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How working memory and reinforcement learning are 

intertwined: a cognitive, neural, and computational 

perspective.  

Abstract 
Reinforcement learning and working memory are two core processes of human cognition, and 

are often considered cognitively, neuroscientifically, and algorithmically distinct. Here, we show 

that the brain networks that support them actually overlap significantly, and that they are less 

distinct cognitive processes than often assumed. We review literature demonstrating the benefits 

of considering each process to explain properties of the other, and highlight recent work 

investigating their more complex interactions. We discuss how future research in both 

computational and cognitive sciences can benefit from one another, suggesting that a key 

missing piece for artificial agents to learn to behave with more human-like efficiency is taking 

working memory’s role in learning seriously. This review highlights the risks of neglecting the 

interplay between different processes when studying human behavior (in particular when 

considering individual differences). We emphasize the importance of investigating these 

dynamics in order to build a comprehensive understanding of human cognition.  

Introduction 
Reinforcement learning (RL) and working memory (WM) are two core processes of human 

cognition. RL broadly refers to a set of behavioral, neuroscientific, and computational processes 

in which an agent learns through trial and error with the goal of maximizing reward (Eckstein et 

al., 2021; Sutton & Barto, 1998). WM refers to an information-limited process used to hold 

representations in the mind temporarily for use in thought and action (Cowan, 2017; Oberauer et 

al., 2018). They are essential in a range of daily activities that require intelligent, flexible 

behavior. Deficits in RL and WM are related to cognitive decline and often observed in mental 

disorders such as schizophrenia and depression. While there is a rich body of literature 

investigating each process separately, the aim of this review is to discuss the relationship 
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between them. Specifically, we review literature explaining the neural, behavioral, and 

computational interplay between the two systems, and discuss the importance of paying attention 

to one process when investigating the other.  

 

In the first section, “Defining RL and WM,” we will describe each process independently, in 

terms of the behaviors they support, the neural representations underlying them, and the 

computational models developed to characterize them. In the second section, “The interplay of 

RL and WM,” we will show that these two processes are related neurally and behaviorally, and 

that both processes can be better understood when considering how the other affects it. In the 

third section, “The importance of investigating inter-process dynamics,” we discuss how only 

considering one process can misrepresent data, and thus lead to incorrect conclusions. Finally, 

we will discuss their interactions with other processes (in “Interactions with other processes”), 

and the insights about cognition and neuroscience that can be gained by investigating recent 

efforts in the field of artificial intelligence to make agents’ behavior better match humans’ ability 

to learn, generalize, and make flexible decisions (in “Computational insights”).  The goal of this 

paper is to review the research investigating the relationship between two seminal processes, and 

highlight how investigating the richness of their interplay is important to developing veridical 

computational and neural understandings of behavior across a variety of contexts.  

Defining RL and WM 
Before discussing the relationship between these two processes, we review each in isolation. We 

find it of particular importance to discuss how three overlapping, but distinct, subfields define 

each process: psychology and cognitive sciences, focusing on behavior; neuroscience, focusing 

on brain networks; and computational fields such as artificial intelligence, focusing on 

algorithms (Eckstein et al., 2021). We attempt to highlight the risks that come from multiple 

subfields using the same term (e.g., “RL”) with subtly different meanings, and to remove this 

ambiguity. For example, an RL behavioral task may not be best explained by an RL algorithm 

alone, and may not only rely on the brain’s RL network. More examples of these will be 

expanded in the next section (“The interplay of RL and WM”).  

 

RL behavior, RL brain, RL algorithms 
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RL in psychology describes animals’ ability to learn to make choices to seek rewards and avoid 

punishments, and has a long history rooted in behaviorism (e.g., Rescorla & Wagner, 1972) that 

has since been largely expanded to more complex cognitive processes. RL describes the process 

that allows agents to gradually integrate a past history of reward outcomes into a robust choice 

policy that supports good decisions.  

 

We define “RL behavior” as learning behavior in sequential decision making tasks that involve 

appetitive or aversive outcomes. Behavioral RL tasks range in complexity and structure, but 

always involve the participant learning the value (or a proxy) of an action, state, or series of 

actions and states through trial and error, using a form of reward or punishment as a teaching 

signal (e.g., food, points, money, pain). Some common RL tasks are learning which keypress 

results in a reward for a particular stimulus (stimulus-action association), navigating to a goal 

state in a grid world or maze, or discovering which of several options results in the highest 

expected reward (bandit tasks; Figure 1A). All of these tasks are alike in that the goal is to 

maximize rewards, which are learned incrementally from valenced feedback.  

 

Neurally, RL is widely thought to be supported by dopaminergic signaling in the basal ganglia, 

particularly in the striatum (e.g., Houk, 1995; Joel et al., 2002; Schultz et al., 1995, 1997; Suri et 

al., 2001; Sutton & Barto, 1998). A dominant theory of RL in the brain is the reward prediction 

error theory of dopamine (e.g., Bayer & Glimcher, 2005; Maes et al., 2020; Satoh et al., 2003; 

Daw & Tobler, 2014; Montague et al., 1996; Niv, 2009; Schultz, 2002; Schultz et al., 1997). In 

this theory, supported by a broad range of findings,      phasic dopaminergic activity encodes the 

temporal difference reward prediction error (RPE; a difference between future outcome 

expectations at different time points; Figure 1B top inset). In other words, the spiking of 

dopaminergic neurons in basal ganglia is increased when a reward is larger than expected (a 

positive RPE) and decreased when a reward is smaller than expected (a negative RPE). This 

