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Abstract

In this paper, we use composite optimization algorithms to solve sigmoid networks. We
equivalently transfer the sigmoid networks to a convex composite optimization and propose
the composite optimization algorithms based on the linearized proximal algorithms and
the alternating direction method of multipliers. Under the assumptions of the weak sharp
minima and the regularity condition, the algorithm is guaranteed to converge to a globally
optimal solution of the objective function even in the case of non-convex and non-smooth
problems. Furthermore, the convergence results can be directly related to the amount of
training data and provide a general guide for setting the size of sigmoid networks. Numerical
experiments on Franke’s function fitting and handwritten digit recognition show that the
proposed algorithms perform satisfactorily and robustly.

Keywords: sigmoid network, composite optimization, non-convex non-smooth algorithm,
global convergence, adaptive network size

1. Introduction

The neural network is an important and popular branch of machine learning. People have
already developed many useful and well-studied neural network models, such as artificial
neural networks, convolutional neural networks, recurrent neural networks, and deep neural
networks. Neural networks have been widely used in pattern recognition, image process-
ing, computer vision, neuroinformatics, bioinformatics, and other various fields with great
success (LeCun et al. 2015; Abiodun et al. 2018).

When the neural networks are used in practical tasks, they are commonly trained by
the error BackPropagation (BP) algorithm which is the most distinguished and successful
neural network learning algorithm up to now. The BP algorithm is based on the gradient
descent strategy that updates the parameters to the negative gradient direction of the tar-
get. To accelerate the learning process, stochastic gradient descent (SGD) with momentum
and adaptive methods including adaptive gradient (AdaGrad), root mean square prop (RM-
SProp), adaptive moment estimation (Adam), and so on have emerged one after another
and made a huge impact. As we all know, most of these first-order methods can converge
to the critical point only if the objective function is convex or smooth. But for non-convex
and non-smooth functions, it remains ambiguous how to find the convergence to even first-
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or second-order critical points (Burke et al. 2005). Typical cases are sigmoid networks with
absolute or hinge loss functions. The BP algorithm can solve these non-convex and non-
smooth problems as well, but they are not consistent with the convergence properties of the
algorithm. Moreover, it is still non-trivial to find globally optimal solutions for traditional
neural network algorithms. We take the state-of-the-art Adam as an example. Its theory
is poorly understood in the literature, and it suffers from several deficiencies. For instance,
Adam may miss globally optimal solutions (Wilson et al. 2017), and it can be shown that
it does not converge on some simple test problems (Reddi et al. 2018).

In this paper, we use composite optimization algorithms to solve sigmoid networks; see
Algorithms 1 and 2 for details. The algorithm is guaranteed to (even globally) converge
to a globally optimal solution of the objective function even in the case of non-convex and
non-smooth problems. That is the main contribution of this paper. The start of our work
stems from the finding that sigmoid networks (2.1) can be equivalently transformed into
a convex composite optimization (2.2), where the inner function is smooth and the outer
function is convex. This provides a new perspective on sigmoid networks. In fact, composite
optimization problems arise in many applications in engineering, such as compressed sens-
ing, image processing, machine learning, and artificial intelligence (Boyd et al. 2011; Hong
et al. 2017). The composite optimization is an area at the cutting edge of mathematical
optimization, and how to efficiently solve composite optimization problems has been a pop-
ular subject. For the sigmoid networks with the structure (2.2), the traditional first-order
methods do not take advantage of the convex property of the outer function, so sometimes
they have certain limitations in practical applications. However, composite optimization
methods can fully exploit the information in the structure for algorithm design. There are
many iterative algorithms with theoretical foundations for the optimization (2.2), such as
the famous Gauss-Newton method (GNM, Burke and Ferris 1995), the proximal descent
algorithm (ProxDescent, Lewis and Wright 2016), and the linearized proximal algorithms
(LPA, Hu et al. 2016). The basic idea of these algorithms is to transfer a complex optimiza-
tion problem to a sequence of simple optimization problems whose optimal solutions are
easy to compute or have explicit formulas. The LPA is one of the most advanced algorithms
in convex composite optimization. It can transform a non-convex and possibly non-smooth
problem into a series of unconstrained strongly convex optimization subproblems, which has
an attractive computational advantage. The LPA has also been applied to sensor network
localization, gene regulatory network inference, and other engineering problems with great
success (Hu et al. 2016, 2020; Wang et al. 2017). Therefore, we use the LPA to solve sigmoid
networks in this paper.

Under the assumptions of the weak sharp minima and the regularity condition, we
establish the convergence behavior of the algorithms for sigmoid networks; see Theorems 3
and 5 for details. Furthermore, we prove that the weak sharp minima is often satisfied for
sigmoid networks, and the full row rank of the Jacobian matrix of the inner function, namely
rank(F ′(θ̄)) = m, where m is the amount of training data, is a sufficient condition of the
regularity condition. Hence the convergence results can be directly related to the amount
of training data; see Corollaries 4 and 6 for details. This conclusion is of great theoretical
and applied significance, especially since it can provide a general guide for setting the size
of sigmoid networks. By the full row rank of the Jacobian matrix, we obtain a lower
bound on the network size in Corollary 8. We call this lower bound the “adaptive network
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size”. In this paper, our numerical experiments verify that the adaptive network size is
sufficient to construct an ideal sigmoid network that solves the problem effectively. Hence
Corollary 8 does provide a good guide for setting the size of sigmoid networks. The essence
is to guarantee that the number of parameters in neural networks is not smaller than the
amount of training data, and that a sufficient number of parameters ensure the feasibility
of the networks. It can also serve as a general guide for setting the size of neural networks.
That is another contribution of this paper.

