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Abstract. In this paper, we investigate the fundamental limits on how the inter-

spike time of a neuron oscillator can be perturbed by the application of a bounded

external control input (a current stimulus) with zero net electric charge accumulation.

We use phase models to study the dynamics of neurons and derive charge-balanced

controls that achieve the minimum and maximum inter-spike times for a given bound

on the control amplitude. Our derivation is valid for any arbitrary shape of the phase

response curve and for any value of the given control amplitude bound. In addition, we

characterize the change in the structures of the charge-balanced time-optimal controls

with the allowable control amplitude. We demonstrate the applicability of the derived

optimal control laws by applying them to mathematically ideal and experimentally

observed neuron phase models, including the widely-studied Hodgkin-Huxley phase

model, and by verifying them with the corresponding original full state-space models.

This work addresses a fundamental problem in the field of neural control and provides

a theoretical investigation to the optimal control of oscillatory systems.
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1. Introduction

Neurons exhibit short-lasting voltage spikes known as action potentials, which are

sensitive to external current stimuli [1]. The inter-spike time interval of a neuron

characterizes its properties and can be controlled by use of external stimuli. The ability

to control neuron spiking activities is fundamental to theoretical neuroscience, and the

concept of effective control of such neurological behavior has led to the development of

innovative therapeutic procedures [2, 3] for neurological disorders including deep brain

stimulation (DBS) for Parkinson’s disease and essential tremor [4, 5], where electrical

pulses are used to inhibit pathological synchrony among neuron populations. In such

neurological treatments and other applications such as the design of artificial cardiac

pacemakers [6], it is of clinical importance to avoid long and strong electrical pulses in

order to prevent the tissue from damage, as well as to maintain zero net electric charge

accumulation over each stimulation cycle in order to suppress undesirable side effects.

High levels of electric charge accumulation may trigger irreversible electrochemical

reactions resulting in damage of neural tissues and corrosion of electrodes [7].

Motivated by these practical needs, in this paper we study the design of time-

optimal controls for spiking neurons, which lead to the minimum and maximum inter-

spike times and remain charge-balanced. We study the dynamics of neuron oscillators

through phase models which are simplified yet accurate models that capture essential

overall properties of an oscillating neuron [1, 8], and which form a standard nonlinear

control system that characterizes the evolution of an oscillating system by a single

variable, namely, the phase. Phase models are conventionally used to investigate the

synchronization patterns and study the dynamical responses of oscillators where the

inputs to the oscillatory systems are initially defined [8, 9, 10]. Recently, control-

theoretic approaches, including calculus of variations and the maximum principle, have

been employed to design external stimuli for optimal manipulation of the dynamic

behavior of neuron oscillators. These include the design of minimum-power controls

for spiking a single neuron at specified time instances [11, 12, 13], optimal waveforms

for entrainment of neuron ensembles [14, 15, 16], and open-loop controls for establishing

and maintaining a desired phase configuration, such as anti-phase for two coupled neuron

oscillators [17]. Work on considering stochastic effects to neuron systems such as the

optimal control of neuronal spiking activity receiving a class of random synaptic inputs

has also been investigated [18]. In addition, controllability of an ensemble of uncoupled

neurons was explored for various mathematically ideal phase models, where an effective

computational optimal control method based on pseudospectral approximations was

employed to construct optimal controls that elicit simultaneous spikes of a neuron

ensemble [19, 20]. The derivation of time-optimal and spike timing controls for spiking

neurons has been attempted for limited classes of control functions [21, 22], however,

a complete characterization of the optimal solutions has not been provided, and an

analytical and systematic approach for synthesizing the time-optimal controls has been

missing.
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In this paper, we derive charge-balanced time-optimal controls for a given bound on

the control amplitude and fully characterize the possible range of neuron spiking times

determined by such optimal controls. Employing techniques from the optimal control

theory, we are able to reveal different structures of the time-optimal controls that vary

with the allowable bound of the control amplitude. Moreover, we validate these controls

derived according to phase models by applying them to the corresponding original full

state-space neuron models. As a demonstration, the validation is performed using the

Hodgkin-Huxley equations [23], where the spiking behavior of the state-space model

shows great qualitative agreement with that of the phase model and which demonstrates

the applicability of our theoretical results based on the phase model. Such an important

validation, which is largely lacking in the literature, allows us to explore the fundamental

limits of the phase model as an approximation of state-space models.

This paper is organized as follows. In Section 2, we consider the time-optimal

control of a general phase oscillator and derive the charge-balanced minimum-time and

maximum-time controls with constrained control amplitude by using the Pontryagin’s

maximum principle [24]. In Section 3, we apply the derived optimal control strategies

to both mathematically ideal and experimentally observed phase models, including the

well-known SNIPER [8], Hodgkin-Huxley, and Morris-Lecar [25] phase models, and

present the simulated optimal solutions. In Section 4, we validate the obtained optimal

controls through the Hodgkin-Huxley model.

