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Abstract

There is extensive evidence that biological neural networks encode information in

the precise timing of the spikes generated and transmitted by neurons, which offers

several advantages over rate-based codes. Here we adopt a vector space formulation

of spike train sequences and introduce a new liquid state machine (LSM) network ar-

chitecture and a new forward orthogonal regression algorithm to learn an input-output

signal mapping or to decode the brain activity. The proposed algorithm uses precise



spike timing to select the presynaptic neurons relevant to each learning task. We show

that using precise spike timing to train the LSM and selecting the Readout presynaptic

neurons leads to a significant increase in performance on binary classification tasks, in

decoding neural activity from multielectrode array recordings, as well as in a speech

recognition task, compared with what is achieved using the standard architecture and

training methods.

1 Introduction

It is generally accepted that neurons in the brain encode information not only in their

average firing rates - rate coding - but also in the precise timing of spikes - temporal

coding (Hirata et al., 2008). The importance of the precise spike timing information has

been documented in many studies (Srivastava et al., 2017; Memmesheimer et al., 2014;

Kayser et al., 2009; Jones et al., 2004; Gollisch & Meister, 2008; Riehle, 1997). Seth

(2015) has argued that the two encoding schemes are in fact complementary.

Neuronal coding is reproducible with a precision of a millisecond (Mainen & Se-

jnowski, 1995; Izhikevich, 2006). It has been argued that codes that utilise spike timing

make better use of the capacity of neural connections than those relying on rate codes

(Mainen & Sejnowski, 1995) and that it allows processing information on much shorter

time scales allowing to track rapidly changing signals (Gardner & Grüning, 2016).

There is also evidence that during perceptual decisions, learning and behaviour can

be driven by a small number of neurons that are trained to read out and interpret very

sparse, precisely timed action potentials (Huber et al., 2008; Houweling & Brecht, 2008;

Wolfe et al., 2010).

2



In recent years, a lot of research effort has been expanded to establish a sound the-

oretical basis for encoding and decoding using the precise timing of the spikes rather

than spike-count rates (Lazar & Pnevmatikakis, 2008; Florescu & Coca, 2015; Lazar &

Slutskiy, 2015; Florescu, 2017; Florescu & Coca, 2018). A range of supervised learn-

ing approaches that utilise temporal coding schemes have been developed for recurrent

spiking neural networks (SNNs) with feedforward and feedback connections (Gardner

& Grüning, 2016; Gütig, 2014). Some of the popular SNN training algorithms using

temporal coding are based on gradient descent (Bohte et al., 2002; Xu et al., 2013; Flo-

rian, 2012; Pfister et al., 2006) or on spike timing dependent plasticity (Pfister et al.,

2006; Florian, 2007; Izhikevich, 2007; Ponulak & Kasinski, 2010).

Liquid state machines (LSM) (Maass et al., 2002) are a class of recurrent SNNs

that consist of a fixed high-dimensional dynamical network of biologically-realistic

synapses and spiking neurons that remain unchanged during training, known as reser-

voir or ’Liquid’, followed by a memoryless output or ’Readout’ unit with adjustable

synaptic weights. The Readout typically combines in a linear fashion the outputs of

all the neurons in the Liquid. The LSM model can be viewed as a nonlinear dynam-

ical system where the state vector comprises the states of all neurons in the Liquid,

evolving in time according to the internal dynamics and external driving inputs, and the

static Readout defines the relationship between the state vector and output (Maass et al.,

2002).

The LSMs belong to the general class of reservoir computing approaches, which,

compared with high-dimensional recurrent neural networks, have more biologically

plausible architectures and simpler training algorithms that only tune the weights of

3



the connections to the Readout unit (Lukosevicius & Jaeger, 2009).

The reservoir computing approaches also include non-spiking models, as the Echo

State Networks (ESNs) (Jaeger, 2001). However, the LSMs are more biologically real-

istic than ESNs and thus better suited for reproducing the computational properties of

biological neural circuits.

The LSM Readout is typically trained by performing linear regression using the

spike train outputs of the Liquid converted to continuous signals with exponential filters

(Maass et al., 2002). Other proposed LSM models have feedback connections from the

Readout, and are trained with recursive least squares using the filtered outputs of the

Liquid (Nicola & Clopath, 2017). This leads to losing the information of the exact

spike times generated by the Liquid neurons. The current training methods for LSMs

learn target outputs using measurements from all the presynaptic neurons (Maass et al.,

2002; Verstraeten et al., 2005) . Numerically, this model contains a large number of

parameters which can lead to overfitting for large neural circuits. Moreover, it is known

that only a relatively small number of cortical neurons project to different areas of the

central nervous system (Häusler & Maass , 2007; Thomson et al., 2002).

In the case of ESNs, Dolinský et al. (2017) used orthogonal forward regression

(OFR) to identify the contribution of each individual neuron to the response variable,

and concluded that a small number of presynaptic neurons are enough to achieve accu-

rate results.

Here we propose a new liquid state machine (LSM) architecture, and a new training

algorithm that outperforms the standard methods (Maass et al., 2002; Verstraeten et al.,

2005). The architecture consists of a Liquid, comprising only a SNN, in series with a
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spike time based Readout. The new algorithm, called OFR with Spike Trains (OFRST),

identifies the best synaptic connectivity for the Readout unit of the LSM. The learning

algorithm relies on a distance metric between two spike trains that are elements of an

inner product vector space (Carnell & Richardson, 2005).

Theoretical results demonstrate that the proposed architecture can learn any contin-

uous target output by mapping it onto a unique target spike train sequence. We prove

that the proposed LSM architecture achieves higher accuracy in training compared with

the standard methods.

Numerical simulations are given to show the performance of the proposed method

compared to the standard methods for binary and multi-label input classification tasks.

Additional numerical examples are used to show separately the benefit of selecting

the Readout connectivity using OFR and computing with precise spike times. The

advantage of the proposed method is also demonstrated for two problems involving

real world data. First we consider the problem of classifying the movement direction

of drifting sinusoidal gratings using visually evoked multi-array recordings from the

primary visual cortex of the monkey. Second, we test our method against the standard

methods on a problem of speech recognition.

