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Foreword

The Forest Resources Project at IIASA has the task, among others, to try and assess the
carbon balance of boreal forests.  In addition the project should carry out work which
will support the implementation of the Kyoto Protocol.  The project has recently carried
out an assessment of the carbon balance in the Russian forest sector (published
elsewhere) and found a number of issues that need to be further elaborated before the
fullscale implementation of the Kyoto Protocol takes place.  In order to assess whether
our findings were specific for Russia or if they had a general feature, we found it
important to also assess the carbon balance of other countries.

This work on Austria’s carbon balance has verified that many of our concerns are of
general character and not country specific.
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Abstract

Article 3 of the Kyoto Protocol states that Parties included in Annex I shall use net
changes in greenhouse gas emissions from sources and removals by sinks resulting from
direct human-induced land-use change and forestry (LUCF) activities since 1990 to
meet their emission reduction commitments. However, even with clear guidelines on
how to calculate LUCF emissions and removals, considerable problems remain.

Our paper addresses a number of relevant issues by summarizing the knowledge gained
from assessing and quantifying sources and sinks of carbon compounds relevant to
Austria on the basis of an integrated operational model framework, the Austrian Carbon
Balance Model (ACBM). The ACBM covers Austria’s biosphere and technosphere and
at present permits project researchers to run a Reference Scenario for 1990–2050.

We attempt to generalize our experience and also to compare our model results
regarding Austria’s net atmospheric carbon contribution on the basis of the uncertainties
underlying these results. This permits us (1) to identify several high-priority research
issues that will enable Austria to cope adequately with its commitments under the Kyoto
Protocol; and (2) to draw general conclusions that may provide support to the
Conference of the Parties as it decides upon modalities, rules and guidelines in
accounting for LUCF emissions and removals.

Key Words: Climate Convention, Kyoto Protocol, Article 3 , net emissions, land-use
change, forestry
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Land-use Change and Forestry in Austria:
A Scientific Assessment of Austria’s Carbon
Balance in Light of Article 3 of the Kyoto
Protocol

M. Jonas, B. Mayr, S. Schidler, M. Sotoudeh, H. M. Knoflacher

1. Introduction

Article 3 (Nos. 3 and 4) of the Kyoto Protocol to the United Nations Framework
Convention on Climate Change (UNFCCC, 1997, 1998) states that:

3.  The net changes in greenhouse gas emissions from sources and removals by
sinks from direct human-induced land use change and forestry activities, limited to
afforestation, reforestation, and deforestation since 1990, measured as verifiable
changes in stocks . . . shall be used to meet the commitments under this Article of
each Party included in Annex I.  . . .

and

4.  . . . each Party included in Annex I shall provide . . . data to establish its level of
carbon stocks in 1990 and to enable an estimate to be made of its changes in
carbon stocks in subsequent years.  . . .

However, fulfilling these commitments is not a straightforward task. Article 3 (No. 3)
reveals serious scientific shortcomings, e.g., a lack of guidance on to how to deal with
disturbances, including harvest and storage of carbon in wood, or whether to consider
land-use change and forestry (LUCF) activities prior to 1990. Also, both Article 3
(No.3) and Article 3 (No. 4) implicitly require that countries precisely calculate net
changes in greenhouse gas emissions and removals based on changes in carbon stocks,
despite the inherent uncertainties in measurements, data, etc. — an unrealistic
expectation in the case of Austria (and possibly other countries), as our paper shows.
Therefore, even in the presence of clear guidelines on how to calculate emissions and
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removals resulting from human-induced LUCF activities, considerable problems remain
(see also Bolin, 1998).

Our paper addresses some of these issues and other relevant problems by summarizing
the insight gained from assessing and quantifying sources and sinks of carbon
compounds relevant to Austria on the basis of an integrated operational model
framework, the Austrian Carbon Balance Model (ACBM). The ACBM, which is being
developed by several Austrian scientific institutions, including and under the
coordination of the Austrian Research Centers Seibersdorf, covers Austria’s biosphere
and technosphere and currently enables our project researchers to run a Reference
Scenario for 1990–2050.

Analyzing Austria’s net atmospheric carbon contribution and its underlying
uncertainties permits us (1) to identify a number of high-priority research issues that
will enable Austria to cope adequately with its commitments under Article 3 of the
Kyoto Protocol; and (2) to draw general conclusions that may provide support to the
Conference of the Parties as it engages in future deliberations to decide upon modalities,
rules and guidelines in accounting for LUCF emissions and removals — also specified
in Article 3 (No. 4) of the Kyoto Protocol.

While the experience gained from building and running a model has always proven very
helpful in identifying and quantifying the problems addressed in Section 3 below, the
modeling approach is by no means mandatory. However, before focusing on five key
issues, all of which relate to the biosphere, we provide a brief description of the ACBM.

2. The Austrian Carbon Balance Model

Since 1995 the Austrian Research Centers Seibersdorf have coordinated work related to
a project titled Systems Analytical Assessment of Austria’s Carbon Balance. The project
aims at assessing and quantifying sources and sinks of carbon compounds relevant to
Austria on the basis of a synoptic systems-analytical approach, i.e., a dynamic computer
simulation model (Jonas, 1997; Mayr et al., 1997; Schidler, 1998). It incorporates
carbon-relevant human activities, pools, fluxes and feedbacks that have been identified
as being important in determining Austria’s carbon balance until 2100 (see Table 1).