2. Charge-Balanced Time-Optimal Control for Phase Models of Spiking

Neuron Oscillators

The dynamics of a periodically spiking neuron oscillator can be described by a phase

model of the form [8]

dθ

dt
= ω + Z(θ)u(t), (1)

where θ denotes the phase of the oscillation, ω > 0 is neuron’s natural oscillation

frequency, and u(t) ∈ R is the external current stimulus (control) that is applied to

perturb the phase dynamics of the neuron. The real-valued function Z(θ) is the phase

response curve (PRC) that characterizes the infinitesimal change of the phase to an

external control input. Conventionally, the neuron is said to spike when its phase

θ = 2nπ, where n ∈ N. In the absence of any input u(t), the neuron spikes periodically

at its natural frequency, while the spiking time may be advanced or delayed in a desired

manner by the application of an appropriate weak control.

2.1. Charge-Balanced Minimum-Time Control

The optimal design of controls that lead to the minimum inter-spiking time of a neuron

subject to a given bound on the control amplitude and the charge-balance constraint
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can be formulated as a time-optimal steering problem of the form

min
u(t)

T,

s.t. θ̇ = ω + Z(θ)u(t),

ṗ = u(t), (2)

|u(t)| ≤ M, ∀ t ∈ [0, T ],

θ(0) = 0, θ(T ) = 2π,

p(0) = 0, p(T ) = 0,

where T is the inter-spiking time required that we wish to minimize and M > 0 is the

bound of the control amplitude. The constraints involving the time-dependent variable

p(t) are equivalent to the charge-balance constraint, i.e., p(t) =
∫ t

0
u(σ)dσ = 0 with

p(0) = p(T ) = 0, guaranteeing that the charge accumulated over a spiking cycle is

zero. Note that the consideration of bounded controls is of fundamental importance

since the phase reduction is no longer valid when the control exceeds a level that can

be considered weak.

2.1.1. Derivation of the Charge-Balanced Minimum-Time Control: The Hamiltonian

of the optimal control problem as in (2) is given by

H = λ0 + λ1(ω + Z(θ)u) + λ2u (3)

where λ0 ≥ 0, λ1, and λ2 are Lagrange multipliers associated with the Lagrangian,

system dynamics, and the charge-balance constraint, respectively. According to the

optimality conditions of the maximum principle (see Appendix A), the adjoint variables

λ1 and λ2 must satisfy the time-varying equations λ̇1 = −∂H
∂θ

and λ̇2 = −∂H
∂p

,

respectively, which yields

λ̇1 = − λ1u
∂Z(θ)

∂θ
, (4)

λ̇2 = 0, (5)

and hence λ2 is a constant. Since the Hamiltonian H is not explicitly dependent on time

and the terminal time is free, we have H ≡ 0, ∀ t ∈ [0, T ], along the optimal trajectory

from the maximum principle.

It is straightforward to see from a rearrangement of (3), H = λ0+λ1ω+(λ1Z(θ)+

λ2)u, that the control

u∗

min =

{

M, φ < 0

−M, φ ≥ 0
(6)

minimizes the Hamiltonian H , where

φ = λ1Z + λ2 (7)

is called the switching function. Hence, according to the maximum principle, u∗

min is a

candidate of the optimal solution to the problem as in (2), provided φ = 0 for a nonzero
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time period does not occur. This type of controls is known as bang-bang controls, which

takes only the extremals of the control set, e.g., −M or M in this case. The switching

between −M and M occurs at φ = 0 and the challenge is to calculate the values of

the multipliers λ1 and λ2, which define the function φ and thus the optimal control

sequence.

An alternative candidate of the minimum-time control may exist. If φ ≡ 0 for some

non-zero time interval S = [τ1, τ2], then its derivatives φ̇, φ̈, etc., will also be equal to

zero over S. In this case, the bang-bang control (6) may not be optimal. Such a control

that forces the switching function φ and all of its derivatives to vanish over a time period

is known as a singular control [26], and it can be calculated according to the following

fashion. When φ = 0, φ̇ = 0, φ̈ = 0, . . ., for a given time interval S, we have

φ = λ1Z + λ2 = 0 (8)

and then, by substituting from (1), (4), and (5), the function φ̇ is given by

φ̇ = λ1ω
∂Z

∂θ
= 0 (9)

which yields ∂Z
∂θ

= 0 because ω > 0 and λ1 6= 0. The latter is due to the non-triviality

condition of the maximum principle, i.e., (λ0, λ1, λ2) 6= 0, since λ2 = 0 if λ1 = 0 from

(8), which leads to λ0 = 0 from (3) as H ≡ 0. Therefore, λ1 6= 0 holds along the optimal

trajectory and ∂Z
∂θ

= 0 defines a singular trajectory, i.e., the trajectory of the system

following a singular control. As in the calculation of φ̇, the second derivative φ̈ can be

obtained using (1) and ∂Z
∂θ

= 0 to get

φ̈ = λ1ω
∂2Z

∂θ2
(ω + Zu). (10)

It is clear from (10) that if ∂2Z
∂θ2

6= 0, the control that makes φ̈ = 0 is given by us = −ω/Z.