The paper is structured as follows. Section 2 introduces the standard architecture

and method for training an LSM. Section 3 presents the proposed approach. Numerical

simulations are in Section 4. Section 5 presents the conclusion.
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2 The Standard LSM Architecture and Training Method

The spike train inputs and outputs of the LSM are elements of space S0 satisfying

S0 =
{

s|s = {tk}Pk=1, tk+1 > tk ≥ 0, ∀k = 1, . . . , P − 1
}

The Liquid is modelled by an operator L, which maps the vector of input spike

trains sin into a vector of continuous functions x(t), also known as the state of the

Liquid. The Readout is modelled by operator R, which maps x(t) into the continuous

scalar function y(t), which denotes the LSM output. The function y(t) satisfies (Maass

et al., 2002)

y(t) = R
(

Ls
in
)

,

where sin =
[

sin1 , . . . , sinNin

]

, sink =
{

tink,1, . . . , t
in
k,P in

k

}

, L : [S0]
Nin → [L2(R)]

N
,R :

[L2(R)]
N → L2(R), where Nin and N denote the number of inputs and number of

neurons in the SNN, respectively, P in
k denotes the number of spikes in input k, and

x(t) = (Lsin) (t).

The Liquid is represented as the composition of two mathematical operators L =

FLSNN , where LSNN : [S0]
Nin → [S0]

N models a generic SNN and F : [S0]
N →

[L2(R)]N , Fs = [Fs1,Fs2, . . . ,FsN ], ∀s ∈ [S0]
N , s = [s1, . . . , sN ] models a pool of

linear filters

Fsn =
Pn
∑

k=1

e−
t−tn

k
τs · 1[tn

k
,∞)(t), (1)

where Pn denotes the number of spikes in sn, 1[tn
k
,∞) denotes the characteristic function

of interval [tnk ,∞), and τs denotes the time constant of the filter.

Maass et al. (2002) demonstrated that this model has, under idealised conditions,

universal real-time computing power. The standard LSM architecture is presented in
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Figure 1.

Figure 1: Block diagram of the standard architecture used for training LSMs. It consists

of three blocks connected in series: the Liquid LSNN , the pool of filters F and the

readout Rw.

Remark 1. Throughout the paper, it will be assumed that soutk 6= soutl , ∀k, l ∈ {1, . . . , N},

k 6= l. In a practical scenario it is very unlikely that two neurons will generate two iden-

tical spike trains simultaneously. However, if this happens to be true, only the distinct

outputs will be used for training.

The most common Readout is the linear unit RWx(t) =
∑N

n=1 wnxn(t), where

W = [w1, . . . , wN ] and x(t) = [x1(t), . . . , xN(t)]. This Readout was shown to classify

time-varying inputs with the same power as complex non-linear Readouts, given a large

enough Liquid (Häusler et al., 2002). A typical way to train the Readout is by tuning

the weights using the least squares (LS) algorithm

wopt = argmin
w

‖y∗ − yw‖L2 , (2)

where y∗ ∈ L2(R) denotes the target output function, ‖ · ‖L2 denotes the standard norm

in L2(R) and yw = RwFLSNNs
in denotes the predicted output.

7



In practice, the continuous state of the liquid x(t) is sampled uniformly with period

∆T > 0. The function x(t) = [Fsout1 ,Fsout2 , . . . ,FsoutN ] is not continuous in a math-

ematical sense at points {tnk}Pn

k=1, n = 1, . . . , N , due to the expression of operator F

(1). Therefore, for any sequence of spike trains {sout1 , . . . , soutN }, x(t) in not bandlim-

ited. This can also be explained by viewing the values of operator F as the output of an

exponential filter with impulse response h(t) = e−
t
τs , given a train of Dirac delta pulses

∑Pn

k=1 δ(t−tnk). Given that the filter is not ideal, its output has arbitrarily large frequency

components, and thus the samples {x(kT )} are affected by aliasing, due to Shannon’s

law. This leads to computing weights wopt that are deviated form the theoretical optimal

values, as well as an imprecise final output prediction ywopt
(t).

Moreover, in practice not all synaptic connections of the Readout are relevant to a

particular task, so that training the weights of all possible connections from the Liquid

neurons to the Readout can easily lead to overfitting.

There are a few variations of LS that introduce an additional parameter, also known

as hyperparameter, in order to control the effective complexity of the model and to re-

duce overfitting. Some of the standard methods doing this are LS with L2 regularization,

or ridge regression (RR), LS with L1 regularization, or lasso, and early stopping (ES).

The regularization parameter for RR and lasso, and the number of iterations for ES

are typically tuned to minimise the prediction error on the validation dataset (Bishop,

2006). These methods can lead to a Readout with smaller weights, or fewer presynaptic

connections to the Liquid.

However, computing the Readout weights with RR, lasso or ES is affected by ap-

proximation error, as a result of the aliasing effect caused by uniform sampling. This
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leads to Readout presynaptic connections to neurons that are less relevant for the com-

puting task. Furthermore, the output spikes of a biological neural network do not lie on

a grid of uniformly spaced time points, and therefore are not directly compatible with

the training methods above.

3 A New LSM Training Approach using Precise Times

3.1 The Carnell-Richardson Spike Train Space

The space S0 is not a linear space because it does not allow any operations between spike

trains. To overcome this problem, this space is extended to the Carnell-Richardson spike

train space (Carnell & Richardson, 2005)

S =
{

s = {(ak, tk)}Pk=1 , P ≥ 1, tk, ak ∈ R, tk 6= tl, ∀k, l ∈ {1, . . . , P}, k 6= l
}

.

Carnell & Richardson (2005) have proven that S is an inner product space, where

the vector sum, scalar multiplication and inner product of two spike trains s1, s2 ∈ S

are defined as

s1 + s2 = {(a1k, t1k)}M1
k=1 ∪ {(a2k, t2k)}M2

k=1,

α · s = {(α · ak, tk)}Mk=1, ∀α ∈ R,

〈s1, s2〉S =
k1=M1,k2=M2

∑

k1=1,k2=1

a1k1a
2
k2
· e−

|t1
k1

−t2
k2

|

τs ,

where τs > 0 is a scaling factor. The inner product 〈·, ·〉S generates a norm ‖ · ‖S sat-

isfying ‖s‖S =
√

〈s, s〉S, ∀s ∈ S. Figure 2 illustrates an example of a linear operation

between two randomly generated spike trains s1, s2 ∈ S, presented comparatively with

the equivalent operation in L2(R).
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Figure 2: An example of a linear operation in S. Two spike trains s1, s2 ∈ S, and their

corresponding elements Fs1,Fs2 ∈ L2(R), are generated in time interval [0, 0.5 s]

(A1-4). The equivalent linear operations in the two spaces 2s1 − s2 and 2Fs1 − Fs2

are depicted in (A5-6).