Based on these preliminary systems insights, an integrated operational model
framework, the Austrian Carbon Balance Model (ACBM), has been designed. This
model includes the following components (see Figure 1): Austria’s biosphere,
encompassing modules for forestry and agriculture, and Austria’s technosphere,
encompassing a set of submodules ranging from energy to wood and food & feed
industries to biomass-relevant products, including biogenic waste. This paper discusses
the ACBM at the module level only where appropriate and to the extent required.
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The main task of the project is to combine, interpret, and communicate knowledge from
diverse scientific disciplines, via an interdisciplinary and participatory process, and
thereby to improve understanding of a complex phenomenon: Austria’s carbon budget
and its dynamical behavior. The project does not seek to generate deeper intra-
disciplinary insights, but instead strives for added value compared to insights derived
from single-disciplinary research.1

The ACBM has demonstrated the capability of capturing the essential carbon-relevant
human activities, pools, fluxes and feedbacks identified in Table 1, and of eventually
becoming a fully integrated model. The first modeling phase (which lasted until the end
of 1997) provided an operational framework that forms a satisfactory basis for
expanding the ACBM during a second phase, which will be conducted in collaboration
with other scientists and in a fully interdisciplinary manner.

As noted above, we have used the ACBM to create a Reference Scenario for Austria for
1990–2050.2 We defined this scenario to include: (1) a reference scenario for the energy
system, based on Scenario A1 (selected region: Western Europe) of the global study
conducted by the International Institute for Applied Systems Analysis (IIASA) and the
World Energy Council (WEC); and (2) a scenario that keeps current (1990) land-
use/cover conditions constant into the future for the remainder of the ACBM’s coverage
period. Again, this paper will discuss results of the (combined) scenario only if
appropriate and to the extent required.

3. Austrian Experience Relevant to Article 3 of the Kyoto
Protocol

In this section we will examine five key issues relevant to Article 3 (Nos. 3 and 4) of the
Kyoto Protocol, all of them related to the biosphere. Our findings indicate that Austria’s
emissions from the use of fossil fuels can be determined adequately, while it is not yet
possible to assess biosphere uncertainties and nonlinearities equally well.

                                               
1 Here we make use of one of the definitions of Integrated Assessment (IA) that are widely discussed
across scientific communities at present [Granger Morgan and Dowlatabadi (1996); Rotmans et al.
(1996a, b); J. Rotmans (1997; personal communication); van Asselt et al. (1997); IIASA (1997)].
2 The forestry and agriculture module takes account of LUCF activities prior to 1990, as described in
Table 3 below.
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3.1 A Consistent LUC Database

Although it is nowhere explicitly mentioned, a prerequisite for any accurate inventory
of natural greenhouse gas emissions and removals is the use of a consistent land-
use/cover (LUC) database that provides data coverage for a country’s total territory.3 By
“consistent” we mean a data resource that (1) harmonizes LUC statistics with legal land
registry data, and (2) assembles the most reliable LUC data files from different data
sources, thereby accurately reflecting conditions in the entire country. In addition, a
consistent LUC database reduces statistical errors. High statistical accuracy is essential
not only for preparing national greenhouse gas inventories, e.g., by making use of the
revised 1996 IPCC Guidelines (IPCC, 1997a, b, c), but also for building a model such
as the ACBM.

However, consistent LUC databases are usually not readily available or, if available,
may not reach back sufficiently long into the past. The following examples illustrate
typical data inconsistencies and/or inhomogeneities we faced in analyzing the case of
Austria:

1) While several national LUC databases exist, their data reliability has proven limited.
This has occurred because national institutions that maintain LUC databases usually
gather information directly on only limited subsets of a country’s land use and land
cover, and derive the remainder of their data from statistical balancing.

2) Surveys aimed at deriving LUC datasets may not take place at regular intervals (in
fact, they may sometimes be conducted only upon request), and may not always be
based upon spatially fixed survey grids.

3) A change in the minimum survey area unit, as for instance, happened in Austria
between 1982 and 1983, can significantly affect data accuracy and any subsequent
assessments. The minimum area unit considered in LUC surveys until 1982 was 0.5
hectares; thereafter, the unit used was 1 hectare, with the consequence that small-
scale areas in particular experienced disproportionate survey changes (e.g., small
farms, which are typical for Alpine regions).

4) The researchers encountered several land-use/cover misclassifications, for instance,
when financial incentives in the agricultural sector favored a certain type of land use
or land cover. In this case, LUC data are usually distorted in favor of the financially
more attractive option.

There exist numerous such data inconsistencies and inhomogeneities, which generally
become apparent if the data are tested against a country’s total area, and, whenever
possible, against other, independent data sets, such as those derived from remote
sensing. Our experience leads us to conclude that extracting the most reliable LUC data

                                               
3 The terms land use and land cover employed here and in the following are in line with the definitions
used by the IGBP (1993, 1995).
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subsets and piecing them together into a nationally consistent LUC database does help
both to reduce data uncertainties considerably and to increase confidence in data
reliability.