In the case when ∂2Z
∂θ2

= 0, we need to calculate
...
φ in order to get the singular control

us. However, no matter how many derivatives are used, the singular control is given by

the same form, us = −ω/Z.

If a singular trajectory exists, then one must examine whether it is “fast” or “slow”

compared to the bang-bang trajectory in order to determine the minimum-time control.

Suppose that the singular control us = −ω/Z is admissible over a nonzero time interval

S = [τ1, τ2]. Then, from (1) the phase velocity is equal to zero, i.e., θ̇ ≡ 0, over S by the

application of us. This implies that the singular trajectory is slower than any feasible

trajectory along which θ̇ ≥ 0 over S. Therefore, the charge-balanced control that spikes

neurons in minimum time is of the bang-bang form.

2.1.2. Computation and Synthesis of the Charge-Balanced Minimum-Time Control:

Because the minimum spiking time of the neuron system as in (1) is achieved by a

bang-bang control, it remains to calculate the switching points in order to synthesize

this time-optimal control. Since φ = 0 holds at the switching points, according to (8),

these points are defined via the inverse function of the PRC,

θs = Z−1

(

−
λ2

λ1

)

. (11)
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In addition, with the Hamiltonian condition H ≡ 0, the value of the multiplier λ1 is

given by λ1 = −λ0

ω
at these switching points. Without loss of generality, we let λ0 = 1,

which leads to λ1 = − 1
ω
. Applying this to (11) results in

θs = Z−1(α) = Z−1 (λ2ω) , (12)

where λ2 and ω are both constants. Let Z−1(α) have n solutions in the interval (0, 2π)

given by θ1, θ2, . . . θn, and define θ0 = 0 and θn+1 = 2π. Then, if we start with the

control u = M , the charge-balance constraint gives rise to the condition

0 =

∫ T

0

u(t)dt =

i=n
∑

i=0

∫ θi+1

θi

(−1)iM

ω + (−1)iZ(θ)M
dθ (13)

and the total time T under this bang-bang control is represented by

T =
i=n
∑

i=0

∫ θi+1

θi

1

ω + (−1)iZ(θ)M
dθ. (14)

Equation (13) together with the switching conditions Z(θi) = α for i = 1, 2, . . . n define

n + 1 equations of n + 1 variables, {θ1, θ2, . . . θn, α}. This system of equations can be

solved to get the set of optimal switching angles, denoted as SM , and the constant

α. Similarly, if we start with the control u = −M , by substituting M with −M in

(13) we obtain the other set of solutions, denoted as S−M . The bang-bang control,

determined by the set of switching angles, which results in the shorter spiking time is

the charge-balanced minimum-time control, while the opposite case is a candidate for

the charge-balanced maximum-time control.

Alternatively, given the two sets of switching angles, the optimal switching sequence

can be determined by computing φ̇ at the switching points. We denote the vector fields

corresponding to the constant bang controls u(t) ≡ −M and u(t) ≡ M by X = ω−MZ

and Y = ω + MZ, respectively, and call the respective trajectories corresponding to

them as X- and Y - trajectories. A concatenation of an X-trajectory followed by a Y -

trajectory is denoted by XY , while the concatenation in the reverse order is denoted

by Y X . If φ̇ < 0 at a switching point, then the X to Y switch is optimal according to

the switching law (6), and similarly if φ̇ > 0, then the Y to X switch is optimal. Since

λ1 = −1/ω at the switching points, we have

φ̇ = λ1ω
∂Z

∂θ
= −

∂Z

∂θ
. (15)

Therefore, the value of ∂Z
∂θ

at the switching points defines the switching type. If ∂Z
∂θ

> 0,

an X to Y switch is optimal and if ∂Z
∂θ

< 0, a Y to X switch is optimal.