A spike train s0 = {tk}Pk=1 ∈ S0, as defined by the standard method, can be mapped

uniquely onto an element s ∈ S, such that s = {(1, tk)}Pk=1. Maass et al. (2002) have

defined a metric d on S0

d(s1, s2) =

[
∫

R

[(Fs1) (t)− (Fs2) (t)]
2 dt

]1/2

,

where F : S0 → L2(R),Fs =
∑P

k=1 e
−

t−tk
τs · 1[tn

k
,∞)(t) denotes the output of a linear

filter with exponential decay and time constant τs, given spiking input s. The norm ‖·‖S

relates to metric d as follows ‖s1 − s2‖2S = 2 · d(s1, s2)2, ∀s1, s2 ∈ S0. However, in a

practical setting, the metric d is approximated by d∆T , computed on a uniform grid with
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sampling time ∆T. Then the following holds

lim
∆T→0

d∆T (s1, s2) =
1√
2
‖s1 − s2‖S.

In order to show the disadvantage in computing d∆T , we generated two random

spike trains s1 and s2 with 100 spike times each. We then computed ‖s1 − s2‖S and

d∆T (s1, s2) for 100 values of ∆T on [1 ms, 100 ms], and τs = 30 ms. The results,

depicted in Figure 3, show that the values of d∆T (s1, s2)/
√
2 oscillate around ‖s1−s2‖S

as ∆T → 0. However, the computing time for d∆T increases exponentially with 1/∆T.

Thus, at the sampling interval of 2 ms, which is used to simulate the LSM, the spike

based metric results in a similar value to the standard metric, but runs three times faster.
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Figure 3: Comparison between the Carnell-Richardson spike train distance ‖s1 − s2‖S

and the standard metric d∆T (s1−s2): two randomly generated spike trains s1, s2 (A1,2)

and their corresponding distance calculated with the two metrics (A3,4).
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3.2 The Proposed LSM Architecture and Training Method

We propose a new spike time based Readout architecture, which does not require the

bank of filters F (Figure 4).

Figure 4: Block diagram of the proposed architecture used for training LSMs , consist-

ing of two blocks connected in series: the Liquid LSNN and the proposed spike based

Readout R̄w.

The Readout R̄w is defined using the operations in S as

R̄ws
out =

P out
n
∑

n=1

wns
out
n = sy

w
.

Let sy∗ be a target spike train. Then the optimal w in the least squares sense is

w̄opt = argmin
w

‖sy∗ − sy
w
‖S,

where ‖ · ‖S denotes the standard norm in S.

The proposed architecture can be extended to learn continuous target signals. To this

end, the following results demonstrate that any continuous target function y∗ ∈ L2(R)

can be mapped uniquely onto a spike train sy∗ ∈ S.
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Theorem 1. Let Sout denote the subset of S generated by the outputs of the SNN, such

that Sout = span{sout1 , . . . , soutN } ⊂ S. Let F : Sout → L2(R) be an operator defined by

Fs =
P
∑

k=1

ake
−

t−tk
τs · 1[tk,∞)(t), ∀s ∈ S

out, s = {(ak, tk)}Pk=1. (3)

Moreover, let FSout denote the subset of L2(R) generated by the filtered outputs of

the SNN, such that FSout = span{Fsout1 , . . . ,FsoutN }. Then the following mapping is

well defined

M : L2(R) → S
out,M(y) = F−1PFSout(y), ∀y ∈ L2(R), (4)

where P denotes the projection operator.

Proof. See Appendix 1.

Theorem 1 defines a mapping that allows converting any continuous target output

function y∗(t) into a unique target output spike train sy∗. The operator F in (3) is the

extension of the filtering operator in (1) to the more general space S. The following

result assesses the prediction accuracy of the proposed method relative to the standard

method for continuous target functions.

Theorem 2. Let y∗ ∈ L2(R) and let wopt be the vector of weights computed for the

standard architecture, such that wopt = argmin
w

‖y∗ −RwFsout‖L2 . It follows that

wopt = argmin
w

‖sy∗ − R̄ws
out‖S = w̄opt,

where sy∗ = M(y∗), M(y∗) = F−1PFSout(y
∗), P denotes the projection operator and

FS
out = span {Fsout1 , . . . ,FsoutN } .

Proof. See Appendix 1.
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Corollary 1. Theorem 2 proves that the proposed methodology achieves, in theory, the

same accuracy as the state-of-the-art method when learning continuous target signals.

In practice, however, the accuracy of the standard method is lower because it is affected

by the approximation error introduced when calculating wopt and ywopt
(t) from uniform

samples, which doesn’t affect the proposed method.

3.3 The Orthogonal Forward Regression with Spike Trains (OFRST) Algorithm

The optimisation problem addressed by the proposed method is to learn a continuous

target output y∗(t) given a SNN of size N . Let {soutk }Nk=1 denote the outputs of the SNN

in response to stimuli {sink }Nin

k=1. Computing the optimal wopt in the least squares sense

(Maass et al., 2002) leads to many non zero weights that are not particularly relevant for

the learning task and overfit the data. Furthermore, the standard methods that address

this problem using regularization or early stopping lead to weights that are deviated

from the theoretical optimal weights as a result of the approximation error.

Theorem 1 demonstrates that the problem addressed here can be reduced to learning

a target spike train sy∗, uniquely derived from the continuous target y∗(t). This leads to

a more precise estimation of weights wopt (Theorem 2). Here we introduce a greedy

selection algorithm for the spike trains that are most relevant for the learning task, called

Orthogonal Forward Regression with Spike Trains (OFRST). The OFRST algorithm

is inspired by the orthogonal forward regression (OFR) for finite dimensional spaces

(Chen et al., 1989). The remaining part of this section will first present the classical

OFR and then the proposed OFRST algorithm.