Our work is also motivated by the lack of convex composite optimization algorithms
and related software packages for neural networks. To the best of our knowledge, the
introduction of convex composite optimization into the area of neural networks has not
been addressed in the literature before. This paper is the first piece of work combining
neural networks and convex composite optimization.

We organize the paper as follows. In section 2, we introduce the three-layer sigmoid
networks and transfer the problem to a convex composite optimization. In section 3, we use
the LPA-type algorithms to solve sigmoid networks and employ the alternating direction
method of multipliers (ADMM) to solve the non-smooth convex subproblems. In section
4, we prove some convergence properties of the proposed algorithms. In section 5, the nu-
merical experiments are demonstrated including Franke’s function fitting and handwritten
digit recognition. Finally, we conclude with an outlook in section 6.

2. Sigmoid Networks

To begin with, we introduce the two-layer real-output sigmoid network, which is known
as ‘universal approximators’ (Anthony and Bartlett 1999). Using the standard sigmoid
function σ : R→ (0, 1) of the form

σ(a) =
1

1 + e−a
,

the sigmoid network computes a function f : Rd → R of the form

f(x) =

q∑
i=1

wiσ(vi · x+ ui) + w0,

where wi ∈ R (i = 0, 1, . . . , q) are the output weights, vi ∈ Rd and ui ∈ R (i = 1, 2, . . . , q)
are the input weights. We define these adjustable parameters by

θ = (w,v,u, w0)
T ∈ Rn,

where w = (w1, w2, . . . , wq),v = (v1,v2, . . . ,vq),u = (u1, u2, . . . , uq). In the following
paragraphs, we replace f(x) with f(x;θ). Given a training dataset

D = {(x1, y1), (x2, y2), . . . , (xm, ym) | xi ∈ Rd, yi ∈ R},

the goal of using this network for a supervised learning problem is to find parameters that
minimize some measure of the error of the network output over the training dataset, that
is,

min
θ∈Rn

E(θ) :=
1

m

m∑
i=1

L(f(xi;θ), yi), (2.1)
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where L : R× R→ [0,∞) is a loss function. To simplify the discussions, we focus on three
convex loss functions including the quadratic loss function, (f(x;θ), y) 7→ (f(x;θ)−y)2, the
absolute loss function, (f(x;θ), y) 7→ |f(x;θ)−y|, and the hinge loss function, (f(x;θ), y) 7→
(1− yf(x;θ))+.

The model of the sigmoid network is usually non-convex and non-smooth. Interestingly,
we discover that this problem can be seen as a convex composite optimization problem of
the form

min
θ∈Rn

E(θ) = L(F (θ)), (2.2)

where the inner function F : Rn → Rm is smooth, and the outer function L : Rm → R is
convex. Specifically, for the absolute or quadratic loss functions, we can set

F (θ) =


f(x1;θ)− y1
f(x2;θ)− y2

...
f(xm;θ)− ym

 , L(z) =
1

m
∥z∥pp, where p = 1 or 2.

In general, we replace ∥ · ∥2 with ∥ · ∥. For the hinge loss function, we can set

F (θ) =


y1f(x1;θ)
y2f(x2;θ)

...
ymf(xm;θ)

 , L(z) =
1

m

m∑
i=1

(1− zi)+ =
1

m
∥(1− z)+∥1,

where z+ denotes the componentwise non-negative part of z. As we can see, all the outer
functions are separable and have the form

L(z) =
1

m

m∑
i=1

L(zi),

where L : R → [0,∞) is a convex function. It is the special property of L in sigmoid
networks.

3. Composite Optimization Algorithms for Sigmoid Networks

In this section, we show how to solve the sigmoid networks based on the composite opti-
mization algorithms including the linearized proximal algorithms (LPA) and the alternating
direction method of multipliers (ADMM).

3.1 LPA for Sigmoid Networks. The LPA is one of the most advanced algorithms
in convex composite optimization. It is proposed under the inspiration of the GNM and the
proximal point algorithm (PPA), and maintains the same convergence rate as that but also
overcomes some of their disadvantages. Each subproblem of the LPA is constructed from a
linearized approximation to the composite function and a regularization term at the current
iterate. Since the subproblem is an unconstrained strongly convex optimization problem
whose optimal solution is global and unique, it is easier to solve than that of the GNM.
Consequently, the LPA has an attractive computational advantage, although it is generally
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not a descent algorithm. Moreover, there are some connections of the LPA with other
algorithms mentioned in this paper. The ProxDescent for solving (2.2) is a special case of
the LPA. As the descent directions are used, the ProxDescent is a descent algorithm. The
case when the inner function is simply identity mapping has a long history. The iteration
θk+1 = θk +∆θk, where ∆θk minimizes the function ∆θ 7→ h(θk +∆θ) + 1

2t∥∆θ∥2, is the
well-known PPA.

Applying the LPA directly to (2.2), we get the following algorithm for sigmoid networks.

Algorithm 1. LPA for sigmoid networks.

Input: Model f , training dataset D = {(xi, yi)}mi=1, outer function L, inner function F .
1: Initialization: t > 0, θ0 ∈ Rn, k ← 0, accept ← false;
2: while not accept do
3: calculate the search direction

∆θk := argmin
∆θ∈Rn

{
L(F (θk) + F ′(θk)∆θ) +

1

2t
∥∆θ∥2

}
, (3.1)

where F ′(θ) =
(
∇T

θ f(xi;θ)
)m
i=1
∈ Rm×n is the Jacobian matrix of F (θ);

4: if ∆θk = 0 then
5: accept ← true;
6: end if
7: θk+1 ← θk +∆θk;
8: k ← k + 1;
9: end while

10: θ∗ ← θk.
Output: f(x;θ∗).