2.2. Charge-Balanced Maximum-Time Control

2.2.1. (CaseI: Bang-Bang Control) When the control amplitude is limited by M <

min {| ω
Z(θ)

| : θ ∈ [0, 2π)}, singular controls are not admissible since us = −ω/Z as
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shown in Section 2.1.1. Therefore, the maximum-time control is given by the bang-bang

form

u∗

max =

{

−M, φ ≤ 0

M, φ > 0.
(16)

where φ is defined as in (7). The optimal switching sequence is determined between

SM and S−M , whichever results in longer spiking time. Another way to determine the

optimal switching sequence is by evaluating ∂Z
∂θ

at the switching points as described in

Section 2.1.2. When ∂Z
∂θ

> 0 at a switching point, a Y to X switch is optimal, while

when ∂Z
∂θ

< 0, an X to Y switch is optimal.

2.2.2. (CaseII: Bang-Singular-Bang Control) When singular controls are admissible,

that is, when M ≥ min {| ω
Z(θ)

| : θ ∈ [0, 2π)}, the maximum-time control is a combination

of bang and singular controls (see the examples in Section 3.1.2 and 3.2). The procedure

of the optimal control synthesis is to choose a bang control that drives the system to

a singular trajectory (a system trajectory following a singular control), staying on that

trajectory, and then exiting at the point from which a bang control can steer the system

to the desired terminal state. Examples involving the construction of charge-balanced

minimum-time and maximum-time optimal controls are illustrated in Section 3.

3. Examples

We now apply the derived optimal control strategies to several commonly-used

phase models characterized by various PRC’s, including mathematically ideal and

experimentally observed phase models. These examples demonstrate the applicability of

our optimal control methods to manipulate neuron dynamics. We emphasize that these

optimal controls are designed with respect to a given bound of the control amplitude, so

that they can be made practical and satisfy the weak forcing assumption in the phase

model.

3.1. SNIPER Phase Model

The SNIPER phase model is characterized by a type I PRC and is of the form [8]

θ̇ = ω + zd (1− cos θ)u, (17)

where ω is the natural oscillation frequency of the neuron, zd is a model-dependent

constant, and u is the external stimulus. This model is derived from a SNIPER

bifurcation (saddle-node bifurcation of a fixed point on a periodic orbit), which can

be found on Type I neurons [27] such as the Hindmarsh-Rose model [28]. Neurons

described by this model spike periodically with the natural period T0 = 2π/ω in the

absence of any external input u.

Before calculating the minimum- and maximum-time spiking controls for the

SNIPER phase model, we first examine the existence of singular trajectories. Recall
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from (9) that the singular trajectory is defined by ∂Z
∂θ

= 0, which yields

zd sin θ = 0.

Therefore, there exist three possible singular trajectories (in this case singular points),

θ = 0, θ = π, and θ = 2π. The points θ = 0 and θ = 2π are infeasible singular points,

at which the nonzero phase velocity, θ̇ = ω, immediately forces the system away from

these points, Hence, θs = π is the only possible singular point, and the singular control

u = −ω/Z(θs) = −ω/(2zd) yields θ̇ = 0 at θs, making the system stay at θs.

3.1.1. Charge-Balanced Minimum-Time Control for SNIPER Phase Model: Since the

charge-balanced minimum-time control takes the bang-bang form as shown in Section

2.1.1, the switching points are given from (12) by

θs = cos−1

{

1−
ωλ2

zd

}

. (18)

The cosine function has two solutions in [0, 2π) and thus there are two switching points

θ1 = γ and θ2 = 2π − γ with γ ∈ [0, π). Because λ1 = −1/ω for both switching points

and the derivative of the switching function φ̇ = −zd sin θ < 0 for θ ∈ (0, π), if a switch

occurs on the interval (0, π), it will be X to Y . Reversely, if a switch occurs on (π, 2π),

then it will be Y to X because φ̇ > 0 for θ ∈ (π, 2π). It follows that an XYX trajectory

is optimal for achieving the minimum inter-spike time. The parameter γ that defines the

switching points is calculated using the charge-balance constraint as in (13) by solving

R(M, γ) = 0, where

R(M, γ) =

∫ γ

0

−M

ω − zd(1− cos θ)M
dθ +

∫ π

γ

M

ω + zd(1− cos θ)M
dθ. (19)

Then, the optimal control is given by

u∗

min =











−M, 0 ≤ θ < θ1,

M, θ1 ≤ θ ≤ θ2,

−M, θ2 < θ ≤ 2π,

(20)

and by following (14) the time required to spike the neuron, namely, to reach θ = 2π,

is given by

T =

∫ γ

0

4

ω − zd(1− cos θ)M
dθ. (21)

Figure 1 shows the charge-balanced minimum-time control and the corresponding phase

trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

3.1.2. Charge-Balanced Maximum-Time Control for SNIPER Phase Model: There are

two control scenarios for maximizing the spiking time of a SNIPER neuron depending

on the control amplitude.