The ACBM project sought to establish a consistent LUC database for Austria, covering
the years 1960–1990 (see Figure 2). All details concerning data sources, data
processing, etc., are described in Schidler (1998); for a summary at a somewhat less
detailed level see also Jonas (1997). This consistent LUC database served as the basis
for Austria’s last inventory of its natural greenhouse gas emissions and removals
(FMEYF, 1997), and was also used in the ACBM.

3.2 Assessing the Combined Effect of Past LUC Changes

A consistent LUC database is necessary, but by no means sufficient, to estimate carbon
fluxes in a given inventory year that result from changes in land use and land cover.
This task requires taking into account events over long periods of time. In particular, if
different changes in land use and/or land cover overlay each other, it is almost
impossible to judge the resulting effect without making use of direct measurements of
changes in carbon stocks.

The practical first-order approach currently being recommended by the IPCC (1997a, b,
c) is to make simple assumptions about the effects of land-use changes on carbon stocks
(for example, in existing biomass and soils) and about the subsequent biological
responses to the land-use change, and to use these assumptions to calculate carbon stock
changes and hence the CO2 flux.4 However, complying with this “simple” procedure
requires awareness of difficulties, in particular when assessing the combined effect of
changes in both land cover and land use. The following example illustrates the
importance of this point.

Land-cover Change

Figure 2 shows net changes in Austria’s land use and land cover. However, to calculate
changes in soil carbon properly, researchers must know about individual land-cover
changes.

                                               
4 In the original text (IPCC, 1997c: p. 5.3) only the term land-use change is used. However, the use of this
term throughout the revised 1996 IPCC Guidelines (IPCC, 1997a, b, c) refers to changes in both land use
and land cover, as defined by the IGBP (1993, 1995) (see also Footnote 3).
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For instance, according to Figure 2, Austria’s total forest land5 increased between 1960
and 1990, mainly at the expense of Austria’s arable land and grassland.6 Losses of
grassland, in turn, occurred not only in favor of Austria’s forest land, but also, to some
(minor) extent, in favor of Austria’s arable land. Yet, in spite of these gains, the arable
land experienced greater losses in favor of Austria’s forest land (W. Bittermann, 1998;
personal communication). Therefore, and because on a per-hectare basis carbon stocks
in grassland soils exceed those in arable land soils, soil carbon in Austria’s arable land,
on average, should have increased.

Land-use Change

The past increase in agricultural yield per hectare of cereals and crops constitutes an
important change in land use.7 For instance, between 1960 and 1990 the range of cereal
yield for wheat, rye, barley, oats and corn increased from [2.0, 3.8] to [3.9, 8.2] tons per
ha–1, where oats and corn provide the lower and upper values, respectively. From our
data compilations that also consider the shifting of species, we can conclude that this
increase in yield, on average, is equivalent to an increase in total plant carbon content.
Higher total plant carbon content, in turn, tends to induce higher carbon content of
harvest and root residues, which promote carbon sequestration.8 Therefore, in the case
of land-use changes our conclusion would also be that, on average, soil carbon in
Austria’s arable land should have increased.

However, large-scale measurements of carbon in humus (0–20 cm) on Austria’s arable
land between 1965 and 1991 that have recently been made available (Dersch and Böhm,
1997a, b) seem to indicate a mean loss rate of 0.24 tC ha–1 yr–1.9 Therefore, other
changes must have occurred, such as alterations in agricultural management practices

                                               
5 To reflect Austrian conditions, the term total forest used here is equivalent to forest as defined by the
UN (1992) minus land used for short-rotation plantations.
6 In Austria, forest land increased from about 3,541*103 ha in 1960 to about 3,880*103 ha in 1990;
grassland decreased from about 1,408 * 103 ha in 1960 to about 1,078*103 ha in 1990; and arable land
decreased from about 1,524 * 103 ha in 1960 to about 1,372*103 ha in 1990.
7 In the model, yields of cereals and crops are simplified in that they represent area-averaged means over a
range of cereal and crop species in terms of their yields. Cereals are defined to include wheat, rye, barley,
oats and corn; crops are defined to include potatoes, legumes, clover-hay, maize for silage purposes,
sugar beets, fodder beets, sunflowers, rape and oil-pumpkins. According to the data of the Austrian
Central Statistical Office, this (incomplete) breakdown of cereals and crops covers about 88% or even
more of (1) the harvested amounts of all cereals and crops (in terms of mass) during 1950–1990; and (2)
the land cover of all cereals and crops (in terms of area) during the same period (Schidler, 1998). Based
upon the above definition of cereals and crops, the figures for arable land during 1950–1990 were
increased; that is, the amounts for land of each cereal and crop species were raised proportionally to
match the nationally consistent and smoothed arable land data shown in Figure 2.
8 Given the lack of data, we have so far assumed in our LUC database that the ratio of carbon content of
plant and root residues to total plant carbon content stays constant over time. However, we note that this
assumption is critical and awaits improvement.
9 As emphasized by the authors, disregarding a thinning effect as a result of deeper plowing practices.
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(for example, on-site burning10 or removal of straw), and/or increases in tillage and
harvest intensity and in tillage depth, possibly in combination with an increase in
compaction, particularly at greater depths (Dersch, 1998; personal communication). The
combined effect of these different activities is difficult to quantify over time and
contradicts our previous assumptions of increasing soil carbon stocks. Interestingly
enough, these measured carbon losses from Austria’s arable land soils are lower by
about a factor of three compared with estimates according to the revised 1996 IPCC
Guidelines.11

Therefore, given the long time periods and large areas usually involved, one can expect
considerable uncertainties related to assessing the combined effect of past LUC changes
on a country’s level of carbon stocks in 1990. One cannot simply make comparisons
with other carbon fluxes contributing to a country’s greenhouse gas balance to
determine whether or not significant annual changes in carbon stocks (losses of humus
carbon) will occur currently and in the future. Instead, the changes should be examined
by considering the level of carbon stock (i.e., the humus carbon pool) in question.

