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—— Abstract

We show that any product-depth A algebraic circuit for the Iterated Matrix Multiplication Polynomial
Q (dl/wz)A)

IMM,, 4 (when d = O(logn/loglogn)) must be of size at least n where ¢ = 1.618... is

the golden ratio. This improves the recent breakthrough result of Limaye, Srinivasan and Tavenas

A
(FOCS’21) who showed a super polynomial lower bound of the form n (d1/4 ) for constant-depth
circuits.
One crucial idea of the (LST21) result was to use set-multilinear polynomials where each of the
sets in the underlying partition of the variables could be of different sizes. By picking the set sizes
more carefully (depending on the depth we are working with), we first show that any product-depth

1/08
A set-multilinear circuit for IMM,, 4 (when d = O(logn)) needs size at least nQ<d ’ ) This

improves the n" (d ’ ) lower bound of (LST21). We then use their Hardness Escalation technique
to lift this to general circuits.

We also show that our lower bound cannot be improved significantly using these same techniques.
For the specific two set sizes used in (LST21), they showed that their lower bound cannot be
improved. We show that for any d°) set sizes (out of maximum possible d), the scope for improving
our lower bound is minuscule: there exists a set-multilinear circuit that has product-depth A and
size almost matching our lower bound such that the value of the measure used to prove the lower
bound is maximum for this circuit. This results in a barrier to further improvement using the same
measure.
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1 Introduction

An Arithmetic Circuit is a natural model to compute multivariate polynomials over a field F.
It is a layered directed acyclic graph with leaves labelled by variables x1, ..., z, or elements
from F. The internal nodes are alternating layers of either addition (+) or multiplication (x)
gates. The circuit computes a polynomial in F[zy,...,x,] in the natural way: the + gates
compute arbitrary F-linear combination of their inputs and the x gates compute the product.
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Some associated complexity measures are of particular importance. The size of the circuit is
the total number of nodes (edges) in the graph. The depth of the circuit is the number of
layers in the circuit. By product-depth, we mean the number of layers of multiplication gates
(depth is roughly twice the product-depth). Arithmetic Formulas are a subclass of circuits
whose underlying graph is a tree. For general survey of the field of Algebraic Complexity
Theory, see [3, 30, 21].

Valiant [34], in a very influential work defined the classes VP and VNP which can be
considered the arithmetic analogues of P and NP. Much like in the Boolean world, the
question of whether VP and VNP are the same is one of the central open problems of algebraic
complexity theory. Though the best known lower bounds for general arithmetic circuits [2]
(Q(nlogn)) and formulas [10] (Q(n?)) fall far short of the super polynomial lower bounds
that we hope to prove, there have been many super polynomial lower bounds known for
various restricted classes [22, 23, 24]. See [4, 26] for excellent surveys of lower bounds.

One of the most interesting restrictions is that of bounding the depth of circuits and
formulas. When the depth is a constant, circuits and formulas are equivalent up to polynomial
blow up in their size and hence we use them interchangeably in this paper. Unlike the
Boolean world though, a very curious phenomenon of depth reduction occurs in arithmetic
circuits [35, 1, 16, 31, 8] which essentially says that depth 3 and depth 4 circuits are almost
as powerful as general ones. Formally, any degree d polynomial f that has a size s circuit can
also be computed by a depth 4 homogeneous circuit or a depth 3 (possibly non homogeneous)
O(Vd) | Hence proving an n“Vd) lower bound on these special circuits is
enough to separate VP from VNP. The extreme importance of bounded depth circuits
has led to a large body of work proving lower bounds for these models and their variants
[28, 29, 25, 11, 7, 13, 17, 6, 18, 14, 12, 15, 9].

circuit of size s

The LST breakthrough. Recently in a remarkable work, Limaye, Srinivasan and Tavenas
[20] proved the first superpolynomial lower bound for general constant depth circuits. More
precisely, they showed that the Iterated Matrix Multiplication polynomial IMM,, 4 (where
d = o(logn)) has no product-depth A circuits of size nd”* 7 The polynomial IMM,, 4
is defined on N = dn? variables. The variables are partitioned into d sets X, ..., Xy of n?
variables each (viewed as n X n matrices). The polynomial is defined as the (1, 1)-th entry of
the matrix product X; Xs - -+ Xy. All monomials of the polynomial are of the same degree
and so IMM,, 4 is homogeneous. As the the individual degree of any variable is at most 1, it
is also multilinear. Moreover, every monomial has exactly one variable from each of the sets
X1,...,Xq. Hence the polynomial is also set-multilinear. For any A < logd, IMM,, 4 has

O(d/%) " There are no significantly

a set-multilinear circuit of product-depth A and size n
better upper bounds known even if we allow general circuits. It makes sense to conjecture
that this upper bound is tight (see [5] for limitations to improvement in special cases).