(Case I: M < ω
2zd

) If the bound of the control amplitude M < | ω
Z(θ)

| = | ω
zd(1−cos θ)

| < ω
2zd

,

then there exist no admissible singular controls and the maximum-time control takes



Design of Charge-Balanced Time-Optimal Stimuli for Spiking Neuron Oscillators 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5054
−1

0

1

2

3

4

5

6

7

Time

P
ha

se
 T

ra
je

ct
or

y,
 C

on
tr

ol

 

 

X−Trajectory
Y−Trajectory
Control

Figure 1. The charge-balanced minimum-time control and the corresponding phase

trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

0 1 2 3 4 5 6 7 8.3644
−1

0

1

2

3

4

5

6

7

Time

P
ha

se
 T

ra
je

ct
or

y,
 C

on
tr

ol

 

 

X−Trajectory
Y−Trajectory
Control

Figure 2. The charge-balanced maximum-time control and the corresponding phase

trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.4 < ω

2zd
= 0.5.

the bang-bang form as described in Section 2.2.1. In this case, there are two switches

and the Y XY trajectory is optimal. The maximum-time control is given by

u∗

max =











M, 0 ≤ θ < θ1,

−M, θ1 ≤ θ ≤ θ2,

M, θ2 < θ ≤ 2π,

(22)

where θ1 = β, θ2 = 2π − β, and the parameter β is obtained by solving R(−M,β) as

defined in (19). Figure 2 illustrates the charge-balanced maximum-time control and the

corresponding phase trajectory for the SNIPER phase model with zd = 1, ω = 1, and

M = 0.4 < ω
2zd

= 0.5.

(Case II: M ≥ ω
2zd

) In this case, the system can be driven along the singular trajectory

which is optimal (slower than the bang control), and the maximum-time control takes

the bang-singular-bang form. Because, for example, when θ ∈ (0, π), the derivative of

the switching function φ̇ = −zd sin θ < 0, and then the Y X trajectory is a candidate for
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optimality if a switch occurs. However, following an X-trajectory with u = −M ≤ −ω
2zd

,

the singular point θ = π is unreachable. Hence, switching in the interval (0, π) is not

allowed, and the Y -trajectory is optimal for θ ∈ [0, π). The same reasoning applies for

the regime θ ∈ (π, 2π], where Y -trajectory again is optimal. As a result, the optimal

control is of the “Y -singular-Y ” form given by

u∗

max =











M, 0 ≤ θ < π,

− ω
2zd

, θ = π,

M, π < θ ≤ 2π.

(23)

Because θ̇ = 0 holds along the singular trajectory (in this case the singular point θs = π),

the time duration over which the system stays on it is calculated according to the charge-

balance constraint. Let t1 and t2 denote the times for which the first bang control and

the singular control are applied, respectively. Since t1 is the time that the system takes

to reach θs = π by a Y -trajectory, we have

t1 =

∫ π

0

1

ω + zd(1− cos θ)M
dθ. (24)

By symmetry, the amount of time that the system takes following a Y -trajectory from

θ = π to θ = 2π is also t1. Then, t2 is given by

t2 =
4Mzdt1

ω

in order to fulfill the charge-balance constraint. Now the charge-balanced maximum-

time control can be stated in terms of time as

u∗

max =











M, 0 ≤ t < t1,

− ω
2zd

, t1 ≤ t ≤ t1 + t2,

M, t1 + t2 < t ≤ t2 + 2t1.

(25)

Figure 3 shows the maximum-time charge-balanced control and the corresponding phase

trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7 ≥ ω
2zd

= 0.5.

In the following, we demonstrate the robustness of our analytical method to

construct optimal controls for spiking neurons of arbitrary practical PRCs through the

Hodgkin-Huxley and Morris-Lecar phase models.

3.2. Hodgkin-Huxley Phase Model

The Hodgkin-Huxley model is a nonlinear system that characterizes the propagation

and initiation of the action potential in a squid axon [23]. For the set of parameter

values given in [8], the system exhibits periodic motion with natural frequency ω =

0.43 rad/ms. Its PRC and the first and second derivatives of the PRC are depicted

in Figure 4(a). To proceed the calculations, we approximate the numerically obtained

PRC with eight harmonic terms given by

Z(θ) =
8

∑

i=1

ai sin(biθ + ci), (26)
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Figure 3. The maximum-time charge-balanced control and corresponding phase

trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

i 1 2 3 4 5 6 7 8

ai 0.09176 0.07462 0.03807 0.02425 0.01747 0.006474 0.002752 0.0008111

bi 1.002 1.996 3.002 0.5 3.747 3.747 6.228 7.651

ci 2.609 -1.605 0.7233 0.5148 3.552 -0.7648 0.6429 -4.726

Table 1. The coefficients of the equation (26) for the Hodgkin-Huxley PRC.

where the coefficients ai, bi and ci are obtained by least squares fit and given in Table 1.