Given vectors {x1, . . . , xN} and target vector y∗, the OFR algorithm aims to identify
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a subset {xℓ1 . . . , xℓp} and an estimate of the parameters {wℓ1 , . . . , wℓp} that fits the data

y∗.

At the first stage, y∗ is projected onto basis vectors {x1, . . . , xN}. Then the error-

reduction-ratio (ERR) is calculated for each vector, defined as

ERR
(1)
k =

〈xk, y
∗〉2

‖xk‖2 · ‖y∗‖2
.

The magnitude of ERR
(1)
k represents the proportion of the dependant variable variance

explained by xk. A geometrical interpretation of the ERR is depicted in Figure 5 for the

simplified case where xk ∈ R
2, k = 1, 2, and y∗ ∈ R

2. The maximum ERR, computed

as ERR1 = ERR
(1)
ℓ1

= maxk=1,...,N{ERR
(1)
k }, leads to the selection of x⊥

1 = xℓ1 as

the basis for the one-dimensional space E1.

Figure 5: Geometrical interpretation of OFR for the simplified two-dimensional sce-

nario. In this case ERR
(1)
1 > ERR

(1)
2 implies that x1 explains a larger proportion of

the variance of target output y∗.

At the second stage, the rest of the vectors {xi}i=1,...,N,i 6=ℓ1 are projected, through

Gram-Schmidt orthogonalization, into a (N − 1)-dimensional space orthogonal on E1.
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Subsequently, the vector xℓ2 is selected and orthogonalised with the Gram-Schmidt

procedure to compute x⊥
2 . The vectors x⊥

1 and x⊥
2 form the basis for two-dimensional

space E2. Similarly, at stage number p, the vector xℓp is selected, which is used to define

the p-dimensional space Ep with orthogonal basis {x⊥
i }i=1...,p. The detailed algorithm

is given in Appendix 2.

The OFRST algorithm closely follows the steps of the OFR algorithm, implemented

for the Carnell-Richardson spike train space S. Initially, let s⊥(1)
k = soutk ∈ S, ∀k =

1, . . . , N, be the complete set of SNN outputs. The most significant spike train soutℓ1
is

defined as the one that maximises ERR
(1)
k , where ERR

(i)
k denotes the error-reduction-

ratio (ERR) of term k at iteration i, defined as

ERR
(i)
k =

〈

s
⊥(i)
k , sy∗

〉2

S

‖s⊥(i)
k ‖2

S
· ‖sy∗‖2

S

.

Subsequently, the set {s⊥(2)
k }Nk=1,k 6=ℓ1

is computed by orthogonalising the remaining

output spike trains against soutℓ1
using the Gram-Schmitt routine.

The process continues iteratively. At every iteration i, the algorithm selects the next

most significant spike train soutℓi
such that ℓi = argmax

k

(

ERR
(i)
k

)

, and generates the

set {soutℓ1
, · · · , soutℓi

} of significant SNN outputs and the corresponding vector of weights

w(p). Subsequently, the set {s⊥(i)
k }Nk=1,k 6=ℓ1,...,ℓi

is computed from the remaining spike

trains through orthogonalisation. The process continues until p = N . The final number

of presynaptic neurons is selected as the smallest p that leads to the maximum prediction

accuracy on the validation dataset. The detailed algorithm is given in Appendix 3.
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4 Numerical examples

The proposed new Readout and associated training algorithm is evaluated in comparison

with the standard architecture trained with LS, RR, lasso and ES.

Additional numerical examples show the advantage of using a spike based Readout

and the advantage of selecting the Readout presynaptic neurons using OFRST. The

benefit of the proposed method is also demonstrated for two additional examples with

real world data. First, OFRST is compared against the standard methods for a multi-

label classification problem using multi-array recordings from the primary visual cortex

of the monkey. Second, the advantage of the proposed method on a speech recognition

task is shown using data from the TI-46 corpus database of spoken digits.

The LSM was simulated using the toolbox described in (Natschläger et al., 2003).

The Liquid consists of leaky integrate-and-fire neurons, 20% of which were randomly

selected to be inhibitory (Maass et al., 2002). The connection probability between neu-

rons a and b is defined as C · e−(D(a,b)/L)2 , where D(a, b) denotes the Euclidian distance

between the neurons, L = 2 is a parameter that controls the average number of con-

nections and the average distance between neurons, and C, depending on whether the

neurons are excitatory (E) or inhibitory (I), is 0.3 (EE) , 0.2 (EI) , 0.4 (IE) , 0.1 (II). The

synaptic transmission is given by the dynamic model proposed in (Markram, Wang &

Tsodyks, 1998). The input is injected into 30% randomly chosen neurons in the Liquid

with an input gain of 0.1. For the standard Readout architecture, the time constant of the

exponential filters is τs = 30ms. The LSM was simulated using the default sampling

time of 0.2ms (Maass et al., 2002). The simulations were carried out in Matlab Version
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8.6 (R2015b) on a 3 GHz Intel Core i7-5960X 8 core PC workstation.

Example 1. Binary classification - comparison with the standard methods.

This example compares the performance achieved by a standard LSM with the

Readout parameters estimated using the LS, RR, lasso and ES with that of a LSM com-

prising a spike-based Readout trained using the proposed OFRST method. The LSM

consists of 240 neurons spatially organised as a lattice with dimensions 15x4x4.

The task is to discriminate between two spike train templates using the SNN re-

sponses. The templates are two instances of a Poisson point process with rate 20 Hz,

depicted in Figure 6.
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Figure 6: The input templates used for classification, generated as Poisson spike trains

with frequency 20 Hz over time interval [0, 0.5 s].

The inputs are generated in time interval [0, 0.5 s] by jittering one of the two tem-

plates, where the jitter noise is drawn from the Gaussian distribution with zero mean
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and standard deviation 6 ms. A number of 100 jittered templates were generated for

each class, of which 50 were used for training and 50 for validation. The two classes

of inputs are assigned the target output labels y(t) = 1 (template 1) and y(t) = −1

(template 2), t ∈ [0, 0.5 s].