RPE-encoding signal facilitates cortico-basal ganglial plasticity (Wickens, 2009) and allows 

striatal neurons to learn to encode choice values (Samejima et al., 2005), supporting a choice 

strategy that favors choices that usually lead to better outcomes.  
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Figure 1. RL (top) and WM (bottom) processes are associated with a broad range of behavioral 

paradigms (left; A,D), brain areas (middle; B), and algorithms (right; C,E). A. A schematic of a 

multi-armed bandit problem. The participant must iteratively learn from feedback which option 

has the highest expected reward. B. RL and WM rely on overlapping brain networks, both 

modulated by dopamine (DA), although WM is largely described to be a prefrontal cortex (PFC) 

associated area, and RL a basal ganglia (BG) associated area (black arrows). top inset: 

dopaminergic activity reflects reward prediction error (RPE). bottom inset: elevated delay-period 

activity in PFC while maintaining information in WM. C. A schematic of a general RL agent that 

learns the value of different state action pairs (the Q-value) iteratively using RPE. D. A 

schematic of the 1-2-AX task, in which the participant must selectively maintain letters based on 

context (numbers). E. A schematic of the LSTM model, in which WM representations can be 

independently forgotten, inputted, and outputted.  

 

 

RL is also a broad area of machine learning and artificial intelligence (AI). RL AI represents a 

family of learning algorithms primarily used in sequential/multistep problems (called Markov 

Decision Processes or MDPs), where the current state of the world is fully informative of which 

action an agent should take (Sutton & Barto, 1998). RL artificial agents share the property that 
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they rely on algorithms whose objective is to learn to make choices that maximize future 

cumulative rewards. This can be achieved with broadly different algorithms, for example by 

trying to estimate the value of choices by incrementally updating it when rewards are observed, 

in proportion to the reward prediction error, or by using information about the environment to 

effortfully compute the expected future value of a choice (Figure 1C illustrates the updating the 

expected value of a certain action and state, referred to as the Q-value, based on the reward 

received). A lot of RL research in machine learning has no bearing to cognitive psychology and 

neuroscience (e.g., autonomous navigation of stratospheric balloons, Bellemare et al., 2020); 

however, an important subset of RL algorithms have been extremely successful at describing 

both RL behavior and RL in the brain (Montague et al., 1996; Schultz et al., 1997).  

 

WM behavior, WM brain, WM algorithms 
Similar to the RL process, the WM process should be explicitly defined in different subfields. 

WM broadly refers to an information-limited process used to hold a small amount of information 

in mind for a small amount of time, when that information is no longer perceptually available, 

for use in thought and action (a classic example is the memorization of a phone number). When 

we refer to WM, we refer to the process that allows agents to both store and manipulate 

information, which supports abstract, goal-directed behavior. Thus, we do not only consider WM 

as a passive storage unit, but also closely related to executive function.  

 

WM behavioral tasks (for example Figure 1D) all involve participants holding some number of 

representations in mind over a delay; participants are later tested on their retention either directly 

(enter the phone number) or via a manipulation (enter the phone number backwards). One 

canonical effect in the WM literature regardless of modality is the decreased accuracy and 

increased response with increasing number of memoranda (i.e., the “set size” effect; e.g., 

Sternberg, 1966; Luck & Vogel, 1997). This effect demonstrates one of the defining features of 

WM: its information-limited capacity. Despite its limited capacity, people are able to selectively 

maintain information more behaviorally relevant (Bays & Husain, 2008; Braver & Cohen, 2000), 

demonstrating the ability of WM to only “gate in” desired information. Another canonical effect 

is the decreased accuracy with increasing WM delay times and/or distractors, demonstrating the 

fragility of WM representations (e.g., Brown, 1958; Peterson and Peterson, 1959). These 
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behavioral characteristics of WM are in contrast to those of other, longer-term memory 

mechanisms, which are not capacity limited and do not require active maintenance to later recall 

information. We recommend the review article by Oberauer et al. (2018) for a comprehensive 

overview of different behavioral benchmarks of WM, across modalities and experimental 

paradigms. 

 

While “WM brain” is canonically characterized as elevated, persistent neural activity in the 

prefrontal cortex (Baddeley & Hitch, 1974; Funahashi et al., 1989; Fuster & Alexander, 1971; 

Figure 1B, bottom inset), recent neuroimaging studies have demonstrated that WM may be 

represented without elevated, persistent activity (e.g., Murray et al., 2017; Stokes, 2015; 

Christophel et al., 2012; Harrison & Tong, 2009; Riggall & Postle, 2012; Serences et al., 2009; 

although this remains debated, see reviews Constantinidis et al., 2018; Lundqvist, Herman, & 

Miller, 2018) and in other task-relevant regions (e.g., visual and parietal cortex in visual WM 

tasks: Christophel et al., 2012; Harrison & Tong, 2009; Jerde et al., 2012; Rahmati et al., 2018; 

Riggall & Postle, 2012; Serences et al., 2009, reviewed in Christophel et al., 2017). Though the 

exact characterization of WM in the brain is not agreed on, most researchers agree that it is 

fundamentally different from other longer term memory processes, in that it requires active 

maintenance and is thus more fleeting, subject to decay, and more energy consuming.  

 

Computational models of WM usually focus on either behavior or brain. For example, some 

models of WM behavior attempt to quantitatively characterize the nature of WM’s limitations, 

and what this can teach us about the format of WM representations (e.g., Bays & Husain, 2008; 

Fougnie et al., 2012; Luck & Vogel, 1997; Nassar et al., 2018; van den Berg et al., 2012, 2014; 

Zhang & Luck, 2008). Models of the brain’s WM signals attempt to characterize how stable but 

flexible representations can occur in biologically neural networks; they show that highly 

interconnected neural networks (e.g., some forms of recurrent neural networks; RNNs) can lead 

to stable attractor states that resemble the brain’s neural activity during WM maintenance and 

account for behavior (Compte et al., 2000; Masse et al., 2019; Moody et al., 1998; Zipser, 1991). 