3.3 Classifying Emissions

For political reasons, it is undoubtedly important to include as many radiatively active
and relevant trace gases in a country’s greenhouse gas inventory as possible. However,
attempts to classify these emissions by sources and removals by sinks focus on terms
such as man-made and natural, which seems to present more problems than solutions,
especially in regard to the boundary between the two types of emissions (EEA, 1996;
IPCC, 1997c; Winiwarter et al., 1998). Closely related to this classification issue is a
similar one that we faced in the ACBM: namely, how to define the terms biosphere and
technosphere.

It is critical to note that while these classification attempts may be of academic interest,
they cannot be firmly incorporated into source/sink calculations. This is shown by the
continuity equation in physics, which expresses the conservation of mass, energy, etc.,
and can be easily demonstrated with the help of Figure 3 and Table 2. Figure 3 shows
the agricultural module at a submodule level. As can be seen, we introduced a domestic
“harvest meter,” which tracks harvested carbon and its distribution. In addition, it
provides an auxiliary means to define the boundary between biosphere (right; excluding
Feed from Technosphere) on the one hand and technosphere (left; including Feed from

                                               
10 Austria has forbidden the on-site burning of agricultural residues since 1991 [Federal Law Gazette
1993/405; see also Steinlechner et al. (1994)].
11 According to first model results (Jonas, 1997), which agree with the field data reported by Dersch and
Böhm (1997), the decomposable carbon pool of Austria’s arable land decreased from about 49.7 tC ha–1 in
1950 to 40.8 tC ha–1 in 1990, that is, by about 9% over 20 years. According to the revised 1996 IPCC
Guidelines (1997c; Table 5-12) the mean change in soil carbon over an inventory period of 20 years is
about (1 – 0.7 *1.0 * 1.0) or 30%, assuming the following default values: (1) a base factor of 0.7; (2) a
tillage factor of 1.0; and (3) an input factor of 1.0.
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Technosphere) on the other hand, and thus to separate the two. This unconventional
definition at least helps to avoid lengthy explanations that may be required otherwise.12

Table 2 presents a conservative estimate of the 1990 carbon sink strength of Austria’s
biosphere. It also demonstrates that it does not matter where we set the boundary
between biosphere and technosphere as long as the estimate includes no additional
sources or sinks. In our model, biosphere is defined to encompass (1) agriculture,
including husbandry (cattle and swine); and (2) forestry, where the forest sink strength
is a total sink strength and is not yet limited to afforestation, reforestation, and
deforestation (definition I in Table 2). In the case of the agricultural system, carbon
sources are ultimately related to soils.13 However, this unconventional definition of
biosphere results in a biospheric sink strength identical to the one defined: to consist
only of the living biomass-litter-soil system (definition II in Table 2). Therefore, when
attempting to classify emissions by sources and removals by sinks, we suggest for
scientific reasons that the Protocol avoid imprecisely defined terms such as those
mentioned above.

3.4 Definition of a Baseline Scenario

In our attempt to couple biosphere and technosphere (used here as defined in the
ACBM; see Subsection 3.3 above), an important concern was which scenario to use as a
Reference Scenario. In addition, we had to take account of the model’s current
capabilities. With this in mind, we defined the Reference Scenario in our study to be a
generic term for (1) a reference scenario for the energy system, based on Scenario A1
(selected region: Western Europe) of the global IIASA-World Energy Council study
(IIASA-WEC, 1995; Nakicenovic et al., 1997); and (2) a scenario that keeps current
(1990) land-use/cover conditions constant into the future for the remainder of the
ACBM. Table 3 presents detailed information describing the Reference Scenario.

At a less detailed level, the following two points may be worth noting in this context:

• Our reason for favoring this definition is based on the knowledge available regarding
Austria’s technosphere, which is far better captured in the form of models and
investigated in terms of how it may look in the future than Austria’s biosphere.
Therefore, we needed a standard in studying the projected state of Austria’s

                                               
12 We note that biosphere is a well-defined term (see, for instance, The New Encyclopædia Britannica),
while this is not the case with anthroposphere and technosphere.
13 Husbandry, if properly balanced in terms of feed uptake, respiration, etc., cannot be regarded as a
source or sink on a multi-year scale unless a country’s cattle stock increases or decreases markedly during
this time.
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biosphere, and as a result we kept current LUC conditions constant in our attempt to
run a Reference Scenario of the future.

 

• The model chosen to represent the energy system of Austria’s technosphere is the
energy-CO2 modeling framework for Austria (identified in Figure 1 as the IIASA/TU
Graz model), developed through a collaborative effort by IIASA and the Graz
University of Technology (Nakicenovic et al., 1997). This model incorporates an
energy scenario formulation framework and uses a reference scenario that is
consistent with global energy perspectives of the IIASA-WEC study (IIASA-WEC,
1995). As Nakicenovic et al. (1997) point out, their model represents the first time
that components of IIASA’s global-scale framework have been applied to develop
scenarios for an individual country.