The input-output mappings are learned with the LSM by estimating the standard

Readout parameters using LS, RR, lasso and ES, where the sampling time is ∆T = 20

ms (Maass et al., 2002; Verstraeten et al., 2005). Subsequently, the spike time based

Readout is trained using OFRST. The regularization parameter for RR and lasso, the

number of steps for ES and the number p of presynaptic neurons for OFRST are com-

puted using a line search that maximises the prediction accuracy on the validation

dataset.

The classification accuracies for RR, lasso, ES and OFRST were evaluated as a

function of the hyperparameter and averaged over 100 trials. Each trial consisted in a

different Liquid and a different instance of jitter applied to the input. The results are

depicted in Figure 7.

In the case of the OFRST algorithm the results show that, on average, the accu-

racy drops when using more than 36 Readout presynaptic connections, or equivalently

training for more than 36 iterations. This suggests that, on average, more than 30 Read-

out presynaptic connections lead to overfitting the data. This result mimics what has

been observed experimentally in cortical circuits, where only a small number of cor-

tical neurons project to different areas of the central nervous system (Thomson et al.,

2002; Häusler & Maass , 2007).

The accuracy for each method was optimised with a different hyperparameter on
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Figure 7: Binary classification with RR (A1), Lasso (A2), ES (A3), and OFRST (A4),

as a function of the regularization parameter. The average accuracies were computed

for each method on the validation dataset over 100 trials.
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each simulation trial. The classification accuracies achieved by all the methods over

100 trials are given in Table 1. The results show that, on average, OFRST has the

highest accuracy from all methods while using the smallest number of synapses.

Table 1: Binary classification results using pools of 240 neurons. Comparison between

least squares, ridge regression, lasso and early stopping, implemented for the standard

Readout, and the proposed OFRST method for the spike based Readout. The mean (±

standard deviation) is computed for each method over 100 trials.

Training method Total number of Readout connections Accuracy

Least squares 56.46 (±20.3) 88.4% (±7.28%)

Ridge regression 56.46 (±20.3) 91.27% (±7.07%)

Lasso 40.32 (±23.07) 91.15% (±6.8%)

Early stopping 56.46 (±20.31) 91.28% (±7.07%)

OFRST 15.05 (±11.03) 92.15%(±6.92%)

Example 2. Binary classification - benefits of learning with exact spike times.

In this example we compare the classification accuracy of the proposed Readout

trained with the OFRST method to that of the standard Readout trained with LS, RR,

lasso, ES and classical OFR (Billings et al., 1989) on the same binary classification task

as in Example 1, but for different values of the sampling time ∆T.

The training and validation datasets were generated as in Example 1. For the OFR

and OFRST methods the number the presynaptic neurons, which represent the regres-

sors in the standard OFR algorithm (Billings et al., 1989), is the smallest number that

achieves maximum accuracy on the validation dataset. In order to evaluate the effect

of the sampling time ∆T on the performance of the standard Readout, the training was
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performed for several sampling times ranging from 0.2ms to 30ms. The accuracies for

all the methods, as a function of the sampling time, are depicted in Figure 8. Each data

point represents an average value over 10 different Liquids.
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Figure 8: Comparison between the proposed OFRST method and LS, RR, lasso, ES

and OFR for different values of the sampling time ∆T : accuracies (A1) and computing

times (A2).

The results show that the classification accuracy for the LS, RR, lasso, ES and clas-

sical OFR methods can be increased by decreasing the sampling time. However, the

performance is still below the one achieved by the OFRST method, which selects presy-

naptic connections using the exact spike times generated by the Liquid neurons. The

difference in accuracy between OFR and OFRST, which is expected to vanish when

∆T → 0, shows directly advantage in processing exact spike times.
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Interestingly, even for ∆T = 0.2 ms, which is the sampling time used for simulating

the LSM, OFRST still performs significantly better than the other methods. This is

because all the training methods based on the standard Readout architecture are subject

to an approximation error when estimating the weights, for any ∆T > 0.

Example 3. Binary classification: selecting relevant presynaptic neurons.

This numerical example evaluates the performance of the OFRST in selecting the

relevant presynaptic partners using exact spike timing. The SNN used in this example

has a reservoir consisting of two sub-networks that are disconnected from one another,

each sub-network consisting of a different pool of 135 spiking neurons generated as

in examples 1 and 2. Two templates were generated as Poisson spike trains with fre-

quency of 20 Hz over interval [0, 0.5s]. The first pool R1 = {r1, . . . , r135} receives

200 inputs generated by jittering the two spike train templates, 100 for each class, of

which 50 were used for training and 50 for validation. The jitter noise is drawn from

the Gaussian distribution with zero mean and standard deviation 1 ms. The second pool

R2 = {r136, . . . , r270} receives a number of 200 new jittered inputs generated from the

same two templates but in a different order selected at random.

The task is to classify the inputs to sub-network R1 using the neuron outputs from

the full reservoir. The OFRST algorithm is compared with the LS, RR, lasso, ES and

the OFR algorithms, which use the standard filtered spike train outputs.

In essence, when solving the binary classification problem, the algorithms should

only select neurons from R1 as pre-synaptic partners of the Readout unit. The training

results, computed for 100 different Liquids and instances of jitter, are summarised in
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Table 2.

Table 2: Binary classification results for least squares, ridge regression, lasso, early

stopping, standard OFR and OFRST using two unconnected sub-networks with 135

neurons each. The reported values represent means (± standard deviations) computed

over 100 trials.

Training method
Total number

of Readout

connections

Percentage connections to

sub-network R1
Accuracy

Least squares 67.6 (±21.72) 49.9% (±1.6%) 95.7% (±4.4%)

Ridge regression 67.6 (±21.72) 49.9% (±1.6%) 97.1% (±3.8%)

Lasso 49.6 (±26.5) 58.9% (±14.19%) 97.6% (±3.4%)

Early stopping 67.6 (±21.72) 49.9% (±1.6%) 96.8% (±4%)

OFR 13.1 (±10) 86.7% (±14.6%) 96.8% (±4.2%)

OFRST 9.45 (±9.4) 93.6% (±10.7%) 97.8% (±3.8%)

The results show that OFRST achieves the highest accuracy among all methods us-

ing the least number of Readout presynaptic connections, and the highest percentage of

connections to the correct sub-network R1. Only OFR and OFRST achieve a percentage

of connections to R1 of over 90%, while all the other methods result in percentages just

above chance.