Despite these computational efforts and in contrast to RL, there is a less direct match of WM to a 

subfield of artificial intelligence. Some AI algorithms do include memory mechanisms to solve 

problems that cannot be solved by classic RL, because they require past information to be 
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maintained to make appropriate choices (called Partially Observable Markov Decision 

Processes; POMDPs). These algorithms can share properties with biological WM, such as 

storing information in persistent activity rather than in network weights (e.g., RNNs), or 

maintain information over short periods of times in a controlled way where the agent can learn to 

gate the flow of information (e.g., Long Short-Term Memory, LSTMs (Hochreiter & 

Schmidhuber, 1997); Figure 1E). We will discuss the limitations of this similarity in the 

“Computational insights” section.  

 

The interplay of RL and WM 
The behavioral, neural, and computational instantiations within each process are overlapping, but 

distinct (see Eckstein et al., 2021 for a more in depth discussion on the distinctions in RL). For 

example, one can use “RL algorithms” to describe “RL behavior” (in cognitive modeling), and 

“RL algorithms” to explain “RL brain” (e.g., temporal difference learning well describes the 

striatal dopaminergic system in the brain). Similarly, “WM brain” is used for “WM behavior” 

(i.e., persistent activity in cortex might represent WM information that will be used to guide 

behavior).  

 

However, these subfields can also be disjointed within one process, or can interact with the 

subfields of another process. For example, RL brain and WM brain can both recruit the same 

cortico-basal ganglial loop in the brain, suggesting there is less of a difference between “RL 

brain” and “WM brain” (expanded in “‘RL and WM’ brain”). Additionally, RL can help explain 

WM brain characteristics and how WM can selectively prioritize more behaviorally relevant 

information (expanded in “RL → WM”), and cognitive and neural WM processes can help 

describe RL behavior (expanded in “WM → RL”). These interactions across processes are 

important for understanding each process alone as well as behavior and the brain as a whole.  

“RL and WM” brain 

Reinforcement learning and working memory are often studied in isolation, and are often 

assumed to rely on predominantly different brain areas, at a first approximation. However, a 

closer examination shows that these processes are neurally and behaviorally tightly intertwined 

(Figure 1C). Frontal cortex (the “WM brain” area) and basal ganglia (the “RL brain” area) are 
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connected to one another through multiple parallel loops (Alexander et al., 1986; Haber, 2011). 

In addition to the frontal cortex and thalamus directly projecting onto one another, many parts of 

the cerebral cortex project onto the striatum, which then projects to the globus pallidus or 

substantia nigra pars reticulata, then to the thalamus, and back to the frontal cortex. These 

cortico-basal ganglia networks, traditionally studied in the motor control literature, have been 

demonstrated to be involved in both RL and WM tasks.  

 

Prefrontal cortex has been implicated in many goal-directed RL tasks (Daw et al., 2005, 2011; 

Doll et al., 2016; Frank et al., 2007; Zhao et al., 2018), and activity in it has been shown to 

reflect reward prediction error (Javadi et al., 2014). Additionally, levels of dopamine in 

prefrontal cortex relate to WM performance (e.g., Bayram et al., 2021; Fallon et al., 2015; Fang 

et al., 2019). Damage to the basal ganglia can produce similar cognitive impairments as damage 

to the frontal cortex (e.g., Brown et al., 1997; Brown & Marsden, 1990; Middleton & Strick, 

2000). People with greater WM capacity / more WM resources are associated with better 

performance on serial response time tasks (de Kleijn et al., 2018), lower stress-induced 

detriments in instrumental behavioral tasks (Quaedflieg et al., 2019), learning acquisition (Segers 

et al., 2018), and lower biases in learning (Sidarta et al., 2018). Age-related RL decline may be 

due to not only decreased reward prediction error signalizing but also WM decline (van de 

Vijver & Ligneul, 2019).  

 

The above only provides weak evidence in support of a possible overlap in WM and RL 

processes. Indeed, representations of information are distributed across the brain, and we often 

discuss brain specification for convenience, not because we believe one area to be necessary and 

sufficient for a type of task. Thus, the existence of overlapping neural and behavioral correlates 

of RL and WM is unsurprising and not a strong indicator of their interplay. In the remainder of 

this section, we provide more compelling and direct evidence of their interplay. Some successful, 

biologically realistic models of cortico-basal ganglial loops are able to account for WM 

prioritization and WM gating, where information is selectively allowed or “gated” into WM 

(Chatham et al., 2014; Chatham & Badre, 2015; Hazy et al., 2007; O’Reilly & Frank, 2006; 

expanded in “RL→ WM”). Depending on context, WM can contribute or interfere with RL 

processes in learning tasks (expanded in “WM à RL”).  
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WM is the active maintenance of information in mind for later use. For example, when we are 

deciding what to wear in the morning, we may check our weather app, look out of the window to 

see the current weather, and remember the past days’ weather (illustrated in Figure 2). When 

going to our closet to change, we must maintain these different sources of information in WM, 

weighting them based on their reliability for predicting today’s weather. On one day, we may 

trust the current weather outside the most, dress inappropriately, and learn to rely on the weather 

app more in the future. In the future, we have learned to selectively maintain information from 

the weather app when getting dressed. How is information maintained in the brain over a 

working memory delay? How does the brain learn what information is important to remember? 

Here, we show that RL processes can contribute some answers to those questions. We will 

broadly discuss two families of models, the first concerning how information is maintained by 

the brain over a WM delay (which we will call storage models), and the second about how 

information is selectively maintained for goal-relevant behavior (which we will call action 

models).  

 
Storage models 
In storage tasks, participants remember some number of stimuli over a delay, then make a simple 

decision based on it. For example, participants may view a cluster of moving dots, maintain the 

dots’ direction of motion over a delay, see another cluster of dots, and make a decision whether 

the motion is the same as before the delay.  