 

 The IIASA/TU Graz model consists of three parts: (1) a parametric energy-economy
model scenario generator; (2) the energy systems model MESSAGE; and (3) a CO2

mitigation technology data bank. In the current version of the ACBM, the IIASA/TU
Graz model is run in a standalone mode and its results (such as primary energy
demand and carbon emissions due to fuel combustion) are fed back to the ACBM,
where they are implemented (in the form of polynomial parameterizations) in the
technosphere module. We note that this soft-link approach represents only an
intermediate step on the way toward a more rigorous attempt to model an energy-
industry-product system, but it seemed the most appropriate option given the great
imbalance of carbon flows between technosphere and biosphere.14

 

 We expect that scientific discussions on defining an appropriate baseline scenario will
continue, and that the IPCC will stimulate them to focus at an international level on the
topic of comparing and reconciling global top-down with regional bottom-up
greenhouse gas emission inventories (see, for example, Olivier et al., 1996).

 

3.5 The Concept of Net Emissions versus Uncertainties
 

 Table 4 summarizes some of the most important knowledge we gained from
constructing a Reference Scenario as outlined in the previous subsection. The table
relates estimates of the maximum change in Austria’s net carbon flow into the
atmosphere between 1990 and 2050 (which, as Figures 4a and 4b show, is dominated by
Austria’s energy system as a strong carbon source and its exploitable forest system as a
strong carbon sink) to various uncertainties in the Austrian data. The disparate outcomes
result from using different or uncertain Austrian data reflecting conditions as of 1990
(in most cases in Austria’s exploitable forest), such as:

 

                                               
 14 In 1990 the overall flow of carbon from biosphere to technosphere exceeds the overall flow of carbon
from technosphere to biosphere by a factor of about 5 to 6 (Jonas, 1997).
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• the total uncertainty in source-sink calculations based on the IPCC Guidelines from
Worksheet 5-1 (Land Use Change and Forestry: Changes in Forest and Other
Woody Biomass Stocks) (IPCC, 1995a, b, c), where we apply moderate uncertainties
regarding (1) the area of Austria’s exploitable forest (±5%); (2) its annual growth
rate (±5%); and (3) the commercial harvest as reported by the Austrian Central
Statistical Office (±3%);

• the uncertainty in ∆GS, the annual growing stock change;

• the uncertainty in statistics regarding domestic fellings and yield; and

• the statistical uncertainty related to Austria’s use of fuel wood.

All values are given as absolute numbers. In addition, we took into account:

• a statistical uncertainty related to the total flux in Austria’s biogenic decay ; and

• an uncertainty related to soil carbon losses from Austria’s arable land.

The latter is smaller than the other uncertainties listed in Table 4, but definitely not less
important when we recognize that carbon content in Austria’s arable land decreased by
about 13% on average between 1965 and 1991, according to Dersch and Böhm (1997a,
b).

It is important to realize that these uncertainties have been identified individually, but
that many of them act together in some combination that we have not yet explored. In
addition, we must recognize that still other important uncertainties remain, such as those
related to determining the amount of phytomass, the dynamics of soil organic carbon, or
the impact of natural disturbances on increment and growing stock. However, given our
insufficient knowledge, we cannot yet quantify these with confidence, and, therefore,
we do not take them into account here.

In any case, we can legitimately conclude that at present our incomplete knowledge
about biospheric processes and data in particular makes it impossible to carry out
rigorous calculations of net emissions. In general, this conclusion should also hold if
only human-induced land-use change and forestry activities are considered, as Article 3
(No. 3) of the Kyoto Protocol requires. For this scientific reason we argue that an
approach should be preferred that involves separately quantifying individual and total
carbon flows to and from the atmosphere, taking into account the related uncertainties,
to one depending on the concept of net carbon flows.
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4. Conclusions

The foregoing discussion drew attention to five key issues that have bearing on Article 3
(Nos. 3 and 4) of the Kyoto Protocol. On the basis of this discussion, it seems that
political intentions, rather than scientific principles, have determined some of the
language contained in the Kyoto Protocol. We outlined a number of scientific problems
that the modeling team encountered in developing a scenario for Austria, and that could
possibly also hinder other countries in complying adequately with their commitments
under Article 3 of the Protocol.

By contrast, some of the problems also fall partly or fully beyond the scientific
competence of a single country and require international scientific agreement. The IPCC
Guidelines (1995a, b, c; 1997a, b, c), developed to establish a common base for
determining changes in sources and sinks, may serve this purpose. However, we must
keep in mind that these guidelines were not designed to serve as a legal basis for
compliance (Bolin, 1998). We therefore foresee the need to agree on a scientifically
adequate methodology that permits compliance with the commitments under Article 3
of the Kyoto Protocol.
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Figures

Fig. 1. Aggregated ACBM structure and carbon flow overview chart of Austria.
Biomass-relevant industries (wood and food & feed sectors) are treated
separately within the technosphere module, thus making it possible to establish
appropriate links to the forestry and agriculture module.
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Fig. 2. Consistent LUC database for Austria (in 106 ha): 1960–1990.
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Fig. 3. Detailed structure of carbon pools in the agriculture module.
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Fig. 4a. Austria’s atmospheric carbon balance 1990–2050 according to the Reference
Scenario (see Table 3): Inflows versus total outflow.
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Scenario (see Table 3): Outflows versus total inflow.
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Tables

Table 1.Carbon-relevant human activities, pools, fluxes and feedbacks of importance to
Austria until 2100.