In this case, there are two possible singular points, θs,1 = 3.34 and θs,2 = 4.58, satisfying

∂Z(θ)/∂θ = 0.

The charge-balanced minimum-time control, which is of the Y XY form, and the

resulting phase trajectory for the control amplitude bound M = 0.7µAcm−2 are shown

in Figure 4(b). The charge-balanced maximum-time controls can take the bang-bang or

the bang-sigular-bang form depending on the bound M . The cases for M = 0.7µAcm−2

and M = 3.0µAcm−2 are illustrated in Figure 4(c) and Figure 4(d), respectively. The

detailed derivations of these optimal controls are presented in Appendix B.

3.3. Morris-Lecar Phase Model

The Morris-Lecar neuron model was originally developed to capture the oscillatory

behavior of barnacle muscle fibers [25]. It has been observed through experiments that

the PRC for an Aplysia motoneuron is extremely similar to that of a Morris-Lecar PRC

[29]. We consider a Morris-Lecar system with parameter values given in [12], which has

a natural frequency ω = 0.283 rad/ms. The PRC is approximated by (26) with the

coefficients shown in Table 2 and is illustrated, with its derivatives, in Figure 5(a).

Three examples are made to show the different structures of the optimal controls

that are associated with various values of M for the Morris-Lecar phase model. The

charge-balanced minimum-time control and the resulting phase trajectory for M =

0.01 µAcm−2 are given in Figure 5(b). The charge-balanced maximum-time controls
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Figure 4. 4(a) The Hodgkin-Huxley PRC Z(θ) and its derivatives, dZ

dθ
and d

2
Z

dθ2 . 4(b)

The charge-balanced minimum-time control and the corresponding phase trajectory for

the Hodgkin-Huxley phase model with respect to the bound on the control amplitude

M = 0.7 µAcm−2. 4(c) and 4(d) show the charge-balanced maximum-time controls

and the corresponding phase trajectories for M = 0.7 µAcm−2 and M = 3.0 µAcm−2.

i 1 2 3 4 5 6 7 8

ai 5.137 5.773 0.7703 1.065 0.8143 0.1028 0.09711 0.0698

bi 0.4356 0.7105 2.185 3.09 3.362 4.876 5.829 6.525

ci 1.005 -1.474 0.6535 1.238 3.585 2.154 2.375 3.446

Table 2. The coefficients of the equation (26) for the Morris-Lecar PRC

and the respective trajectories subject to M = 0.005 µAcm−2 and M = 0.04 µAcm−2

are given in Figure 5(c) and Figure 5(d), respectively. The derivations of these optimal

controls follow a similar procedure presented in Appendix B.

4. Validation of Phase Model Reduction to Full State-Space Model

Because phase models of importance to applications are reductions of original higher

dimensional state-space systems, we explore in this section the extent to which controls
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Figure 5. 5(a) The Morris-Lecar PRC Z(θ) and its derivatives, dZ

dθ
and d

2
Z

dθ2 . 5(b) The

charge-balanced minimum-time control and the corresponding phase trajectory for the

Morris-Lecar phase model with respect to the bound on the control amplitude M =

0.01 µAcm−2. 5(c) and 5(d) show the charge-balanced maximum-time controls and

the corresponding phase trajectories with M = 0.005 µAcm−2 and M = 0.04 µAcm−2,

respectively.

synthesized using the former can achieve the desired objectives when applied to the

latter. This will provide insight into the limits of the model reduction with respect to

control synthesis, and allow the relationship to be calibrated for practical applications

where the weak forcing assumption must be relaxed. Such an important validation is

largely lacking in the literature.

We validate our optimal control strategies derived based on the phase models with

the corresponding original state-space models. Specifically, we consider the Hodgkin-

Huxley model. Note that an analytical derivation of the optimal controls directly

from the state-space models is in general intractable and computationally expensive.

A validation of the minimum and maximum spiking times with respect to the bound

on the control amplitude is depicted in Figure 6, where the feasible spiking times are

indicated as the shaded area. Each asterisk point on this graph represents the Hodgkin-
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Figure 6. A characterization of the realizable spiking times with respect to the

bound on the control amplitude, M ∈ [0, 2.5], for the Hodgkin-Huxley phase model.

The shaded region indicates the feasible spiking range resulting from the minimum-

and maximum-time controls. Those minimum times (left to the natural spiking time

T0 = 14.6 ms) are obtained by Y XY controls and maximum-times (right to T0) are

obtained by XYX , Y XY and Y -singular-Y controls depending on M .