The focus of Algorithm 1 is how to solve the subproblem (3.1) accurately and efficiently.
Now, we discuss some numerical algorithms for the special loss functions.

For the quadratic loss function, Algorithm 1 is reduced to the well-known Levenberg-
Marquardt method for solving the following nonlinear least squares problem of the form

min
θ∈Rn

E(θ) =
1

m
∥F (θ)∥2.

The smooth convex subproblem can be written as

min
∆θ∈Rn

1

m
∥F (θk) + F ′(θk)∆θ∥2 + 1

2t
∥∆θ∥2,

and its necessary and sufficient optimality conditions imply that

2

m
F ′(θk)

T
(
F (θk) + F ′(θk)∆θk

)
+

1

t
∆θk = 0.

Hence the closed formula of the search direction is given by

∆θk = −
(

2

m
F ′(θk)

TF ′(θk) +
1

t
I

)−1( 2

m
F ′(θk)

TF (θk)

)
≜ −B−1

k ∇E(θk),
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where Bk is always a positive-definite and invertible matrix, and ∇E(θ) is the gradient of
the objective function in the original problem. Thus, the iteration θk+1 = θk−B−1

k ∇E(θk)
can be regarded as a variant of gradient descent algorithm, where B−1

k is an adaptive
learning rate. Moreover, the stopping criterion ∆θk = 0 shows that ∇E(θk) = 0, which
is the first-order necessary condition of the original problem. In section 4, we will give a
first-order sufficient condition of the original problem in Theorem 7.

3.2 ADMM for Non-Smooth Convex Subproblems. For the non-smooth convex
loss functions, the subproblem of Algorithm 1 is more complex, but luckily it is convex.
There are many widely used convex optimization methods and heuristic algorithms to solve
it, such as gradient or subgradient methods, approximation or composite optimization meth-
ods (Bertsekas 2015), and simulated annealing algorithms. Moreover, there are many related
software packages to implement these algorithms, such as CVXPY in Python, qpOASES in
C++, and CVX toolbox in Matlab. So it is not difficult to calculate the search direction
from the subproblem. We use a mapping A to represent a specific algorithm to solve the
subproblem, then the search direction can be presented in

∆θk = A(L, F, F ′, t,θk).

Here we use the ADMM to solve the subproblem. The ADMM is a simple scheme that often
works well and has a good reliability with a wide range of applications, especially for convex
problems. It is also easy to understand and implement for many composite optimization
problems with complex structures (Boyd et al. 2011).

The subproblem (3.1) can be seen as an equivalent problem of the form

min
µ∈Rm,∆θ∈Rn

L(µ) +
1

2t
∥∆θ∥2,

s.t. µ− F (θk)− F ′(θk)∆θ = 0.

The augmented Lagrangian function of the above problem is

Lρ(µ,∆θ,λ) = L(µ) +
1

2t
∥∆θ∥2 + λT

(
µ− F (θk)− F ′(θk)∆θ

)
+

ρ

2
∥µ− F (θk)− F ′(θk)∆θ∥2,

where ρ > 0 is the penalty parameter. The ADMM consists of the iterations

µi+1 := argmin
µ∈Rm

Lρ(µ,∆θi,λi),

∆θi+1 := argmin
∆θ∈Rn

Lρ(µi+1,∆θ,λi),

λi+1 := λi + ρ
(
µi+1 − F (θk)− F ′(θk)∆θi+1

)
. (3.2)
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The calculation for µi+1 is as follows.

µi+1 = argmin
µ∈Rm

{
L(µ) +

ρ

2
∥µ− F (θk)− F ′(θk)∆θi +

1

ρ
λi∥2

}
,

= argmin
µ∈Rm

{
L(µ) +

ρ

2
∥µ− ai∥2

}
,

= argmin
µ∈Rm


m∑
j=1

(
1

m
L(µj) +

ρ

2
(µj − aij)

2

) ,

=

(
argmin
µj∈R

{
1

m
L(µj) +

ρ

2
(µj − aij)

2

})m

j=1

,

=
(
Φ1/mρ(a

i
j)
)m
j=1

, (3.3)

where ai = F (θk)+F ′(θk)∆θi− 1
ρλ

i, and Φκ is the proximity operator of L with the penalty
1
κ (Boyd et al. 2011). Specifically, for the absolute loss function, the proximity operator
Φ, also called the soft thresholding operator, is defined as

Φκ(a) =


a− κ, a > κ,

0, |a| ≤ κ,

a+ κ, a < −κ.

For the hinge loss function, the proximity operator Φ is defined as

Φκ(a) =


a, a > 1,

1, 1− κ ≤ a ≤ 1,

a+ κ, a < 1− κ.

The calculation for ∆θi+1 is as follows. Since

∆θi+1 = argmin
∆θ∈Rn

{
1

2t
∥∆θ∥2 + ρ

2
∥µi+1 − F (θk)− F ′(θk)∆θ +

1

ρ
λi∥2

}
,

by its necessary and sufficient optimality conditions, we obtain that

∆θi+1 =

(
ρF ′(θk)

TF ′(θk) +
1

t
I

)−1(
ρF ′(θk)

T

(
µi+1 − F (θk) +

1

ρ
λi

))
. (3.4)

As we can see, the iterations of the ADMM for the non-smooth convex subproblems
have explicit formulas, which is one of the advantages of the ADMM. Defining the primal
residual of the optimality conditions at iteration i as

ri = µi − F (θk)− F ′(θk)∆θi, (3.5)

and the dual residual at iteration i as

si = ρF ′(θk)(∆θi −∆θi−1), (3.6)

we set the stopping criterion as ∥ri∥ ≈ 0 and ∥si∥ ≈ 0.
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Algorithm A∗. ADMM for non-smooth convex subproblems.