To be considered . . . because of . . . Relevant or
characteristic

(average) time scale
involved

Anthropog. activities
related to energy use in
form of fossil fuels, C
storage and substitution

Fossil fuel use

Biomass use

Use of other renewables

Anthropog. controllable;

typical time scale for
accounting: ≈ 1 yr

Terrestrial biosphere C-relevant pools and/or
fluxes:

Forest and forest soils

Grassland soils

Arable land soils

≥ 1 yr . . . ≥ 100 yrs

typical range of litter and
soil pool turnover times

Anthropog. activities or
processes related to land-
use/cover

Forest management

Land conversion

Soil degradation (humus
C)

Anthropog. controllable;

typical time scale for
accounting:

≈ 1 yr . . . ≥ 5 yrs

Global feedbacks CO2 fertilization

Temperature increase

Nitrogen fertilization

Still subject to scientific
clarification; small-scale
experimental studies
suggest time scales of

≥ 1 yr . . . ≥ 10 yrs

and beyond for noticeable
feedbacks

Sources: Atjay et al. (1979), Bolin et al. (1979), Hampicke (1980), Bolin (1986), Budyko and Izrael
(1991), Jenkinson et al. (1991), Raich and Schlesinger (1992), IPCC (1995)
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Table 2. Carbon balance of Austria’s biosphere (forestry and agriculture) for
1990. The sink strength of Austria’s exploitable forest represents a conservative
estimate and a total sink strength, which is not yet limited to afforestation, reforestation,
and deforestation.15

1990 Carbon Balance of Austria’s Biospherea

(Forestryb,c and Agriculture)

Flows to and from Austria’s Biosphere System Value
106 tC yr–1

Into the Biosphere System

Photosynthesis 44.9

Fossil fuel input for harvesting 0.2

Feed to husbandry 0.8 D

Total 45.9 E

Out of the Biosphere System F.

Decomposition, mineralization, husbandry, emissions due to 36.0

harvesting I

Harvest (uncorrected in case of forest harvest) 4.6

Biogenic waste (agriculture) 0.5

Total 41.1

Sink Strength D

Exploitable forest sink strength 5.0 E

Sink strength of agricultural soils (arable land, pastures) – 0.2 F.

Total 4.8 II

a Here biosphere is defined to include forestry and agriculture. This definition is an unconventional one
and deviates from widely accepted standard definitions.

b Note that the term forestry refers to Austria's exploitable forest.
c The conversion factor underlying this table to calculate in particular wood carbon contents (in tC) and

total tree biomass (in tC) from usable stem wood (in m3 o.b.) is 0.28. The revised conversion factor is
0.36.

Source: Jonas (1997)

                                               
15 See Jonas (1997) for the complete set of simplifications, model restrictions and modeling assumptions.
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Table 3. Description of the Reference Scenario for Austria, as implemented in the present version of the ACBM. The term Reference Scenario
is a generic term and includes: (1) a reference scenario for the energy system, as already defined by Nakicenovic et al. (1997); and (2)
a scenario that keeps current (1990) land-use/cover conditions constant into the future for the remainder of the ACBM.

Technosphere Biosphere
The energy system follows the reference scenario defined by Nakicenovic et al. (1997)
for application of their Energy-CO2 Modeling Framework for Austria (IIASA/TU Graz
model). Austria’s wood and food & feed sectors are not yet dynamic and reflect current
land-use/cover conditions of the biosphere (see right).

Agriculture and forestry follow current (1990) land-
use/cover conditions into the future.

Energy System Wood Industrya

Food & feed Industry
Product (long)a

Product (short)
Agriculture Forestry

− based on Scenario A1 (selected

region: Western Europe) of the global

IIASA-WEC study (IIASA-WEC,

1995) for 1990–2050; scenario

represents a future designed around

ambitiously high rates of economic

growth and technological progress

− average per capita GDP growth rate

of 1.62% yr–1 between 1990 and 2050

(Western Europe: 1.73% yr–1)

− increase in Austria’s population by

0.11% yr–1, i.e., from 7.71 * 106 hd in

1990 to 8.22 * 106 hd in 2050

(Western Europe: 0.22% yr–1)

− world market prices of globally traded

energy carriers derived from the

IIASA-WEC study; domestic fossil

energy supply continues to decrease

− final energy demand follows overall

trends in agreement with the

IIASA/TU Graz reference scenario

(see left) for the industrial sector

[fuels (total): –0.49% yr–1; electricity:

0.18% yr–1]

− constant domestic fellings input

[corrected to satisfy mean yield

statistics of the Austrian Central

Statistical Office for 1989–1991; cf.