 

RL algorithms for WM brain. RL models of WM storage tasks are mainly concerned with how 

neural signatures of WM may be reproduced. (Zipser, 1991) demonstrated that a recurrent 

learning-based neural network was able to capture the canonical elevated neural activity during 

the WM delay period, although using a biologically implausible backpropagation-through-time 

algorithm.  
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Figure 2. An illustrative example of how the RL process can be useful when learning what 

information to maintain in WM. When looking through our closet, we must maintain information 

relevant to today’s weather in WM. RL provides an explanation of how we learn iteratively over 

time what information is relevant to maintain in WM for later decisions.  

 

 

RL brain for WM behavior. If RL is involved in learning to use WM, can we see evidence of a 

role of dopamine in WM? Although dopamine does not exclusively represent RL in the brain 

(Lerner et al., 2021), it is strongly associated with RL processes, and is thus a reasonable 

heuristic for RL in the brain. The effects of dopamine levels on performance in WM tasks, while 

complex, are well characterized. For example, the role of dopamine in WM depends on task 

context (Furman et al., 2020), such as whether the task is spatial in nature (Gruszka et al., 2016; 

Luciana & Collins, 1997). It is debated whether it affects specifically interference / WM gating 

(Chatham et al., 2014; Chatham & Badre, 2015; Fallon, Mattiesing, et al., 2017; Fallon & Cools, 
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2014; Hazy et al., 2007; O’Reilly & Frank, 2006) or the precision with which one remembers 

items (Fallon, Zokaei, et al., 2017; Luciana et al., 1992). These differences could potentially be 

teased apart based on which dopaminergic system is being affected (striatal vs. frontal, 

antagonist vs agonist), the participant population (or more specifically, the baseline dopamine 

levels), and task design (some effects reviewed in (Cools & D’Esposito, 2011).  

 
Action models 
While storage models solve the simplest types of WM problems, where one or two stimuli need 

to be maintained across a WM delay, action models consider more realistic behavioral contexts, 

in which people are constantly presented with irrelevant information and WM must selectively 

process and store information. How does one learn what information is important to store in 

WM? In our real life example (Figure 2), how does one learn to selectively maintain information 

from the weather app when getting dressed? 

 

This working memory gating process, the ability to selectively maintain a subset of incoming 

information, can be studied experimentally through dynamic choice tasks, such as the 1-2-AX 

task (Frank et al., 2001; Figure 1D). In a simpler version of this task, the AX task, participants 

view a series of numbers and letters presented in time sequentially, and are instructed to respond 

with one key anytime A is directly followed by X, or when B is directly followed by Y. In the 

sequence 1, Y, A, X, 2, A, X, B, Y, the participant should respond on the fourth, seventh, and 

last trial. In the 1-2-AX task, there is an additional level of complexity, such that AX sequences 

should only be responded to when the most recent number was a 1, and BY sequences should 

only be responded to when the most recent number was a 2. In the above sequence, the 

participant should respond on only the fourth and last trial.  

 

This task has several, nontrivial WM demands in order to optimize behavior. The participant 

must simultaneously evaluate incoming information (on a trial-to-trial level), selectively 

maintain information (e.g., the most recent context 1, then As and Xs), and rapidly update goals 

(e.g., a 2 is presented, then Bs and Ys must be maintained selectively). People are able to do this 

successfully, but how does WM learn what information to remember and what not to remember? 
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“Who” decides what information is selectively gated into WM? RL provides an explanation of 

how WM learns what information is important, and thus when to gate.  

 

RL algorithm and brain for WM brain and behavior. Two examples of learning models of WM 

that include the ability for a WM process to maintain and update multiple items independently 

are the Long-Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 1997) and Prefrontal 

cortex - Basal ganglia Working Memory (PBWM; Hazy et al., 2007; O’Reilly & Frank, 2006) 

models. LSTM models were a computational innovation for neural network models. In addition 

to storing information in learned weights between neuron units, they also keep past information 

integrated into the network activity by feeding back past activity as an input to the current 

activity of neuron units. Their architecture utilized “memory blocks” with input, output, and 

forget gates (illustrated in Figure 1C) that allowed the network to independently and selectively 

maintain a number of stimuli, and maintain this information for much longer time periods than 

standard recurrent neural networks were able to do. The PBWM model was inspired by the 

connections between prefrontal cortex and basal ganglia, and offered a more biologically 

realistic model of how goal-relevant WM maintenance is learned. In this model, the basal ganglia 

learns through RL what is task relevant, and sends a teaching signal to prefrontal cortex which 

gates information in and out of memory. This model provided a critical extension from previous 

models (which include teaching signals from the basal ganglia to the prefrontal cortex; Braver & 

Cohen, 2000; Hochreiter & Schmidhuber, 1997) by articulating how the basal ganglia “knows” 

what is task relevant, and has been empirically supported (Rac-Lubashevsky & Frank, 2021). 

Both of these models are able to solve POMDPs, such as 1-2-AX by selectively storing the 

required information in memory.   

 

These models have served as an inspiration for later models that either trade complexity for 

interpretability or adjust internal representations for improved task generalizability. For example 

Todd, Niv, Cohen (2009) replaced the biologically realistic neural network combination of RL, 

supervised learning, and unsupervised learning methods in PBWM with a simpler, tabular 

version of an RL algorithm, demonstrating the core functionality of the gating component within 

PBWM, without the complexity (but losing most of the biological realism). Another notable 

model, Working Memory Through Attentional Tagging (WorkMATe; Kruijne et al., 2021), 
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combines the simple, biologically-plausible learning algorithm as the AuGMEnT model 

(Rombouts et al., 2012; Rombouts, Bohte, & Roelfsema, 2015), the gating structures in LSTM 

and PBWM models, and abstract stimulus representations. While WorkMATe takes longer to 

train initially on tasks compared to other models, it is ultimately able to complete a broader range 

of tasks (including the 1-2-AX task) with more flexibility; furthermore, it generalizes better 

across previously unobserved stimuli and task modifications compared to Todd et al.’s altered 

PBWM model.  