Input: Numbers m and t, matrices F (θk) and F ′(θk), non-smooth convex function L.
1: Initialization: ρ > 0, ∆θ0 ∈ Rn, λ0 ∈ Rm, ϵ > 0, i← 0;
2: repeat
3: i← i+ 1;
4: calculate µi from (3.3);
5: calculate ∆θi from (3.4);
6: calculate λi from (3.2);
7: calculate ri and si from (3.5) and (3.6), respectively;
8: until ∥ri∥ < ϵ and ∥si∥ < ϵ;
9: ∆θk ← ∆θi.

Output: ∆θk.

3.3 A Globalization Strategy for Algorithm 1. Moreover, we show the following
algorithm by employing the globalized LPA (GLPA) that adopts a backtracking line-search
as a globalization strategy. The choice of the stepsize is based on the virtue of the backtrack-
ing line-search, which guarantees the monotone decrease of the objective function at each
iteration. As a result, it ensures that the GLPA is a descent algorithm. In the algorithm
implementation, the backtracking strategy finds the first point satisfying the inequality
(3.7) by continuously decreasing the trial stepsize in an exponential way. That makes the
stepsize with the descent property as large as possible.

Algorithm 2. GLPA for sigmoid networks.

Input: Model f , training dataset D = {(xi, yi)}mi=1, outer function L, inner function F .
1: Initialization: t > 0, c, τ ∈ (0, 1), θ0 ∈ Rn, k ← 0, accept ← false;
2: while not accept do
3: calculate the search direction

∆θk = argmin
∆θ∈Rn

{
L(F (θk) + F ′(θk)∆θ) +

1

2t
∥∆θ∥2

}
;

4: if ∆θk = 0 then
5: accept ← true;
6: end if
7: η ← 1/τ ;
8: repeat
9: η ← τη

10: until

L(F (θk+η∆θk))−L(F (θk)) ≤ cη

(
L(F (θk) + F ′(θk)∆θk) +

1

2t
∥∆θk∥2 − L(F (θk))

)
;

(3.7)
11: ηk ← η;
12: θk+1 ← θk + ηk∆θk;
13: k ← k + 1;
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14: end while
15: θ∗ ← θk.
Output: f(x;θ∗).

4. Convergence Analysis

In this section, we prove some convergence properties of the proposed algorithms under the
assumptions of the weak sharp minima and the regularity condition or full row rank of the
Jacobian matrix, a stronger condition. Before giving the main results, we introduce the
following useful definitions and lemmas.

4.1 Theoretical Foundations of LPA-type Algorithms. Here we consider the
convex composite optimization of the form

min
ω∈Rb

h(G(ω)), (4.1)

where the inner function G : Rb → Rl is continuously differentiable, and the outer function
h : Rl → R is convex. It is a more general mathematical form of the problem (2.2).

First, we introduce the concept of the Lipschitz continuous gradient, which has played an
important role in investigating the convergence behavior of many optimization algorithms.
For a differentiable function G and Ω ⊆ Rb, if there exists an K > 0 such that

∥G′(ω̃1)−G′(ω̃2)∥ ≤ K∥ω̃1 − ω̃2∥ for each ω̃1, ω̃2 ∈ Ω,

we say that G is K-smooth or has a Lipschitz continuous gradient with modulus K on Ω.
Next, we give the notion of the weak sharp minima introduced in (Burke and Ferris

1993), which has far-reaching consequences for the convergence analysis of many iterative
procedures. For a function h, the minimum value and the set of minima for h, denoted by
hmin and Ch, are defined by

hmin := min
z∈Rl

h(z) and Ch := argmin
z∈Rl

h(z).

Let Ch ⊆ S ⊆ Rl, if there exist α > 0 and β ≥ 1 such that

h(z) ≥ hmin + αdistβ(z, Ch) for each z ∈ S,

where dist(z, C) := infc∈C ∥z− c∥, then we say that Ch is the set of weak sharp minima of
order β for h on S with modulus α.

We now introduce the regularity condition proposed in (Burke and Ferris 1995), which
is a crucial assumption applied to establish the convergence of several convex composite
optimization algorithms. Let h and G be defined by (4.1), then a point ω̄ ∈ Rb is said to
be a regular point of the inclusion G(ω) ∈ Ch if

ker(G′(ω̄)T ) ∩ (Ch −G(ω̄))⊖ = {0},

where ker(W ) := {y : Wy = 0} is the nullspace of W , and Z⊖ := {y : ⟨y, z⟩ ≤ 0,∀z ∈ Z}
is the negative polar of Z.
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In the following lemmas, we give the local convergence of the LPA and the global
convergence of the GLPA for solving optimization (4.1). They are based on three main
conditions including Lipschitz continuous gradient, weak sharp minima and quasi-regularity
or regularity condition. Note that the definition of quasi-regularity condition will only be
described in the proof of Theorem 3. Since this condition is hard to verify in practice, we
replace it with the regularity condition in the related theorem for sigmoid networks.