Jonas (1997), Table 2.2-6]

− biomass for energy variable

[corrected for 1990 to overcome both:

(1) considerable inconsistencies in the

statistics of the Austrian Institute of

Economic Research and the Austrian

Central Statistical Office and (2) a not

(yet) perfect tuning of the IIASA/TU

Graz model in the context of this

− constant domestic production of long-

lived wood products [tuned to satisfy

1989–1991 average conditions; cf.

Jonas (1997), Table 2.4-2]

− production and decay of long-lived

products in the past is assumed to be

the same and comparable to their

today’s production and decay, that is,

a time-dependent decay effect is not

considered here [cf. Jonas (1997),

Appendix II]

− biogenic waste of short-lived wood

and food & feed products is assumed

to happen quasi instantaneously, that

is, a time-dependent decay effect is

not considered here

− contrary to the IIASA/TU Graz

reference scenario (see left), an

− land-use/cover pattern as of 1990 [cf.

Jonas (1997), Appendices I and III]

assumed to be the same for the future

− calculating changes in the amount of

humus carbon requires to take past

land-use/cover into account:

 arable land: Austria's arable land as of

1990 combined with surrogate land-

use conditions as of 1950 and tuned to

comply with total loss of humus

carbon acc. to Dersch and Böhm

(1997a, b) and with surrogate changes

in land-use conditions until 1990

 meadows: humus carbon pool tuned to

stay constant under 1990 harvest

conditions because of not readily

available long-term measurement

series

− land-use/cover pattern as of 1990

[cf. Jonas (1997), Appendix I]

assumed to be the same for the

future

− focus on Austria's exploitable

forest, excluding pre-commercial

thinning

− calculating changes in living

biomass, litter and soil carbon

requires to take past forest

growth into account: AGEDYN,

the forest growth model

implemented, is tuned to comply

with monitored forest growth

between the two forest

inventories 1981/85 and

1986/90; earlier start of forest

growth model desirable, but not

possible of not readily available
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− decrease in final energy intensity by

1.39% yr–1 between 1990 and 2050,

relative to 1990 (Western Europe:

1.43% yr–1)

− efficiency improvements mainly in

the residential/commercial and

industrial sector and in the energy

conversion sector; new technologies

and their learning curves based on

Scenario A1 of the IIASA-WEC

study

− 300 PJ potentially available from

biomass until 2020; another 100 PJ

until 2050

− increase in hydropower from 110 PJ

in 1990 to 195 PJ in 2050, assuming

utilization of all technically and

economically feasible hydropower

potentials until 2050

− increase in other renewable energy

options (wind, photovoltaics, solar),

but total contribution marginal

study; cf. Jonas (1997), Table 2.4-1]b

− net import of biomass (prior to

production) may change to implicitly

take care of changes in simulated

future biomass for energy, which is

not constrained to stay constant

increase in Austria’s population

[which, in turn, is connected with the

amount of food required

domestically; cf. Jonas (1997), Table

2.4-6] is not consideredc

 pastures: Austria’s pastures as of 1990

combined with cattle grazing

conditions as of 1950 and tuned to

comply with net changes in animal

density until 1990

− HUBI, the carbon balance model

implemented, has not yet been tested

aimed to reflect Austrian soil, climate

and management conditions and,

therefore, still reflects East German

soil, climate and management

conditions in its carbon exchange

coefficients

fellings data from earlier forest

inventories

− the Leslie matrix formalism

determining future forest growth

employs simplifying conditions

beyond those of constant future

land use, the most important of

which is the use of equal total

mortalities throughout all age

classes

− the conversion factor used for

calculating total tree biomass (in

tC) from usable stem wood (in

m3 o.b.) is 0.28d

− a CO2-induced growth effect is

not yet taken into account

a Conversion steps used here (and consistent with a conversion factor = 0.28; see also remark (d) to calculate wood carbon contents: from m3 o.b. into m3 u.b. by multiplying
with 0.8; from m3 u.b. into tC usable stem wood by multiplying with 0.20, respectively.

b Here it is hoped that this correction also holds for projections into the future.
c An increase in Austria's population is not taken into consideration here for several reasons: (1) the resulting effect in the model’s response would be small; (2) a degree of

model sophistication that does not yet exist would be assumed; and (3) consistency with the aggregated framework of Austria's wood sector.
d This conversion factor was used at the time of modeling. The revised conversion factor is 0.36.
Source: Jonas (1997)
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Table 4. Comparison of the maximum change in Austria’s net flow of carbon into the
atmosphere between 1990–2050 (as shown by the ACBM for the Reference
Scenario) with various uncertainties related to Austrian data on the basis of
1990. All values are given as absolute numbers.

Items to be compared Value

in 106 tC

Remarks

∆Cnetmax

a 2.9b cf. Figures 4a & 4 b

Uncertainty related to soil
carbon losses from
Austria’s arable landc

0.5 cf. Footnote 10

Total uncertainty in
Changes in Forest and
Other Woody Biomass
Stocksd, e

1.4f, g expressed as C in terms of
total tree biomass

cf. Jonas (1997; Appendix
II)

Uncertainty in ∆GS
(annual growing stock
increment)d, h

1.5g expressed as C in terms of
total tree biomass

cf. Jonas (1997; Section
2.2.3)

Uncertainty in domestic
fellings and yield
statisticsd, i

1.9g, j expressed as C in terms of
total tree biomass

cf. Jonas (1997; Table 2.2-
6)