The lower bound of [20] proceeds by first transforming size s, product-depth A, general
algebraic circuits computing a set-multilinear polynomial of degree d to set-multilinear
algebraic circuits of product-depth 2A and size poly(s)d®(@ (which is not huge if d is small).
Hence lower bounds on bounded depth set-multilinear circuits translate to bounded depth
general circuit lower bounds albeit with some loss. Finally, considering set-multilinear circuits
with variables partitioned into sets of different sizes and crucially using this discrepancy of

set sizes helps in obtaining strong set-multilinear lower bounds.

Our Results. In this work, we improve the lower bound for IMM against constant depth
circuits. We also exhibit barriers to improving the bound further using these techniques,
which is of importance as this is the only known approach to achieve super polynomial lower
bounds for general low depth circuits.
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For the rest of this paper, let u(A) = 1/(F(A) — 1) where F(n) = O(¢™) is the n-th
Fibonacci number (starting with F(0) = 1, F(1) = 2) and ¢ = (1 ++/5)/2 = 1.618.... is the
golden ratio.

» Theorem 1 (General circuit lower bound). Fiz a field F of characteristic O or characteristic
> d. Let N,d,A be such that d = o(log N/loglog N). Then, any product-depth A circuit

computing IMM,, 4 on N = dn? variables must have size at least NU@ D /8)

Q(dl/(QZA*U/A>

» Remark. Theorem 1 improves on the lower bound of N of [20] since

F(2A) = O(¢?2) <« 228,

To prove Theorem 1, we use the hardness escalation given by (Lemma 6) which allows
for a way to convert general circuits to set-multilinear ones without too much size blow up,
provided the degree is small. The actual lower bound is proved on set-multilinear circuits.

» Theorem 2 (Set-multilinear circuit lower bound). Let d < (logn)/4. Any product-depth A

(a)
set-multilinear circuit computing IMM,, 4 must have size at least nQ(d“ ° /A).

Q(d1/<2A‘1)/A)

» Remark. This is an improvement over the n bound of [20, Lemma 15]. Also,
the result holds over any field F. The restriction on the characteristic in Theorem 1 comes
from the conversion to set-multilinear circuits. The difference between p(2A) in Theorem 1
and p(A) in Theorem 2 is also due to the doubling of product-depth during this conversion.

In a recent work [32], Limaye, Srinivasan and Tavenas proved a product-depth A set-
multilinear formula lower bound of (log n)Q(Adl/A) for IMM,, 4. There is no restriction of
degree, but in the small degree regime, the bound is much weaker than [20] and cannot be
used for escalation. Improving on it, Kush and Saraf [19] showed a lower bound of nn'/2/8)
for the size of product-depth A set-multilinear formulas computing an n2-variate, degree n
polynomial in VNP from the family of Nisan-Wigderson design-based polynomials. Unlike
both [32] and [19], we are interested in the low degree regime where set-multilinear lower
bounds can be lifted, and our bounds will be for IMM (a polynomial in VP), making these
works incomparable to ours. We now prove Theorem 1 & la [20, Corollary 4]:

Proof of Theorem 1. From Lemma 6 and Theorem 2, for a circuit of product-depth A
and size s computing IMM,, ; we get that do(d)poly(s) > NU@ 2 /28) Since d =
O(log N/loglog N), it follows that d°(? = NO() Therefore, poly(s) > Nﬂ(d“(m)/zA)/do(d)
>N (a2 /44) implying the required lower bound on s and thus, also Theorem 1. <

» Remark. Theorem 1 also holds when d = o(log N) and A < 1/4log, logd. This is because

the above bound on A implies that d#*4) /A > dﬂ(l/wm)/A > d?(/V1ed) /oglog d > log d.
Using this inequality together with the assumption d = o(log N), we get dO(d) = 90(dlogd) <
go(log N-d“ 2 /A) — No(@* 2 /8) whence we can proceed similarly to the proof of Theorem 1.

The hard polynomial for which we prove set-multilinear lower bound is actually a word
polynomial (Definition 4) which is a set-multilinear restriction of IMM (Lemma 5). Hence
the lower bound gets translated to IMM,, 4. These word polynomials are set-multilinear with
respect to (X1,...,Xy) where each of the X;s could potentially be of different sizes.

For the two specific set sizes considered in [20], they also exhibit polynomials that match
their lower bound. It still leaves open the question whether we can improve the lower bound
if we choose some other set sizes. In Theorem 2, by choosing two set sizes that are distinctly
different from the ones in [20], we show that it is indeed possible to improve their lower
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bound. It might then seem plausible, that using many more set sizes could improve the
lower bound further. We show that this is false for most cases. Suppose there are « different
set sizes among the X;s. We show that there are set-multilinear polynomials which can be
computed by product-depth A circuits having size roughly comparable to the size lower
bound of Theorem 2, provided ~ is not too large. Formally,

» Theorem 3 (Barrier). Let s1,...,5y be positive integers. Fiz sets X1,...,Xq where for
all i, | X;| € {s1,...,8y}. For any fized positive integer A, there exist polynomials Pa and
Qa that are set-multilinear with respect to X1,...,Xq such that Pan can be computed by

O(A’yd“(A))

product-depth A circuits of size n and Qa can be computed by product-depth A

O(Ad* (A=Y 4v)

circuits of size n . Moreover, both Pn and Qa maximise the measure used to

prove lower bounds.