 

While these studies capture certain aspects of RL and WM, in a biologically-realistic way, they 

fail to capture all aspects. First, they fail to capture RL in a realistic way; these efforts typically 

use RL over very long time scales to train a network to do WM tasks, and in that sense do not 

relate to human RL (which is on a shorter time scale). Similarly, these models do not incorporate 

the  limited-capacity of WM. How would these biologically-realistic models behave in scenarios 

when the amount of information exceeds the storage capacity of the WM process? (Todd et al.’s 

model does test this, and finds that the model fails in a human-like way in an artificial grammar 

task.) Studying experimental scenarios in which information exceeds WM capacity allows us to 

truly study how WM can dynamically change according to behavioral demands. In humans, 

individual items maintained in WM are not maintained in an all-or-none fashion, but with 

variable precision (Fougnie et al., 2012; van den Berg et al., 2012), and this precision tracks with 

behavioral relevance (Bays, 2014; Emrich et al., 2017; Klyszejko et al., 2014; Yoo et al., 2018). 

With these imperfectly-remembered representations, additional questions arise like whether or 

not agents know how imprecise their memory is (in humans, they seem to, since confidence 

scales with accuracy (Fougnie et al., 2012; Honig et al., 2020; Li et al., 2021; Rademaker et al., 

2012; Samaha & Postle, 2017; Suchow et al., 2017; Vandenbroucke et al., 2014; Yoo et al., 

2018), and, if so, if they can use that knowledge for performance-relevant behavior (humans and 

monkeys seem to be able to: Devkar et al., 2017; Honig et al., 2020; Yoo et al., 2018, 2021). 

Neural networks that can represent uncertainty (Swan & Wyble, 2014) or probability 

distributions over representations (Soltani & Wang, 2010) seem like promising routes to 

investigate these questions, and can help us further understand how behavioral relevance, 

interference, and decay all contribute to our WM representations.  
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As discussed earlier, RL can refer to a set of behaviors, a family of computational problems and 

algorithms, or a network in the brain. In this section, we discuss how WM processes are essential 

to explaining RL behavior. We focus on two situations: those where WM supports RL and those 

where WM offers a “redundant” learning mechanism. 

 

WM provides inputs to RL processes. One example of the necessity of WM in some behavioral 

RL paradigms are scenarios in which some source of short-term memory is required to represent 

all information needed to make good decisions (POMDPs). For example, in an experiment where 

the correct response depends on the current and past trial’s stimuli (such as 1-2-AX or the task in 

da Silva et al., 2017), participants must maintain the previous trials’ stimuli in WM to learn the 

task correctly.  

 

In various situations, WM may play a supporting role to RL’s computations, such as providing 

input to RL computations by providing other information. In POMDPs, WM maintains stimulus 

information to correctly infer the current state. WM, however, may hold more than just stimulus 

information. For example, WM may maintain reward information itself (deviating from 

traditional theories in which reward information is only stored by RL processes): in the PFC-BG 

model developed by (Zhao et al., 2018), dopaminergic signals update both basal ganglia and 

prefrontal cortex, where reward information is encoded and updated in WM. Similarly, recent 

imaging work shows that WM helps transform novel goal stimuli into a signal the brain 

interprets as rewards for learning (McDougle et al., 2021). WM may assist RL by representing 

more abstract task-relevant information, to allow for generalization across tasks (Williams & 

Phillips, 2020), or by effectively lowering the set of states or actions RL operates over by 

filtering out irrelevant state spaces (Rmus et al., 2021). It would be an interesting direction of 

future study to investigate whether WM filters state spaces through attentional processes (e.g., 

Radulescu et al., 2019; Niv, 2019) and/or indirectly through its storage constraints.  

 

WM as a parallel learning process. While WM supports RL, in particular in environments where 

a memory of past information is necessary, it may also be useful in cases where the state is 
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sufficient to determine the correct choice (MDPs). For example, learning how to make 

dumplings (raviolis, samosas, and/or other dishes that involve surrounding ingredients with a 

relatively small amount of dough) involves learning the proper amount of stuffing to use 

(illustrated in Figure 3). If using purely an RL process to learn the optimal amount of stuffing, 

you may try some amount, realize you put too much, experience a negative reward prediction 

error, and iteratively use less stuffing until you find the optimal amount; you will eventually 

learn the correct amount of stuffing, but it may be a slow and iterative experience. With WM, 

you could simply remember how much stuffing you used in the last dumpling, remove the 

appropriate amount, and immediately learn the correct amount. Thus, while WM is not necessary 

to complete this task, it allows you to learn much more efficiently and quickly.  

 

 

 
Figure 3. An illustrative example of how WM can be useful when learning. When learning how 

to make dumplings, one must learn the optimal amount of stuffing to put into the wrapper. If 

they put too much stuffing in for dumpling t, they can iteratively learn the correct amount of 

stuffing with an RL process (learning the correct amount in n>>1 trials), or immediately learn 

the correct amount using WM (on trial t+1). While using WM to maintain and manipulate 

information to calculate the correct amount of stuffing may be more effortful at first (from panel 

2 to 3), it becomes effortless as the process is repeated.  