Example 4. Motion direction decoding using multi-electrode array recordings

from the primary visual cortex.

Here we use the proposed methodology to decode stimulus features using simul-

taneous multi-electrode array recordings of visually evoked activity from the primary

visual cortex of three anesthetized macaque monkeys. The data were downloaded from

the CRCNS online database (Kohn & Smith, 2016). Here we use the recordings from
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monkey number 1.

The stimuli were full-contrast drifting sinusoidal gratings at 12 orientations spaced

equally (0◦, 30◦, 60◦, . . . , 270◦). Each stimulus was presented 200 times, for a duration

of 1.3 s per trial (Smith & Kohn, 2008; Kelly et al., 2010). The spiking train responses

of 106 neurons were simultaneously recorded using a Utah multi-electrode array and

spike-sorted offline (Smith & Kohn, 2008; Kelly et al., 2010). In this example we only

use the first 200 ms from all recording trials, which is the time reported for visual

categorisation tasks in primates (Fabre-Thorpe, 1998; Hung et al., 2005). A recording

trial for the 0◦ drifting bar stimulus is depicted in Figure 5.
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Figure 9: The first sweep of experimental data used in Example 4: a) The first frame

of a drifting bar stimulus oriented at 0◦, b) Raster plot showing the response of 106

neurons, as a function of time.

The decoding task is to predict the stimulus orientation based on the recorded neural

activity. The task is formulated as a multi-label classification problem. Each of the 12
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directions was assigned a target label (1− 12) and a Readout. Each Readout processes

the outputs of the 106 recorded neurons, which play the role of the Liquid spike train

outputs.

The data (2400 trials) was randomly divided into equal datasets for training and

validation, such that each dataset comprises 100 trials with each of the 12 inputs. The

12 Readouts were trained using the "one-to-all" method, also known as "1-hot coding",

where only one Readout generates an output "1" at any given time. Specifically, the tar-

get output for each Readout satisfies y∗(t) = 1 when the input direction label matches

the Readout label, and y∗(t) = −1 for any other direction. The overall prediction is

given by the label of the Readout with maximum average value. The training data for

each Readout consists of 100 trials from the target class and 100 trials evenly distributed

among all other classes. The parameters of the 12 Readouts were tuned using the LS,

RR, lasso, ES and the OFRST methods. Considering the large number of possible con-

nections, here the OFRST algorithm for each Readout was stopped when the criterion

ERRp < ζ was met, where ζ = 4 · 10−4 is a parameter determined using line search

and ERR denotes the error reduction ratio (see Appendix 4). Essentially, this means

that each Readout only connects to presynaptic neurons whose outputs contribute more

than 0.04% to the variance change in the target output. The regularization parameters

for RR and lasso, and the number of iterations for ES were selected using line search to

maximise the accuracy on the validation dataset. The final accuracy, computed on the

validation dataset, is defined as the percentage of correctly decoded input directions.

We compared the decoding performance with standard Readouts, trained with LS,

RR, lasso and ES, to the performance with spike time based Readouts, trained with the
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OFRST algorithm described in subsection 3.3. The results are summarised in tables 3

and 4.

Table 3: Multi-label classification accuracies with the standard LS, RR, lasso, ES meth-

ods and the proposed OFRST method.

Training Readout accuracy (%) Final

method 1 2 3 4 5 6 7 8 9 10 11 12 accuracy

LS 86 84 83 81 82 84 85 83 84 87 80 78 58.17%

RR 88 88 85 87 84 80 84 88 84 85 85 82 61.75%

Lasso 83 83 85 87 83 82 83 90 83 86 83 81 59.5%

ES 89 85 87 87 82 82 88 87 88 86 82 83 61.33%

OFRST 88 88 86 86 84 86 88 86 85 89 82 84 67.58%

Table 4: Number of presynaptic connections selected for each Readout with the stan-

dard LS, RR, lasso, ES methods and the proposed OFRST method.

Training Number of Readout connections

method 1 2 3 4 5 6 7 8 9 10 11 12

LS 106 106 106 106 106 106 106 105 105 106 106 106

RR 106 106 106 106 106 106 106 106 106 106 106 106

Lasso 69 71 62 77 69 70 68 64 75 77 72 72

ES 106 106 106 106 106 106 106 106 106 106 106 106

OFRST 49 61 63 61 66 59 58 61 60 60 61 59

The results show that the proposed spike time based Readout, trained with the

OFRST algorithm, performs significantly better than the standard Readout architecture

trained with LS, RR, lasso, or ES, while using significantly fewer neuron connections.

Example 5. Speech recognition.

In this example we use the proposed OFRST methodology to perform speech recog-
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nition. The data is a subset of the TI-46 corpus of isolated spoken digits, consisting of

500 utterances of digits "zero" to "nine" spoken by 5 different female speakers 1 (Dod-

dington & George, 1981; Schalk, 1982).

The decoding task is to predict the digit number using a LSM, formulated as a multi-

label classification problem (Verstraeten et al., 2005). The LSM in this example has 135

neurons, spatially organised as a lattice with dimensions 15x3x3. As before, each digit

was assigned a target label (1-10) and a Readout unit.

The data is preprocessed using the Lyon passive ear model, which is a model of

the human inner ear, or cochlea. This model consists of three processing stages: a

band-pass filter-bank, inspired by the human ear sensitivity to certain frequencies, half

way rectification, and automatic gain control, which model the hair cells in the cochlea

(Lyon , 1982). Subsequently, the continuous output of the Lyon passive ear model is

converted into a spike train using an algorithm called Ben’s spiker algorithm (BSA)

(Schrauwen, 2003). This preprocessing front-end, consisting of the Lyon passive ear

model in series with BSA, has been used successfully to address this type of speech

recognition problem using an LSM (Verstraeten et al., 2005, 2007; Yin et al., 2012).