Huxley neuron spiking time achieved by a particular form of the optimal control. The

points correspond to minimum spiking times, which are less than the natural spiking

time T0 = 14.64 ms, are obtained by Y XY controls, whereas the points correspond to

maximum spiking times may be obtained by three structurally different controls, i.e.,

XYX , Y XY , and Y -singular-Y controls. This figure illustrates the limits on possible

spiking times of the Hodgkin-Huxley model, which is important to the design of practical

control inputs. For example, the knowledge of the feasible spiking range is helpful in

designing optimal controls with other objectives such as minimum power controls [13].

The optimal controls derived based on the Hodgkin-Huxley phase model, shown in

Figure 4(b) and 4(c), are applied to the full Hodgkin-Huxley model, and a repeated

application of such controls results in the desired spiking trains as displayed in

Figure 7(a) and 7(b). The respective minimum and maximum spiking times induced

from these optimal controls subject to the amplitude bound M = 0.7 µAcm−2 are

13.5 ms and 16.37 ms in the phase model and 13.65 ms and 17.13 ms in the full state-

space model. Such an inconsistence is due to the model reduction, however, the resulting

spiking behavior of the full Hodgkin-Huxley model shows great qualitative agreement

with that of the phase model. The variation of the absolute errors between the actual

and designed spiking times is shown in Figure 8, where the spiking behavior predicted

based on the phase model matches better the full state-space model towards the weak

forcing region.
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M = 0.7 µAcm−2 of Hodgkin-Huxley neuron.
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(b) Uncontrolled and controlled spiking trains for maximum time with amplitude

M = 0.7 µAcm−2 of Hodgkin-Huxley neuron.

Figure 7. Application of derived optimal controls according to phase models to full

Hodgkin-Huxley model
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Figure 8. The absolute error in the spiking time when applying the charge-balanced

time-optimal controls derived based on the Hodgkin-Huxley phase model to its full

state-space model. The bound of the control amplitude is indicated as the color bar.

5. Conclusion and Future Work

In this paper, we investigated time-optimal controls for phase models of spiking neuron

oscillators. In particular, we derived charge-balanced controls that lead to the minimum

and the maximum inter-spike time of a neuron for a given bound on the control
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amplitude. We showed that such optimal controls involve bang-bang and bang-singular-

bang structures depending on the allowable control amplitude. Although the amplitude

level of weak forcing in the phase model is not practically quantifiable and can be greatly

dependent on the dynamics of the system, our optimal control solutions were constructed

for an arbitrary choice of bounds on the control amplitude, which accounts for this

practical issue. We apply the derived optimal spike timing controls to commonly-used

phase models of oscillatory neurons to demonstrate their applicability to neuroscience.

The methodology presented in this paper is general and can be applied not only to

oscillatory neuron systems, but also to any oscillating system that can be represented

by phase models including biological, chemical, electrical, and mechanical oscillators.

The theoretical results of this work characterize the fundamental limits on neuron

spiking times that can be achieved by use of a charge-balanced bounded external

input, and have potential impact on the improvement and development of innovative

therapeutic procedures for neurological disorders. The extension of this work to the

optimal control of a neuron population is of fundamental and practical importance.

Our recent work has shown that an ensemble of uncoupled neurons is controllable and

the minimum-power controls that spike a network of heterogeneous neurons can be

constructed using a multidimensional pseudospectral method [19]. We plan to extend

this current work to investigate the controllability and optimal controls of a network of

coupled neurons.

Appendix A. The Pontryagin’s Maximum Principle

Theorem 1 (Time-Optimal Control [24]) Let (x∗(t), u∗(t)) be a time-optimal

controlled trajectory that transfers the initial condition x(0) = x0 into the terminal

state x(T ) = xT . Then, it is a necessary condition for optimality that there exists a

constant λ0 ≥ 0 and nonzero, absolutely continuous row vector function λ(t) such that:

(i) λ satisfies the so-called adjoint equation

λ̇(t) = −
∂H

∂x
(λ0, λ(t), x∗(t), u∗(t))

(ii) For 0 ≤ t ≤ T the function u 7→ H(λ0, λ(t), x∗(t), u) attains its minimum over the

control set U at u = u∗(t).

(iii) H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0.

Appendix B. The Derivation of Time-Optimal Controls for the

Hodgkin-Huxley Phase Model

Charge-Balanced Minimum-Time Control for Hodgkin-Huxley Phase Model

The Hodgkin-Huxley PRC given in Figure 4(a) has at most two singular trajectories

(points), θs,1 = 3.34 and θs,2 = 4.58, calculated by the condition ∂Z(θ)
∂θ

= 0. According

to the shape of this PRC, there exist at most two switching points satisfying Z(θ) = α,
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where α is a constant defined in (12). Since the minimum-time control takes the bang-

bang form as shown in Section 2.1.1, it requires to calculate the switching points and

determine the type of the switching at these points for the optimal control synthesis.