 

 

This type of contribution of WM to RL behavior has been directly demonstrated in the stimulus-

association task developed by Collins & Frank (2012). Within one block participants learned, 

through trial-and-error, the correct response to two to six different visual stimuli. Results showed 

that there was a classic WM set size effect on learning performance: participants were slower to 

learn on blocks where they had to learn the correct response of more stimuli in parallel. With two 
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stimuli, they appeared to make perfect use of memory by showing near optimal learning; with 

more stimuli, learning became increasingly more incremental. While purely RL models could not 

account for the results, even when improved with decay or interference mechanisms, they were 

well captured by a computational model where an RL and a capacity-limited WM component 

both contributed to choices, trading off depending on WM load. These results have been well 

replicated in the literature (Collins, 2018; Collins, Albrecht, et al., 2017; Collins et al., 2014; 

Jafarpour et al., 2019; McDougle & Collins, 2020; Viejo et al., 2015). In the “RLWM” model, 

the classic RL component learns iteratively the correct response associated with each stimulus 

from reward prediction errors. The WM component is implemented through an immediate-

learning but decaying and capacity-limited process. This model has been modified by others. 

Viejo and others (2015) modeled working memory with a Bayesian working memory 

framework, such that previous trials’ states, actions, and rewards are sampled to lower entropy 

until to some threshold (Viejo et al., 2015). This model as well as an extension of the RLWM 

model are able to capture reaction times across a range of phenomena (McDougle & Collins, 

2020). In these models, WM and RL are essentially redundant; they both learn to represent state-

action pairs (and succeed to varying degrees in different contexts); they are only identifiable in 

that they follow different dynamics (WM learns fast and forgets fast; RL learns slower but 

retains better).  

 

Such RL+WM models have mostly treated them as independent processes that trade-off for 

choice. However, there is increasing evidence that this is an oversimplification, as the two 

processes appear to feed each other information. While RL and WM appear to cooperate during 

learning, this can lead to surprising competitive interference in the long-term retention of 

stimulus-response associations (Collins, Albrecht, et al., 2017; Collins, Ciullo, et al., 2017). 

Responses that were learned on blocks with lower set sizes, where WM would be sufficiently 

able to maintain all the necessary information, resulted in a higher detriment in performance 

during a later test phase compared to responses that were learned on blocks with higher set sizes, 

blocks in which WM alone would not have maintain all learned information (Collins, 2018). This 

“tortoise and hare” effect could also be seen in experimental paradigms manipulating study 

intervals (temporally-massed items vs spaced led to better relative performance during learning 

phase, but worse during later testing; Wimmer & Poldrack, 2020) and training context (blocked 
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context vs. interleaved led to better relative performance during learning phase, but worse during 

later testing; Shea & Morgan, 1979). This finding could be explained by an interaction of WM 

on the brain’s RL mechanism, whereby WM fed reward expectations to the RL system, thus 

weakening the reward prediction error, and subsequent learning; an EEG study supported this 

theory by showing weaker RL-encoding neural signals in lower set sizes (Collins & Frank, 

2018).  

 

The importance of investigating inter-process dynamics 
Considering how RL processes could affect participant performance in WM tasks is important 

when designing WM experiments and interpreting their results. For example, some WM studies 

investigate whether people naturally behave in a way that is consistent with an optimal Bayesian 

observer, showing that they already know how to use information (e.g., memory uncertainty; 

Keshvari et al., 2012; Yoo et al., 2021) to maximize performance and consequently don’t have to 

learn it within the task. Because the RL literature has established that people can learn to behave 

optimally in relatively complex arbitrary tasks just from reinforcing feedback, it is important to 

either 1) withhold trial-to-trial feedback from the participants in these WM studies or 2) check 

for learning effects and interpret results accordingly (as reward is often used to motivate 

performance). Papers that implicitly argue that people behave optimally naturally but do not 

withhold correctness feedback and (e.g., Devkar et al., 2017; Honig et al., 2020; Yoo et al., 

2018) could be misleading; people may be learning optimal behavior over the course of the 

experiment with an RL process. 

 

Considering how WM contributes to behavior in RL tasks is equally important for making 

justified theoretical conclusions. For example, people with schizophrenia demonstrate deficits 

across a wide range of learning (Kim et al., 2007; Paulus et al., 2003) and RL tasks (Deserno et 

al., 2013; Gold et al., 2008), such as the Iowa Gambling Task (Shurman et al., 2005), 

probabilistic reinforcement, and reversal learning (Schlagenhauf et al., 2014; Waltz et al., 2007, 

2011; Waltz & Gold, 2007) but not in all learning tasks (Deserno et al., 2013).  Deficits in WM 

tasks (Barch & Ceaser, 2012), such as the Wisconsin Card Sorting test (Prentice et al., 2008) and 

change detection (Gold et al., 2003), are observed even more consistently. Studying either 

process in isolation may imply that schizophrenia affects both RL and WM processes. However, 
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Collins and others (2014) demonstrated that behavioral deficits in RL tasks in medicated people 

with schizophrenia could be entirely accounted for by WM’s contribution to RL tasks. Indeed, 

once factoring out WM contributions, they observed no learning deficit (Collins, Albrecht, et al., 

2017). This result could explain why some, but not other RL tasks lead to impairments, as they 

might have recruited WM differently. RLWM models can also account for age-related 

differences in behavior; the tortoise and hare effect changes with age, due to WM decline (van de 

Vijver et al., 2015; van de Vijver & Ligneul, 2019). These examples illustrate the risk of 

misattributing individual differences to the RL process when not accounting for potential other 

processes, such as WM.  