The data was divided in two sets: a training set of size 300 and a validation set of size

200, such that the recordings of each speaker are proportionally distributed between the

two sets. As before, the 10 Readouts were trained using the "one-to-all" method. The

training data for each Readout consists of 60 recordings from the corresponding target

class and 60 recordings evenly distributed among all other classes. The final accuracy

1Downloaded from the Linguistic Data Consortium website:

http://www.ldc.upenn.edu.
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is defined as the percentage of correctly recognised digits in the validation dataset.

The 10 Readout units were trained using LS, RR, lasso, ES and the OFRST method.

The stop criterion for the OFRST algorithm is ERRp+1 − ERRp < ζ . The parameter

ζ and the regularization parameters for RR, lasso and ES were tuned for each Readout

on the validation dataset using line search.

The comparative performance of the spike time based Readouts trained with OFRST,

and the standard Readouts trained with LS, RR, lasso and ES are summarised in tables

5 and 6.

Table 5: Multi-label classification accuracies for the LS, RR, lasso, ES methods and the

proposed OFRST method, computed as mean (± standard deviation) for 10 different

Liquid simulations.

Training Readout accuracy (%)

method 1 2 3 4 5 6

LS 88(±6) 96(±3) 96(±2) 95(±4) 94(±4) 95(±4)

RR 95(±3) 92(±3) 91(±6) 93(±5) 95(±3) 93(±4)

Lasso 96(±2) 90(±2) 87(±7) 92(±7) 95(±4) 91(±4)

ES 96(±3) 92(±3) 92(±5) 94(±6) 95(±3) 93(±5)

OFRST 94(±4) 95(±3) 100(±1) 91(±4) 98(±2) 93(±7)

Training Readout accuracy (%) Final

method 7 8 9 10 accuracy

LS 97(±3) 94(±1) 92(±5) 95(±4) 73.4%(±5.5%)

RR 100(±1) 92(±4) 89(±5) 91(±2) 86.4%(±2.9%)

Lasso 99(±1) 92(±4) 83(±8) 89(±4) 85.9%(±2.2%)

ES 99(±1) 91(±4) 89(±4) 91(±3) 86.6%(±2.4%)

OFRST 99(±1) 92(±5) 99(±2) 90(±3) 88%(±1.9%)

The results show that the proposed spike based Readout architecture trained with

OFRST leads to the highest final accuracy of correctly recognised spoken digits. More-
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Table 6: The average number of presynaptic connections selected for each Readout

using the LS, RR, lasso, ES methods and the proposed OFRST method, computed for

10 different Liquids.

Training Average number of Readout connections

method 1 2 3 4 5 6 7 8 9 10

LS 112 112 112 112 112 112 112 112 112 112

RR 112 112 112 112 112 112 112 112 112 112

Lasso 87 82 85 86 85 86 90 88 85 85

ES 112 112 112 112 112 112 112 112 112 112

OFRST 61 54 60 59 63 67 66 68 65 58

over, each spike based Readout trained with OFRST has significantly fewer connections

to Liquid neurons compared to the corresponding standard Readout trained with LS,

RR, lasso and ES. Relative to lasso, which results in the fewest presynaptic connections

for the standard Readout, the proposed OFRST method leads to a total reduction of 28%

in number of connections to the Liquid.
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5 Conclusions

This work proposed a spike based Readout architecture for LSMs and introduced a

new training method that uses the exact spike timing information generated by SNN

models, or recorded during experimental procedures. The new method implements an

orthogonal forward regression algorithm for training the Readout parameters, which

exploits a distance metric defined in a spike train space.

The new algorithm, called orthogonal forward regression with spike trains (OFRST),

allows the selection of the connectivity between the Liquid and the Readout unit, i.e.,

the neurons in the Liquid that are particularly relevant for solving a given learning or

decoding task.

One advantage is that computations are carried out directly on spike trains. The

standard methods filter the spike trains and then perform uniform sampling in order to

optimise the weights. It is demonstrated theoretically and shown through numerical

simulations, with synthetic and experimental data, that the classification accuracy is

improved by using exact spike times.

Specifically, new theoretical results demonstrated that the proposed Readout trained

with OFRST outperforms the standard Readout, which combines linearly the uniform

samples from the neuron filtered outputs and is trained with ordinary least squares,

ridge regression, lasso or early stopping. Numerical simulations with synthetic data

confirmed the theoretical findings and also showed that the proposed algorithm leads to

a much smaller number of Readout synapses. A numerical study showed that OFRST
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outperforms the standard methods on decoding the orientation of drifting gratings using

the multi-electrode array recordings of the evoked activity in the primary visual cortex

of the monkey. An additional example showed the advantage in using the OFRST

method on a speech recognition task.

It is interesting to highlight the fact that typically around less than 20% of the total

possible connections between Liquid and Readout are required, and that fully connected

Readouts achieve less accuracy on classification tasks. This suggests that, besides de-

coding stimulus features from the evoked brain activity, the new training method could

also be used to characterise the functional specificity of neurons in the brain.

Appendix 1. Proofs of theorems

Proof of Theorem 1. The mapping (4) is well defined if the operator F : Sout → FS
out

is well defined and invertible.

A function y ∈ FS
out satisfies

y(t) =
N
∑

k=1

wkFsoutk (t) = F
(

N
∑

k=1

wks
out
k

)

(t).

According to the definition of Sout it follows that
∑N

k=1 wks
out
k ∈ S

out, and therefore

F : Sout → FS
out is well defined. Moreover, F is invertible if it is a one-to-one and

onto operator. Let s1 =
∑N

k=1 vks
out
k and s2 =

∑N
k=1 wks

out
k . Operator F is one-to-one

if

Fs1 = Fs2 ⇒ s1 = s2.

It follows that

Fs1 = Fs2 ⇔
N
∑

k=1

vkFsoutk (t) =
N
∑

k=1

wkFsoutk (t) ⇔
N
∑

k=1

(vk − wk)Fsoutk (t) = 0.
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The functions {Fsoutk }Nk=1 are linearly independent according to Remark 1. It fol-

lows that wk = vk, ∀k = 1, . . . , N , and thus F is one-to-one. According to the defini-

tion of FSout and due to the linearity of F , it follows that F is also an onto operator,

and thus it is invertible.