Lemma 1. (Hu et al. 2016, Corollary 14) Let ω̄ ∈ Rb satisfy G(ω̄) ∈ Ch, and let Ch be the
set of weak sharp minima of order β for h near G(ω̄) with constant α. Suppose that G is
continuously differentiable with a Lipschitz continuous gradient G′ near ω̄, and that ω̄ is a
quasi-regular point of the inclusion with constant δ. Suppose further that β ∈ [1, 2) or the

stepsize t > 2δ2

α (if β = 2). Then there exists a neighborhood N(ω̄) of ω̄ such that, for any
ω0 ∈ N(ω̄), the sequence {ωk} generated by the LPA with initial point ω0 converges at a
rate of 2

β to a solution ω∗ satisfying G(ω∗) ∈ Ch.

Lemma 2. (Hu et al. 2016, Theorem 18) Let {ωk} be a sequence generated by the GLPA
and assume that {ωk} has a cluster point ω∗. Suppose that β ∈ [1, 2) and that Ch be the set
of weak sharp minima of order β for h near G(ω∗). Suppose further that G is continuously
differentiable with a Lipschitz continuous gradient G′ near ω∗, and that ω∗ is a regular
point of the inclusion. Then G(ω∗) ∈ Ch, and {ωk} converges to ω∗ at a rate of 2

β .

Note that β ∈ [1, 2) in Lemma 2 is lightly different from β ∈ [1, 2] in Lemma 1, but both
of them can find a globally optimal solution to optimization (4.1) since that G(ω∗) ∈ Ch,
equivalently, h(G(ω∗)) = hmin = (h ◦G)min.

4.2 Convergence Analysis for Sigmoid Networks. Let B(z, r) denote an open
ball of radius r centered at z, then we establish the local convergence of Algorithm 1 by
virtue of Lemma 1.

Theorem 3. (Local Convergence). Let β ∈ [1, 2] and r > 0. Let {θk} be a sequence
generated by Algorithm 1, and θ̄ ∈ Rn be such that F (θ̄) ∈ CL and CL is the set of weak
sharp minima of order β for L on B(F (θ̄), r). If θ̄ is a regular point of the inclusion, then
there exist t0 ≥ 0 and r̄ > 0 such that for any t > t0 and initial point θ0 ∈ B(θ̄, r̄), the
sequence {θk} converges at a rate of 2

β to a globally optimal solution θ∗ and F (θ∗) ∈ CL.

Proof. According to the assumptions of Lemma 1, we need to verify the following four con-
ditions.

(i) Quasi-regularity condition. By Proposition 3.3 in (Burke and Ferris 1995), we know
that any regular point of the inclusion F (θ) ∈ CL is also a quasi-regular point. Since
θ̄ is a regular point, θ̄ is also a quasi-regular point of the inclusion F (θ) ∈ CL, namely
there exist δ > 0 and r0 > 0 such that

Π(θ) ̸= ∅ and dist(0,Π(θ)) ≤ δdist(F (θ), CL) for each θ ∈ B(θ̄, r0),

where Π(θ) := {∆θ ∈ Rn : F (θ)+F ′(θ)∆θ ∈ CL} is the solution set of the linearized
inclusion F (θ) + F ′(θ)∆θ ∈ CL.

(ii) Weak sharp minima. In particular, we set r0 ∈ (0, r). Naturally, CL is the set of local
weak sharp minima of order β for L on B(F (θ̄), r0) with constant α for some α > 0,
due to the assumption and definition of the weak sharp minima.
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(iii) Lipschitz continuous gradient. Note that a differentiable function with a Lipschitz
continuous gradient is second-order differentiable almost everywhere on Ω. If G is
a second-order differentiable function, by the differential mean value theorem, it is
obvious that the K-smoothness of G is equivalent to the boundedness of G′′, that is,
∥G′′(ω)∥ ≤ K for each ω ∈ Ω. On the other hand, since F defined by (2.2) is smooth
on Rn, F ′′ is continuous on Rn. Naturally, F ′′ is bounded on the bounded subset
B(θ̄, r0). Therefore, F is continuously differentiable with a Lipschitz continuous gra-
dient F ′ on B(θ̄, r0).

(iv) Large stepsize. If β = 2, we set t0 =
2δ2

α ; otherwise, set t0 = 0.

Hence, Lemma 1 is applicable and the conclusion follows.

Furthermore, we analyze the convergence properties of Algorithm 1 for the three common
sigmoid networks.

Corollary 4. Let {θk} be a sequence generated by Algorithm 1, and θ̄ ∈ Rn be such that
F (θ̄) ∈ CL. If F ′(θ̄) has full row rank, then there exists an r̄ > 0 such that for any initial
point θ0 ∈ B(θ̄, r̄), we have

(i) for the sigmoid networks with the quadratic loss function, the sequence {θk} linearly
converges to a globally optimal solution θ∗ and F (θ∗) = 0, if t is sufficiently large.

(ii) for the sigmoid networks with the absolute loss function, the sequence {θk} quadrati-
cally converges to a globally optimal solution θ∗ and F (θ∗) = 0.

(iii) for the sigmoid networks with the hinge loss function, the sequence {θk} quadratically
converges to a globally optimal solution θ∗ and F (θ∗) ≥ 1.

Proof. According to the assumptions of Theorem 3, we need to verify the following two
conditions.

(a) Regularity condition. Since the system of linear equations Wy = 0 has only zero
solution if and only if the matrix W has full column rank, F ′(θ̄) with full row rank is
equivalent to ker(F ′(θ̄)T ) = {0}. Then, it follows that

ker(F ′(θ̄)T ) ∩ (CL − F (θ̄))⊖ = {0}.

Therefore, the regularity condition is satisfied.

