assumes constant velocity and does not
model acceleration maneuvers. To compensate this, the filter
designer can choose a higher velocity process noise than
expected during constant velocity maneuvers as a trade-off
between both modes. The consistency check shows why the
birth probability pB should not be chosen too small. Especially
during acceleration maneuvers, the result can become incon-
sistent, because the filter underestimates the uncertainty of the
estimation result, which happens during the deceleration phase
with a birth probability of pB = 0.005.

D. Separation of Moving and Stationary Obstacles

In the second test scenario, the Segway drives along between
parked vehicles with the ego vehicle following behind. Except
for the Segway, the environment is static. In a manual post-
processing step, all grid cells were labeled as dynamic or static.
An example situation of the test is depicted in Fig. 12.

The evaluation uses the DS-PHD/MIB filter as a classifier
to separate grid cells into dynamic or static. The criterion for
the assignment is the Mahalanobis distance m between the
estimated two-dimensional probability density p(v) : R2 → R
of the velocity distribution in a cell and the velocity v = 0. The
density is approximated from the particle representation as a
Gaussian distribution with mean v and covariance matrix P as
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Fig. 13. Detection of dynamic grid cells with the DS-PHD/MIB filter under
variation of the birth probability pB.

Fig. 14. Left: Laser only, false positive movements occur on both sides.
Right: Fusion of laser and radar, false positive movements are reduced. The
color code represents the direction of movement.

calculated in (81), (83), (84). Then the Mahalanobis distance
is given by

m = vP−1vT . (88)

Applying different threshold values τm, the evaluation classi-
fies grid cells as a static detection if m < τm or as a dynamic
detection if m ≥ τm.

Figure 13 shows the receiver operating characteristic (ROC)
curve of the assignment. It shows that the DS-PHD/MIB
filter is able to achieve a true positive rate of 99% (ratio of
correctly detected dynamic cells to total number of dynamic
cells) at a false positive rate of 1% (ratio of falsely detected
dynamic cells to total number of static cells) in the test
scenario. The birth probability pB of the process model has an
important influence on the estimation result. Best classification
performance is achieved with a birth probability value of
pB = 0.02, which also delivered consistent estimation results
in the previous experiment.

Again, fusion with radar data further improves the overall
result. As described in details in [20], Doppler measurements
help reduce false positive movement estimation in grid cells.
An exemplary visualization of the dynamic grid map with and
without radar is given in Fig. 14.
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E. Computation Time
The parallel implementation presented in Sect. V allows to

run the DS-PHD/MIB filter in real-time applications. Figure
15 shows the computation time of one recursion of the DS-
PHD/MIB filter in dependence on the number of persistent
particles ν, running on an Nvidia GTX980 GPU. The number
of new-born particles νb is chosen to be 10% of the number
of persistent particles in this experiment.

As discussed in Sect. V, the time complexity of the sorting
step is above linear. However, in the range between 1 · 106

and 10 · 106 particles, the absolute computation time relates
approximately linear to the number of particles. A typical
environment perception application with a refresh time of ca.
50 ms can process more then 2 · 106 particles and 1.44 · 106

grid cells in each update step, which are also the numbers that
have been used during the experiments.

IX. CONCLUSION AND OUTLOOK

This paper presented the first mathematically rigorous ap-
proach for the dynamic state estimation of grid cells for robotic
or vehicle environment perception based on random finite sets
(RFSs). The PHD/MIB filter approximates the multi-object
estimation problem by combining the probability hypothesis
density filter and multiple instances of the Bernoulli filter. In
contrast to former approaches, the top-down derivation of the
proposed PHD/MIB filter facilitates a characterization of the
approximation error. Further, the proposed RFS formulation
provides an explicit, stochastic birth model for appearing
objects as well as a physical meaning for the densities repre-
sented by the particles. The validity of the PHD/MIB filter was
additionally verified by the proof that the filter corresponds to
the well-known binary Bayes filter in case of a static process
model. Moreover, an approximate particle realization of the
PHD/MIB filter in the Dempster-Shafer domain called DS-
PHD/MIB filter was proposed which facilitates a real-time
capable implementation for practical applications in robotics
or vehicle environment perception since it requires a signifi-
cantly smaller number of particles. Further, an efficient parallel

algorithm suitable for a GPU implementation of the filter was
presented as pseudo code.