Statistical uncertainty
related to Austria’s use of
fuel woodk

2.2g, j expressed as C in terms of
total tree biomass

cf. Jonas (1997; Footnote
35)

Statistical uncertainty
related to Austria’s total
biogenic decay flux (excl.
human-induced carbon
flows)l

3.3j cf. Jonas (1997; Table 2.4-
7)
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a ∆Cnetmax = max{|Cnet(1990) – Cnet(t)|, t = 1990, 2000, . . . , 2050}, as shown by the ACBM for the
Reference Scenario (see Figures 4a, b).

b In regard to the underlying conversion factor (0.28) used for calculating wood carbon contents and
total tree biomass (in tC), see remark b to Table 2 and remark a to Table 3. Note that the revised
conversion factor (which underlies the uncertainties reported in this table) is 0.36. However, one could
expect that the choice of conversion factor has no significant influence on the change in the net flow
of carbon into the atmosphere.

c According to Dersch and Böhm (1997a, b), the decomposable carbon pool of Austria’s arable land
contained, on an average, 40.4 tC ha–1 in 1990 and revealed a mean loss rate of –0.24 tC ha–1,
compared to the figure of about –1.5% that results when employing the default values recommended
by the revised 1996 IPCC Guidelines (see Footnote 10), that is, about –0.61 tC ha–1. Thus, we are
confronted with the peculiar case that the uncertainty, 0.37 tC ha–1 yr–1 (in absolute terms), is greater
than the actual value based on measurements. Taking Austria’s arable land as of 1990 into
consideration (see Footnote 6), this uncertainty totals about 502 * 103 tC.

d Referring to Austria’s exploitable forest. With reference to remark i, however, it must be noted that
the annual yield statistics produced by the Austrian Central Statistical Office (Bittermann and
Gerhold, 1995) also encompass trees outside of Austria’s exploitable forest and outside of Austria's
coppice forest.

e Only taking account of moderate statistical uncertainties in completing Worksheet 5-1 (Land Use
Change and Forestry: Changes in Forest and Other Woody Biomass Stocks); that is, uncertainties
related (1) to the area of Austria’s exploitable forest (±5%); (2) to its annual growth rate (±5%); and
(3) to the commercial harvest (±3%) as reported by the Austrian Central Statistical Office (Bittermann
and Gerhold, 1995). The uncertainty related to (1) is somewhat greater than that officially reported,
for example in Austria’s forest inventory (FMAF, 1995), but can be justified by our experience in
constructing a consistent LUC database. For reasons of consistency, we used the same uncertainty for
the annual growth rate. The uncertainty related to (3) is based on expert knowledge (R. Wakolbinger,
1995, 1996; personal communications). We recognize that there are other important uncertainties (for
example, those related to determining the amount of phytomass) which, however, cannot be quantified
with confidence. Therefore, they are not considered here.

f Interpolated value. Austria’s six forest inventories between 1952 and 1990 have been interpolated
based on a 5-year averaging technique; for details see Schidler (1998). Austria’s latest forest inventory
(1992–1996) has not yet been taken into account. Therefore, the value reported here is an interpolated
value for the year 1990, based on the values of previous years.

g Based on a conversion factor of 0.36 to calculate wood carbon contents and total tree biomass (in tC).
h The difference between: (1) measured annual growth rate and (2) the mean annual difference in

measured growing stocks, based on the forest inventories 1981/85 and/or 1986/90, is 4,029 * 103 m3

o.b. yr–1.
i The difference in Austria’s fellings and yield statistics [according to FMAF (1995), Schieler et al.

(1996), and Bittermann and Gerhold (1995)] is 4,212 * 103 m3 u.b. yr–1. To convert (m3 u.b.) into (m3

o.b.), see remark k below].
j Mean value over the period 1989–1991.
k With reference to Austria’s use of fuel wood, the AIER (1996) statistics give a mean value of 88,090

TJ (= 65% of Austria’s mean use of other energy) for 1989–1991, or 2,634 * 103 tC [after
multiplication by 29.9 tC (TJ)–1, the emissions factor recommended by the IPCC (1995b, c) for wood].
The Austrian Central Statistical Office (Bittermann and Gerhold, 1995), on the other hand, gives a
mean value of total fuel wood use of  5,354 * 103 m3 u.b. for 1989–1991, which converts to 6,693 *
103 m3 o.b. [applying a factor of 0.8–1 for converting (m3 u.b.) into (m3 o.b.)] and finally to 1,378 * 103

tC as its wood carbon contents (in agreement with remark g). The difference, 1,256 * 103 tC, is
converted into total tree biomass (in tC) by applying a weighted expansion factor (in agreement with
remark g).

l Based on first-order top-down calculations and on a conversion factor of 0.28 to calculate wood
carbon contents, Jonas (1997) reports a total biogenic decay flux of 3,031 * 103 tC for Austria in 1990,
excluding human-induced carbon fluxes due to food uptake. This value changes to about 3,631 * 103

tC if wood carbon contents are corrected in agreement with remark g. Subtracting Austria’s total



25

waste flux (derived bottom-up) according to its 2nd National Climate Report (FMEYF, 1997), which is
313 * 103 tC (here simply disregarding its origins and interpreting it entirely as a wood related decay
flux), leaves an uncertainty of 3,318 * 103  tC.