(b) Weak sharp minima. Note that Lmin = 0; CL = {0} for the quadratic or absolute loss
functions, and CL ≥ 1 for the hinge loss function.

(i) In the case when L(z) = 1
m∥z∥

2, L(z) = Lmin + 1
mdist2(z, CL) for each z ∈ Rm. By

the definition of weak sharp minima, we know that CL = {0} is the set of weak sharp
minima of order 2 for L on Rm with modulus 1

m .

(ii) In the case when L(z) = 1
m∥z∥1, L(z) ≥

1
m∥z∥ = Lmin+

1
mdist(z, CL) for each z ∈ Rm.

In the same way, it shows that CL = {0} is the set of weak sharp minima of order 1
for L on Rm with modulus 1

m .

(iii) In the case when L(z) = 1
m∥(1 − z)+∥1, L(z) ≥ 1

m∥(1 − z)+∥ = Lmin +
1
mdist(z, CL)

for each z ∈ Rm, which implies that CL ≥ 1 is the set of weak sharp minima of order
1 for L on Rm with modulus 1

m . Therefore, the local weak sharp minima is satisfied
for the three common sigmoid networks.

Hence, Theorem 3 is applicable and the conclusion follows.
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As we have seen, the weak sharp minima is often satisfied for sigmoid networks, and its
order determines the convergence rate of the algorithm. To our surprise, a first-order algo-
rithm even has a second-order convergence rate. In the following paragraphs, we establish
the global convergence of Algorithm 2 by virtue of Lemma 2.

Theorem 5. (Global Convergence). Let β ∈ [1, 2) and r > 0. Let {θk} be a sequence
generated by Algorithm 2, and {θk} have a cluster point θ∗ such that CL be the set of weak
sharp minima of order β for L on B(F (θ∗), r). If θ∗ is a regular point of the inclusion,
then {θk} converges at a rate of 2

β to a globally optimal solution θ∗ and F (θ∗) ∈ CL.

Proof. According to the assumptions of Lemma 2, we need to verify the following three
conditions.

(i) Regularity condition. Since the cluster point θ∗ is a regular point of the inclusion
F (θ) ∈ CL, the regularity condition is satisfied.

(ii) Weak sharp minima. Since CL is the set of weak sharp minima of order β for L on
B(F (θ∗), r) for some r > 0 and β ∈ [1, 2), the local weak sharp minima is satisfied.

(iii) Lipschitz continuous gradient. By (iii) in the proof of Theorem 3, we know that F is
continuously differentiable with a Lipschitz continuous gradient F ′ on B(θ∗, r).

Hence, Lemma 2 is applicable and the conclusion follows.

We can see that Algorithm 2 has the same conclusion and convergence rate as Algorithm
1 under the same assumptions. Next, we show the global convergence of Algorithm 2 for
two non-convex and non-smooth sigmoid networks.

Corollary 6. Let {θk} be a sequence generated by Algorithm 2 for the sigmoid networks
with absolute or hinge loss functions, and {θk} have a cluster point θ∗. If F ′(θ∗) has full row
rank, then {θk} quadratically converges to a globally optimal solution θ∗ and F (θ∗) ∈ CL.

Proof. According to the assumptions of Theorem 5, we need to verify the following two
conditions.

(a) Regularity condition. By (a) in the proof of Corollary 4, the full row rank of F ′(θ∗)
implies that the cluster point θ∗ is a regular point of the inclusion. Therefore, the
regularity condition is satisfied.

(b) Weak sharp minima. By (b) in the proof of Corollary 4, we know that CL is the set
of weak sharp minima of order 1 for L on Rm with modulus 1

m . Therefore, the local
weak sharp minima is satisfied for the two sigmoid networks.

Hence, Theorem 5 is applicable and the conclusion follows.

Note that F ′(θ̄) with full row rank, namely rank(F ′(θ̄)) = m, where m is the amount
of training data, is the sufficient condition of the regularity condition; and it is also the
necessary condition when CL is a singleton set and F ′(θ̄) ∈ CL. Hence the convergence
results can be directly related to the amount of training data. Next, we show the following
convergence property of the LPA-type algorithms in a finite number of iterations.

Theorem 7. (Sufficient Condition). If the LPA-type algorithm stops at the kth iteration
with rank(G′(ωk)) = l, then ωk is a globally optimal solution to the convex composite
optimization (4.1) and G(ωk) ∈ Ch.
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Proof. Since the subproblem of the LPA-type algorithms is an unconstrained convex opti-
mization problem, its necessary and sufficient optimality conditions imply that

0 ∈ G′(ωk)
T∂h(G(ωk) +G′(ωk)∆ωk) +

1

t
∆ωk for each k,

where ∂h(z) is the subdifferential of the convex function h(z). The stopping criterion
∆ωk = 0 of the algorithms shows that

0 ∈ G′(ωk)
T∂h(G(ωk)).

By rank(G′(ωk)) = l, equivalently, the full column rank of G′(ωk)
T , it follows that

0 ∈ ∂h(G(ωk)).

By the necessary and sufficient optimality conditions of the convex optimization, it shows
that G(ωk) is a globally optimal solution to h, equivalently, G(ωk) ∈ Ch. Hence the proof
is complete.

Theorem 7 also shows that rank(F ′(θk)) = m is the first-order sufficient condition
of sigmoid networks when the LPA-type algorithm stops at the kth iteration. It is no
surprise that there is a unified conclusion on the non-convex and possibly non-smooth
sigmoid networks, thanks to the unified composite optimization framework and the convex
subproblem.