The quantitative evaluation with real-world sensor data
showed that appropriate stochastic models for the system
process and for the observation process lead to consistent es-
timation results. The experiments have confirmed that the DS-
PHD/MIB filter provides useful results in regard to velocity
estimation of dynamic obstacles and separation of dynamic
and static obstacles.

Further research should investigate possibilities of explic-
itly modeling the dynamic behavior of free space, which is
bound to a naive model in the DS-PHD/MIB approximation.
Theoretically, the PHD/MIB filter is able to model possible
movements in occluded areas which could lead to useful
applications.
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[43] F. Homm, N. Kämpchen, J. Ota, and D. Burschka, “Efficient Occupancy
Grid Computation on the GPU with Lidar and Radar for Road Boundary
Detection,” in Proceedings of the IEEE Intelligent Vehicles Symposium,
2010, pp. 1006–1013.

[44] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. New York: John Wiley & Sons, Inc.,
2001.

http://docs.nvidia.com/cuda/curand
http://thrust.github.io/

	I Introduction
	I-A Contributions of this Paper
	I-B Paper Structure

	II Dynamic Grid Mapping: An overview
	II-A Static Grid Mapping
	II-B Dynamic Grid Mapping
	II-B1 State Representation
	II-B2 Prediction Step
	II-B3 Update Step
	II-B4 Resampling
	II-B5 Initialization
	II-B6 Occluded Areas

	II-C Discussion

	III Random Finite Set Statistics
	III-A Multi-Object Bayes Filter
	III-B PHD and Bernoulli RFS

	IV The Probability Hypothesis Density / Multi-Instance Bernoulli (PHD/MIB) Filter
	IV-A Environment Definition and Filter Recursion Outline
	IV-B Multi-Object State Transition in PHD representation
	IV-C Approximation as Bernoulli Distributions
	IV-D Bernoulli RFS Birth Model
	IV-E Bernoulli Observation Process
	IV-F Multi-Object Bayes Update Step
	IV-G Relation between PHD/MIB filter and binary Bayes filter

	V Particle Realization of the PHD/MIB Filter
	V-A Posterior Representation
	V-B Prediction of Persistent Objects
	V-C Transition from a PHD to Multiple Instances of Bernoulli RFSs
	V-D Prediction of New-Born Objects
	V-E Predicted Bernoulli RFS
	V-F Particle Update
	V-G Joint PHD Representation
	V-H Resampling

	VI Real-time Approximation with Dempster-Shafer Theory of Evidence
	VI-A State Representation
	VI-B Prediction
	VI-C Update
	VI-C1 Existence Update
	VI-C2 Birth Model
	VI-C3 Spatial Update

	VI-D Resampling

	VII Parallel Implementation
	VII-A Parallelization Challenges
	VII-B Implementation Details
	VII-B1 Particle Prediction
	VII-B2 Assignment of Particles to Grid Cells
	VII-B3 Grid Cell Occupancy Prediction and Update
	VII-B4 Update of Persistent Particles
	VII-B5 Initialization of New Particles
	VII-B6 Statistical Moments of Grid Cells
	VII-B7 Resampling


	VIII Evaluation
	VIII-A Experiment Configuration
	VIII-B Velocity Estimation of a Moving Object
	VIII-C Consistency of the DS-MIB/PHD filter
	VIII-D Separation of Moving and Stationary Obstacles
	VIII-E Computation Time

	IX Conclusion and Outlook
	References