 

There may be some hesitation to accept that there are two dissociable processes that are 

redundant (albeit computationally distinct). However, this redundancy is not unusual in other 

systems (e.g., multiple retinotopic maps spanning low-level visual to prefrontal brain areas) or 

even within RL. For example, there are separate dopaminergic systems in prefrontal cortex and 

striatum, and three different dopamine genes (two indexing striatal function and one prefrontal 

cortex function) have been behaviorally dissociated, such that slower reinforcement and 

avoidance behavior are related to the striatal genes, and a quicker recency related behavior 

associated with prefrontal gene (Frank et al., 2007). More recently, the RL field has widely 

focused on differently defined RL computations: a model-free RL which simply integrates value 

from past reward prediction errors, and a model-based RL which uses more knowledge about the 

environment to make more forward-looking decisions (Daw et al., 2005, 2011; Daw & 

O’Doherty, 2014; Dolan & Dayan, 2013). This dissociation has also been mapped onto 

individual differences in dopaminergic genetic polymorphisms, where model-free RL related 

more to striatal and model-based more to prefrontal function (Doll et al., 2016). While these 

dichotomies all have limitations (Collins & Cockburn, 2020), they illustrate the prevalence of 

partially-redundant systems. Exactly identifying these processes (e.g., how WM relates to model-

based RL) is an important question for future research.  

 

Considering the trade off between RL and WM processes in different environments may help us 

understand other behavior. For example, RL learning rates, as inferred from participants’ 

behavior, increase in environments with more volatile reward structures (Behrens et al., 2007; 
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Iglesias et al., 2013). This behavior has been justified under a Bayesian framework, such that 

learning rates should increase with increasing uncertainty, which should increase with increasing 

environmental volatility (Courville et al., 2006; Mathys et al., 2011; Piray & Daw, 2020). A 

computational model that only considers a single RL process may find that the learning rate 

changes across contexts, but an RL+WM model may provide an alternative explanation for these 

results. Volatile environments may not result in an increase in the learning rate of the RL 

process, but lower the contribution of the temporally-slow RL process compared to the quick 

learning WM process. This interpretation is consistent with RL theories that suggest that a 

“model-based” process would be used more than a “model-free” process in higher-uncertainty 

situations (e.g., Daw et al., 2005; Pezzulo et al., 2013). 

 

Interactions with other processes 
While the purpose of this review is to specifically discuss the relationship between RL and WM 

processes, and the importance of studying them together, we would be remiss if we did not spend 

any time also discussing how RL and WM are affected by other processes like attention, episodic 

memory, and semantic memory. (While we do not discuss it here, we acknowledge that other 

processes are themselves influenced by WM and RL. attention: Downing, 2000; Olivers et al., 

2006; Soto et al., 2005; Wilson & Niv, 2012; long-term memory: Ranganath et al., 2005; 

Shohamy & Adcock, 2010; motor action choice: Codol et al., 2018; Holland et al., 2018).  

 

Attention has an immense effect on WM and RL, allowing us to filter information before storing 

it in WM (Chun et al., 2011; Souza et al., 2018) or learning from it (Farashahi et al., 2017; Leong 

et al., 2017; Niv et al., 2015). Brain areas associated with attentional control are similar to that of 

WM and RL (Braver et al., 2003; Dove et al., 2000; Leber et al., 2008). Some computational 

models of RL and WM explicitly include attention into the model. For example, in a 

modification of the ACT-R model (Anderson, 2007), attentional allocation is learned through 

RL, which informs what information should be held in WM (Stocco, 2017). This model is 

inspired by the cortico-basal ganglial loops, finding a relationship between behavioral measures 

of the indirect pathway in the basal ganglia and attention. Womelsdorf and others (2020) created 

a model with RL and WM components in addition to a selective suppression of non-chosen 

feature values and meta-learning mechanism adjusting exploration rates based on memory trace 
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of recent errors. These add ons are important to capture data in high-attentional load 

experimental conditions.  

 

In addition to attention, other longer-term forms of memory like episodic and semantic memory 

affect WM and RL tasks. For example, episodic memories can disrupt working memory 

representations (Hoskin et al., 2019). Recent trial information or goals (Destefano et al., 2020; 

Kong et al., 2020) and global prior information (Destefano et al., 2020; Honig et al., 2020) also 

affect behavior on WM tasks. Episodic memory of previous choices on stimulus affects current 

choice in a learning task (Bornstein & Norman, 2017). Counterfactual learning of items chosen 

against one another is modulated by the strength of the episodic memory for them (Biderman & 

Shohamy, 2021). In some people, memory strength and RL learning rate seem to trade off 

depending on experimental learning context (Yifrah et al., 2021). 

 

This relationship between long term memory and RL isn’t particularly surprising, considering 

the importance a long-term storage would have on more realistic environments, which have high-

dimensional, continuous, and partially-observable state spaces. In these scenarios, some other 

form of knowledge is required to approximate value functions over states that haven’t been 

observed before, and over time-lengths between action and rewards that aren’t realistic with an 

RL process alone. There has been an increasing effort to incorporate methods like “episodic 

learning” (RL augmented with episodic memory; reviewed in Gershman & Daw, 2017) and 

“experience replay” (computationally inspired from hippocampal replay, e.g., Foster & Wilson, 

2006, using long-term memories of experiences to augment learning; e.g., Mnih et al. 2015; Lin, 

1993) to achieve learning in more complex, realistic scenarios (e.g., Liu et al, 2021).  

 

Computational models, such as the one developed by (Balkenius et al., 2020), investigate how 

attention, semantic memory, and episodic memory jointly affect decisions in addition to RL and 

WM. An example they provide is deciding between two pasta brands at the grocery store; there 

are a number of current features you can use to decide (price, packaging, ingredients), but 

information not currently observable (e.g., your memory of using a similar product, your 

knowledge that one is associated with a fancy restaurant) also affect your decision when 

choosing. This model seems to be fairly flexible, and can account for a variety of choices and 
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reaction times; empirical studies are necessary to investigate the ability of this model to account 

for real data. The importance of many interacting processes is represented in other models: 

attentional allocation informs which long-term memory representations should enter WM 

(Stocco, 2017); attention provides a solution to long-term credit assignment problems (Kruijne, 

2021); and perception, working memory, and long-term memory contribute to rational decision 

making (Momennejad, 2021). Additionally, models like Todd et al.’s are considered WM-like, 

but are arguably closer to a form of long-term memory (Todd et al., 2009). Clearly, both long-

term and working memory are important in ecological decision-making tasks, and stating the 

presence of such processes is important.  