We have seen that the full row rank is a critical condition for the convergence analysis of
sigmoid networks. This condition is of great theoretical and applied significance, especially
since it can provide a general guide for setting the network size. In order to guarantee the
reliability of the algorithm, we can ensure that F ′(θ̄) ∈ Rm×n is of full row rank, which
implies that n = (d + 2)q + 1 ≥ m, where d is the dimension of the input, and q is the
number of hidden neurons. So we have the following corollary.

Corollary 8. If rank(F ′(θ̄)) = m, then we have a lower bound on the network size given
by

q ≥
⌈
m− 1

d+ 2

⌉
. (4.2)

Clearly, the lower bound on the network size is directly proportional to the amount of
training data and inversely proportional to the dimension of the input. That is, the lower
bound on the network size is adapted to the problem size, so we call this lower bound the
“adaptive network size”. Moreover, each row of the Jacobian matrix F ′(θ) is the gradient
of the fitting function f(x;θ) at the corresponding data point. In a general sense, as the
number of hidden neurons increases, the information contained in the gradient increases.
As a result, the rank of the Jacobian matrix will also increase or be equal to m. Thus, the
full row rank of F ′(θ̄) can be satisfied in a theoretical sense by choosing the network size
sufficiently large. In conclusion, the LPA-type algorithms are almost always reliable.
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5. Numerical Experiment

Sigmoid networks are often used to solve regression and classification tasks, so we shall
use our algorithms for both tasks. We train the sigmoid networks on the training dataset
and demonstrate the performance on the test dataset. Note that we will use the adaptive
network size, namely the lower bound on the network size given by Corollary 8, to build
the sigmoid networks, which is sufficient to solve problems effectively.

5.1 Regression on Scattered Data. Franke’s function is a standard test function for
2D scattered data fitting of the form

g(x1, x2) =
3

4
e−1/4((9x1−2)2+(9x2−2)2) +

3

4
e−(1/49)(9x1+1)2−(1/10)(9x2+1)2

+
1

2
e−1/4((9x1−7)2+(9x2−3)2) − 1

5
e−(9x1−4)2−(9x2−7)2 ,

and its graph in the unit square in R2 is shown on the left of Figure 1. One can see that
Franke’s function is a complex function with two Gaussian peaks and a small trough. We
generate 289 training data points and 121 test data points using the Halton sequence. The
points are uniformly distributed in the unit square in R2, and the result is shown on the
right of Figure 1.

Considering the observational errors, we also add small white Gaussian noise to the
training data to reflect the real case, that is, yi = g(x1i , x

2
i ) + |ξi|, and ξi ∼ N(0, σ̃2), where

N(0, σ̃2) is a Gaussian distribution with a mean of 0 and a standard deviation of σ̃. All
numerical experiments are implemented in Python 3.9. We generate the positive Gaussian
noise using 1√

2πσ̃
·uniform(0, 1). The performance measure we choose for the regression task

is the root mean squared error (RMS-error):

RMS-error =
1√
M

(
M∑
i=1

(ỹi − yi)
2

) 1
2

,

where ỹi is the predicted value and yi is the actual value.

Figure 1: The graph of Franke’s test function (left) and a set of 289 training data points
and 121 test data points in the unit square in R2 (right).
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When implementing the LPA-type algorithms for the sigmoid networks with a quadratic
loss function, we set σ̃ = 100, θ0 = 0, and the stopping criterion as ∥∆θk∥ <1e-2. For
the inequality (3.7) in Algorithm 2, we set τ = 0.5, c = 1e-3, and the maximum number
of iterations for the backtracking line-search as 10 (indeed, one iteration is enough in most
cases, that is, ηk = 1 is often used). According to (4.2), we can set q ≥ 72 to guarantee the
reliability of the algorithms. For the case when q = 72 and t =1e5, the performance of the
algorithms is shown in Table 1 and Figure 2.

Table 1: The performance of regression on Franke’s function (using quadratic loss).

LPA GLPA

RMS-error Max-error RMS-error Max-error

No noise 2.9525e-3 1.4736e-2 2.7790e-3 1.1547e-2

Gaussian noise 3.4364e-3 1.2678e-2 3.7613e-3 1.5765e-2

Figure 2: The variation of the quadratic loss during training. The training loss of the four
experiments: (i) No noise: 3.1935e-6 and 5.0306e-6; (ii) Gaussian noise: 3.8656e-6
and 5.2940e-6.

As we can see, the LPA-type algorithms solve the regression tasks well, and they are
robust even when the data is perturbed by the noise with a mean of 2.0094e-3 and a
maximum of 3.9894e-3. The results show that the training loss is less than 5.2940e-6 for all
test cases. In other words, our algorithms can obtain an ideal solution for this task. We
find that the monotonic decrease of the objective function occurs at almost every iteration
of the LPA. It is almost a descent algorithm. Through multiple experiments, we also find
that the performance of the LPA depends on the choice of the initial point, but the GLPA
is not affected by this. Thus, we conjecture that the GLPA for sigmoid networks with the
quadratic loss function can converge globally under certain conditions. This will be explored
in our future work.

Indeed, the LPA-type algorithms using small-scale networks can solve the problem as
well. The illustration is shown on the left of Figure 3. Moreover, the performance of the
algorithms is also affected by the stepsize of the subproblem. This is shown on the right of
Figure 3.
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Figure 3: Execute Algorithm 2 by varying the number q of hidden neurons when t =1e5
(left) and the stepsize t of the subproblem when q = 10 (right).