At the switching points, φ̇ = −∂Z/∂θ is given by (15), and hence a Y to X switch

may occur in the region R1 = [0, θs,1] or R3 = [θs,2, 2π], and an X to Y switch may

occur in R2 = [θs,1, θs,2]. This implies that bang-bang controls with one switch, such as

the XY or Y X form, are not feasible solutions because these controls will violate the

charge-balance constraint. Consequently, the optimal control has two switching points,

and the candidate is either a Y XY trajectory with one switch in the interval R1 and

one in R2, or an XYX trajectory with one switch in R2 and one in R3. We can further

simplify the possible intervals of switching by observing the shape of the PRC. The

Hodgkin-Huxley PRC depicted in Figure 4(a) has three zeros at θr,1 = 0, θr,2 = 3.86,

and θr,3 = 2π. Therefore, for an optimal Y XY trajectory the first and the second switch

will occur in [0, θs,1] and [θs,1, θr,2], respectively, and for an optimal XYX trajectory,

they will occur in [θr,2, θs,2] and [θs,2, 2π], respectively. The minimum-time control is

then selected between these two. Note that for a given bound M , it may not be possible

to have both XYX and Y XY solutions. For example, if the bound is M = 0.7, then

the only feasible optimal solution is Y XY . In this case, the two switching points θ1 and

θ2 can be calculated through

0 =

∫ θ1

0

M

ω +MZ(θ)
dθ +

∫ θ2

θ1

−M

ω −MZ(θ)
dθ +

∫ 2π

θ2

M

ω +MZ(θ)
dθ, (B.1)

Z(θ1) = Z(θ2), (B.2)

and the control is then given by

u∗

min =











M, 0 ≤ θ ≤ θ1,

−M, θ1 < θ < θ2,

M, θ2 ≤ θ ≤ 2π.

Charge-Balanced Maximum-Time Control for Hodgkin-Huxley Phase Model

In the case of the maximum-time control, the two singular points, θs,1 and θs,2, are

candidates for the optimal trajectory because they are slower than the bang trajectories

as proved in Section 3.1.2. Letting θ̇ = 0 in (1), we find the controls that keep the

trajectory at the singular points are us,1 = − ω
Z(θs,1)

= 3.50 and us,2 = − ω
Z(θs,2)

= −2.15.

There exist three cases when constructing maximum-time controls according to M and

thus to the feasibility of us,1 and us,2.

(Case I: M < |us,2|) In this case, both the singular points θs,1 and θs,2 are infeasible.

Therefore, the optimal control is bang-bang and is in fact the opposite of the minimum-

time control described above. Similar to the minimum-time case, we can calculate

the corresponding XYX and Y XY solutions and choose the maximum time achieved

between these scenarios. For example, consider the bound M = 0.7, then the only
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solution is XYX and the two switching points are calculated by substituting M with

−M in (B.1) and solving (B.1) and (B.2). The optimal bang-bang control is then given

by

u∗

max =











−M, 0 ≤ θ < θ1,

M, θ1 ≤ θ ≤ θ2,

−M, θ2 < θ ≤ 2π.

(Case II: |us,2| ≤ M < |us,1|) In this case, θs,2 is the only feasible singular trajectory

(point) generated by the singular control us,2 = −2.15 < 0. Because there are only two

switching points allowed in the optimal trajectory, this together with the fact that us,2

is of negative charge forces the optimal control to take the “Y -singular-Y ” form given

by

u∗

max =











M, 0 ≤ θ < θs,2,

us,2, θ = θs,2,

M, θs,2 < θ ≤ 2π.

Similar to the SNIPER phase model described in Section 3.1.2, the time it takes to

reach the singular point is given by,

t1 =

∫ θs,2

0

1

ω + Z(θ)M
dθ

and the time required to reach the target point 2π from the point θs,2 is

t3 =

∫ 2π

θs,2

1

ω + Z(θ)M
dθ.

The time during which the trajectory stays on θs,2 is determined by the charge-balance

constraint and is given by

t2 =

∣

∣

∣

∣

(t1 + t3)M

us,2

∣

∣

∣

∣

.

Now, the optimal control can be stated in terms of time as

u∗

max =











M, 0 ≤ t < t1,

us,2, t1 ≤ t ≤ t1 + t2,

M, t1 + t2 < t ≤ t1 + t2 + t3.

(B.3)

(Case III: |us,1| ≤ M) In this case, staying on either singular point is possible by

using an appropriate control. Furthermore, since the two singular controls have opposite

signs, the charge-balance constraint can be preserved by staying for an appropriate

time period at each singular point. As a result, the spiking time can be arbitrarily

delayed, which may not be of practical interest due to the requirement of relatively high

amplitude.
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