 

Just like how considering RL and WM in a vacuum neglects their complex interplay, considering 

these two processes alone also ignores their relationships with other processes. We believe 

investigating interactions between different complex processes is a difficult, but necessary 

challenge to understand the complexity of human behavior.  

 

Computational insights 
Reinforcement learning has long bridged Cognition and Computation, representing important 

parts of both modern AI research and psychology of learning and decision making, and showing 

how the two fields can be profitable sources of inspiration to each other. By contrast, working 

memory is acknowledged as an important aspect of human intelligence (Bull et al., 2008; 

Conway et al., 2003; Daneman & Carpenter, 1980; Harrison et al., 2015; Süß et al., 2002), but is 

a much less studied part of modern AI. Here, we explore AI’s efforts to incorporate WM-like 

processes into learning agents, and discuss whether any computational insights could be gained 

by more cross-talk between cognition and AI in this domain.  

 

Augmenting artificial agents with memory has long been recognized as necessary in some 

environments (Peshkin et al., 2001). In non-Markovian environments (e.g., POMDPs), the 

observable state is insufficient to determine an agent’s policy, and keeping memory of past 

information allows the agent to create a new, more complex “latent state” that fully characterizes 

what choice should be taken. Originally, this form of memory has been set up as a lookup table 

of discrete events (Peshkin et al., 2001; Todd et al., 2009), being able to store an arbitrary 
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amount of information over arbitrary periods of time, and for this reason is often considered 

more related to episodic memory. Recent research in deep learning has successfully incorporated 

such additional memory processing to deep-RL agents (Botvinick et al., 2019; Duan et al., 2017; 

Graves et al., 2014; Nagabandi et al., 2019), further augmenting their capabilities and making 

them more flexible, for example enabling few-shot learning and imitation learning.  

 

However, such memory mechanisms are not WM-like in multiple ways - they are potentially 

illimited, and rely on weight-like storage, rather than activity-based maintenance of information. 

There has been a recent push toward developing algorithms that have a human WM-like 

flexibility/generalizability across tasks, without focusing on biological realism. A promising 

avenue, called meta-RL or RL2 (Botvinick et al., 2019; Duan et al., 2016; Wang et al., 2018), 

takes inspiration from meta-learning and uses slow RL algorithms to train deep neural networks 

with recurrent units to store information in such a way that the network’s behavior (once its 

weights are fully trained and weights are frozen) mimics RL behavior at a fast, animal-like 

learning scale - i.e., uses recent reward information to make subsequent choices. This practice 

allows for neural networks to learn not only how to behave in one task (e.g., how to get the 

highest reward in a two-arm bandit task), but how to generalize its learning across similar tasks 

(e.g., all bandit tasks). These networks, however, also suffer from an initial training that is very 

slow and biologically implausible, which diminishes the viability of these models to explain 

human or animal learning. However, earlier efforts in simpler architectures have faster RL 

training times (Lloyd et al., 2012; Stocco, 2017), and show the potential fruitfulness of such 

approaches as models of human and animal learning in a more interpretable and biologically 

realistic way.  

 

WM-like mechanisms in AI and theoretical neuroscience still diverge from what we know about 

how WM is used and implemented in humans in one very important way: biological WM is 

fundamentally resource limited. When optimizing just for precision of WM representations, 

having a limited WM capacity may seem like a bug. However, a capacity-limited WM is a 

feature when considering the metabolic costs for a biological agent (Musslick & Cohen, 2021; 

van den Berg & Ma, 2018). It can also be considered a feature because it forces humans’ 

cognition to find the best compressed representations of their environment. For example, higher-
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order statistics (Brady & Tenenbaum, 2013; Brady et al., 2009; Brady & Alvarez, 2011) and 

similarities across stimuli (Nassar et al., 2018) are used to compress WM representations such 

that we can (introduce some biases in representations but ultimately) remember “more.” A 

capacity-limited WM allows for local, dynamic, efficient computation, with minimal practical 

effects on behavioral performance. Similarly, training artificial agents can come at a considerable 

environmental, computational, and financial cost (Hao, 2019; Strubell et al., 2019), and it may be 

beneficial to implement a limited-capacity WM process that can flexibly and dynamically 

allocate resources where behaviorally relevant.  

 

In summary, while the AI field has usefully incorporated memory processes that share features 

with biological WM, none really captures the core of WM. Furthermore, those models that 

incorporate both RL and memory usually do not use RL at a time-scale that can be considered 

realistic in comparison to either RL brain or RL behavior. We hypothesize that AI might benefit 

from considering a human-like working mechanism, augmenting other learning and memory 

processes, to capture more human-like flexible learning and decision making in dynamic 

environments.   

 

Conclusions 
We aimed to review critical literature demonstrating the importance and interconnectedness of 

the RL and WM processes. The goal of this review is not to diminish the extremely important 

work done by those in both fields of RL and WM, but emphasize the importance of collaborating 

and considering how different processes affect one another. Keeping other processes in mind will 

allow us to make better experimental designs, make more general conclusions, and ultimately 

learn more about behavior and the brain. We believe it is of particular importance for the RL 

field to consider WM in their experiments, since even the simplest of learning tasks, usually 

thought to target only RL, have been shown to rely on WM processes (Collins & Frank, 2012; 

Frank et al., 2007; McDougle & Collins, 2020; Rmus et al., 2021). The continued study of  RL 

and WM processes together will help us better understand the dynamics between them, the role 

of either in isolation, and behavior and the brain as a whole.  
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