Corollary 6 shows that Algorithm 2 using absolute or hinge loss functions can converge
globally. For simplicity, the rest of this section is devoted to demonstrating the performance
of Algorithm 2. When implementing the GLPA for the sigmoid networks with an absolute
loss function, we still use the same parameter values as in the previous experiments. For
Algorithm A∗, we set ϵ = ρ =1e-2, ∆θ0 = 0, λ0 = 0, and the maximum number of ADMM
iterations as 20. For the case when q = 72 and t =1e5, the performance of the algorithm is
shown in Table 2 and Figure 4.

Table 2: The performance of regression on Franke’s function (using absolute loss).

GLPA

RMS-error max-error

No noise 2.2093e-4 8.4516e-4

Gaussian noise 8.4138e-4 4.3988e-3

Figure 4: The variation of the absolute loss during training. The training loss in both
experiments is 6.2393e-8 and 7.7930e-7.
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The training loss in both experiments is less than 7.7930e-7, which shows that the GLPA
obtains a better solution for sigmoid networks. Obviously, this result is more in line with
the actual needs of regression tasks.

5.2 Classification on Handwritten Digits. The digits dataset from scikit-learn con-
tains 1797 samples, each with 64 elements corresponding to an image of 8×8 pixels, and
with target attribute 0, 1, . . . , 9. Some of the samples are shown in Figure 5.

Figure 5: The first 30 samples of the digits dataset from scikit-learn.

We create four binary classification tasks, each to classify two digits: 0 and 1; 2 and
5; 3 and 7; 6 and 9. For each task, we take 70% of the selected samples as the training
data and the rest as the test data. Here we run four algorithms on these tasks, including
the GLPA and three other popular and practical tools in the machine learning community,
SGDM, RMSProp and Adam. We also use the same parameter settings for the GLPA as
the previous experiments. The only difference is that we set q = 4 by Corollary 8 and the
number of ADMM iterations does not exceed 10. For the other algorithms, implemented
with PyTorch, we set the learning rate as 1e-3, the momentum as 0.9, and the number of
iterations as 1000. For the case when q = 4, the running results of the four algorithms are
shown in Table 3 and Figure 6.

Three observations are indicated by the running results: (i) The small training loss
shows that the GLPA can obtain excellent solutions to classification problems, and the
training loss of the GLPA is generally smaller than the other algorithms. (ii) The GLPA
has a much smaller number of iterations, thanks to its quadratic convergence rate in this
case. It is striking that a first-order algorithm (GLPA) even has a second-order convergence
rate. (iii) The adaptive network size given by Corollary 8 is sufficient to construct an ideal
sigmoid network that solves the problem effectively. Hence Corollary 8 does provide a good
guide for setting the size of sigmoid networks.

Table 3: The performance of classification on handwritten digit (using hinge loss).

Classified GLPA SGDM (RMSProp, Adam)

Digits Training errors Test errors Training errors Test errors

0 - 1 0 / 252 0 / 108 0 / 252 0 / 108

2 - 5 0 / 251 0 / 108 0 / 251 0 / 108

3 - 7 0 / 253 0 / 109 0 / 253 0 / 109

6 - 9 0 / 252 1 / 109 0 / 252 1 / 109
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Figure 6: The variation of the hinge loss during training. The training loss of the four
binary classification tasks: (i) GLPA: 8.8007e-8, 2.9285e-7, 0.0 and 1.0065e-6; (ii)
SGDM: 6.5701e-3, 3.2118e-3, 1.7844e-2 and 3.4731e-3; (iii) RMSProp: 1.7785e-
3, 1.0178e-3, 5.9491e-3 and 1.0813e-3; (iv) Adam: 3.8339e-4, 0.0, 1.8042e-3 and
3.3567e-5.

The essence of Corollary 8 is to guarantee that the number of parameters in neural
networks is not smaller than the amount of training data, and that a sufficient number of
parameters ensure the feasibility of the networks. In our view, it is as if the information
of a data point could be extracted by a single parameter in the model. Inspired by this,
we think it can also serve as a general guide for setting the size of neural networks. It is
well known that how to set the number of hidden neurons in neural networks is still an
open problem, and it is usually adjusted by trial and error in practice. As stated above, we
suggest that the number of hidden neurons can be specified by trial and error starting from
the adaptive network size, which can avoid certain blindness at the beginning of the trial.
This general rule deserves to be tried and further verified in practice.

6. Future Work

Although we only show the composite optimization algorithms for the three-layer sigmoid
networks, our algorithms are also applicable to the more complex sigmoid networks, such as
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the sigmoid networks with multiple hidden layers, with multiple outputs, and with output
layer neurons that are processed with sigmoid functions. In the design of model (2.2), the
convexity of the outer function L is due to the convex loss function L, and the smoothness
of the inner function F is due to the smooth fitting function f . So the algorithms can
be used to solve the sigmoid networks whenever we maintain the convexity of L and the
smoothness of f (note that f is always smooth in sigmoid networks). It is not difficult
to solve the general sigmoid networks with convex loss functions using our algorithms by
setting the same form of L and F as the case of one hidden layer. As a matter of fact, the
composite structure (2.2) can provide a unified framework for the development and analysis
of sigmoid networks, especially for the non-convex and non-smooth optimization problems.
Moreover, the various composite structures in neural networks pose more challenges for the
study of composite optimization algorithms. The breakthrough of composite optimization
algorithms will also drive the development of neural network learning algorithms. Last but
not least, the convergence results of convex composite optimization (4.1) in the literature
all seem to be established on G(ω∗) ∈ Ch. While the more general convergence theorems
should be established possibly on G(ω∗) /∈ Ch, which is still an open problem in the area
of composite optimization. In view of this, we will explore this issue further.
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