Proof of Theorem 2.

‖y∗ −RwFs
out‖2L2 = ‖y∗ −Rw

[

F1s
out
1 , . . . ,FNs

out
N

]

‖2L2

= ‖y∗ −
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wnFsoutn ‖2L2

= ‖y∗ − F
N
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n=1

wns
out
n ‖2L2

= ‖y∗ − FR̄ws
out‖2L2

= ‖y∗‖2L2 + ‖FR̄ws
out‖2L2 − 2
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〉

L2
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〈
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out
〉

L2
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〉
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Appendix 2. The Standard Orthogonal Forward Regression Algorithm (OFR)

Let ERR
(p)
j be the error reduction ratio corresponding to term xj at iteration p defined

as

ERR
(p)
j =

〈

x
⊥(p)
j , y∗

〉2

L2

‖x⊥(p)
j ‖2L2 · ‖y∗‖2L2

.

The algorithm for training the Readout weights and predicting the input class is

given as follows.

• Initialization

– x
⊥(1)
j = xj, j = 1, . . . , N,

– ℓ1 = argmax
j∈{1,...,N}

ERR
(1)
j , L(1) = {ℓ1},

– ERR1 = ERR
(1)
ℓ1
,

– x⊥
1 = xℓ1 , w

⊥
1 =

〈y∗,x⊥
1 〉

L2

‖x⊥
1 ‖2

L2
,

– w1 = w⊥
1 .

• For p = 2, . . . , N , compute:

– x
⊥(p)
j = x

⊥(p−1)
j − 〈xj ,x

⊥
p−1〉L2

‖x⊥
p−1‖

2
L2

, j ∈ {1, . . . , N}\L(p−1),

– ℓp = argmax
j∈{1,...,N}\L(p−1)

ERR
(p)
j , L(p) = L(p−1) ∪ {ℓp},

– ERRp = ERR
(p)
ℓp
,

– x⊥
p = xℓp , w

⊥
p =

〈y∗,x⊥
p 〉

L2

‖x⊥
p ‖2

L2
,

– ai,p =
〈xi,x

⊥
p 〉

L2

‖x⊥
p ‖2

L2
, i ∈ {1, . . . , p− 1},
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– A(p) =




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
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







,

– w⊥(p) = [w⊥
1 , . . . , w

⊥
p ],

– w(p) =
[

A(p)
]−1

w⊥(p),

where w(p) = [w
(p)
1 , . . . , w

(p)
p ] denote the Readout weights at iteration p,

– ŷ(p) =
∑p

k=1 w
(p)
k xℓp ,

where ŷ(p) is the Readout output,

– Pred
(

ŷ(p)
)

= sign
[

∫ Tmax

0
ŷ(p)(t)dt

]

,

where Pred
(

ŷ(p)
)

is the class prediction based on the Readout activity on

time interval [0, Tmax], and sign() denotes the sign function.

• Select the smallest p that gives the minimum error for validation.

Appendix 3. The Orthogonal Forward Regression with Spike Trains Algorithm

(OFRST)

Let ERR
(p)
j be the error reduction ratio corresponding to presynaptic neuron j at itera-

tion p defined as

ERR
(p)
j =

〈

s
⊥(p)
j , sy∗

〉2

S

‖s⊥(p)
j ‖2

S
· ‖sy∗‖2

S

.

The target output spike train sy∗ is unknown prior to training. However, for y∗(t) =

±1, the inner product 〈s, sy∗〉
S
, ∀s ∈ S, s = {(ak, tk)}Mk=1, can be computed on given
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time interval [T1, T2], representing the total simulation time, as follows

〈s, sy∗〉
S
= 2 〈Fs,Fsy∗〉L2

= 2 〈Fs, y∗〉L2

= (±1)τs

M
∑

k=1

ak

[

e−
max{T1,tk}−tk

τs − e−
max{T2,tk}−tk

τs

]

.

The algorithm for training the Readout weights and predicting the input class is

given as follows.

• Initialization

– s
⊥(1)
j = soutj , j = 1, . . . , N,

– ℓ1 = argmax
j∈{1,...,N}

ERR
(1)
j , L(1) = {ℓ1},

– ERR1 = ERR
(1)
ℓ1
,

– s⊥1 = soutℓ1
, w⊥

1 =
〈sy∗,s⊥1 〉S
‖s⊥1 ‖2

S

,

– w1 = w⊥
1 .

• For p = 2, . . . , N , compute:

– s
⊥(p)
j = s

⊥(p−1)
j − 〈soutj ,s⊥p−1〉S

‖s⊥p−1‖
2
S

, j ∈ {1, . . . , N}\L(p−1),

– ℓp = argmax
j∈{1,...,N}\L(p−1)

ERR
(p)
j , L(p) = L(p−1) ∪ {ℓp},

– ERRp = ERR
(p)
ℓp
,

– s⊥p = soutℓp
, w⊥

p =
〈sy∗,s⊥p 〉S
‖s⊥p ‖2

S

,

– ai,p =
〈souti ,s⊥p 〉S
‖s⊥p ‖2

S

, i ∈ {1, . . . , p− 1},
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– A(p) =

































1 a1,2 . . . a1,p

0 1 . . . a2,p

. . . . . . . . . . . .

0 0 . . . ap−1,p

0 0 . . . 1

































,

– w⊥(p) = [w⊥
1 , . . . , w

⊥
p ],

– w(p) =
[

A(p)
]−1

w⊥(p),

where w(p) = [w
(p)
1 , . . . , w

(p)
p ] denote the Readout weights at iteration p,

– ŝ(p) =
∑p

k=1 w
(p)
k soutℓp

,

where ŝ(p) is the Readout output,

– Pred
(

ŝ(p)
)

= sign

[

Tmax − 2τs
∑Mp

k=1 a
(p)
k

(

e−
Tmax−t

(p)
k

τs − 1

)]

,

where Pred
(

ŝ(p)
)

is the class prediction based on the Readout activity

on time interval [0, Tmax], sign() denotes the sign function, and ŝ(p) =

{(

a
(p)
k , t

(p)
k

)}Mp

k=1
.

• Select the smallest p that gives the minimum error for validation.
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