» Remark. The two different polynomials with slightly different sizes will imply barriers to
improving the lower bound in different regimes of . Suppose A is small (say A = O(1)).
When v = O(1), the size of Po matches our lower bound, essentially implying its tightness.
When « is d°M), the size of Qa is only slightly larger than the lower bound (note u(A — 1)
vs u(A)). Hence even using multiple set sizes, the scope for improvement is tiny.

In an almost parallel work [33], Limaye, Srinivasan and Tavenas show similar barrier
results. They simplify the proof framework of [20] and give a characterization of the lower
bounds that can be proved via this technique using a combinatorial property which they
term Tree Bias. Their result works for any d set sizes but the upper bound they obtain is
weaker. More precisely, for any partition (X1,...,Xy) of the input variables they exhibit a
set-multilinear polynomial that can be computed by product-depth A set-multilinear circuits

Q(log A)
of size n?’* while simultaneously maximising the measure. These barrier results
(Theorem 3 and results of [33]) suggest that new measures might be necessary to improve

the lower bounds.

2 Preliminaries

For any positive integer n, we denote by F(n) the n-th Fibonacci number with F(0) = 1,
F(1) =2 and F(n) = F(n — 1) + F(n — 2). The nearest integer to any real number r is
denoted by |r]. We follow the notation of [20] as much as possible for better readability.

We consider words that are tuples (wy, ..., wq) of length d where 2lwil are integers. These
words define the actual set sizes of the set-multilinear polynomials we will be working with.
Given a word w, let X (w) denote the tuple of sets of variables (X;(w), ..., X4(w)) where
the size of each X;(w) is 2/":l. We denote the space of set-multilinear polynomials over X (w)
by Py [X ()]

For a word w and any subset S C [d], the sum of elements of w indexed by S is denoted
by ws = > ,cqw;. If for all t < d, Jwyy| < b, then we call w b-unbiased. Denote by wg the
sub-word indexed by S. The positive and negative indices of w are denoted P, = {i | w; > 0}
and NV, = {i | w; < 0} respectively with the corresponding collections {X;(w)};ep, and
{X;(w)}ien, being the positive and negative variable sets. We denote by MZ (resp. M%)
the set of all set-multilinear monomials over the positive (resp. negative) variable sets.

The partial derivative matriz M., (f) has rows indexed by MP and columns by M.
The entry corresponding to row my € ME and m_ € MQ/ is the coeflicient of the monomial
mym_ in f. The complexity measure we use is the relative rank, same as [20]:

I'eh‘kw(f) — rank(Mw(f)) — ra’nk(Mw(f)) <1.

VIME]- MY Q%Ziem wil
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The following properties of relrk,, will be useful (see [20] for the proofs).
1. (Imbalance) For any f € Fy,[X (w)], relrk,, (f) < 27 ww@l/2,

(Sub-additivity) For any f, g € Fgp,[X (w)], relrk,, (f + g) < relrk,, (f) + relrk,, (g).

3. (Multiplicativity) Suppose f = fif2--- f; where f; € Fyp,[X(w)g,)] and (S1,...,S¢) is a
partition of [d]. Then, relrky (f) = relrky, (fif2 -+ fi) = [ relrkuw s, (fi)-

N

We now define the hard polynomials we prove lower bounds for. For any monomial
m € Fom[X (w)], let my € ME and m_ € MY be its “positive” and “negative” parts. As
|X;| = 2!"il| the variables of X; can be indexed using boolean strings of length |w;|. This
gives a way to associate a boolean string with any monomial. Let o(m.) and o(m_) be the
strings associated with m . and m_ respectively. We write o(m.y) ~ o(m_) if one is a prefix
of the other.

» Definition 4 ([20, Word polynomials]). Let w be any word. The polynomial P, is defined

as the sum of all monomials m € Fyp, [ X (w)] such that o(my) ~ o(m_).

The matrices M,,(P,,) have full rank (equal to either the number of rows or columns,
whichever is smaller) and hence relrk,, (P,,) = 271*@!/2, We also note (without proof) that
these polynomials can be obtained as set-multilinear restrictions of IMM,, 4.

» Lemma 5 ([20, Lemma 8]). Let w be any b-unbiased word. If there is a set-multilinear
circuit computing IMMags 4 of size s and product-depth A, then there is also a set-multilinear

circuit of size s and product-depth A computing the polynomial Py, € Fsp[X (w)]. Moreover,
relrk,, (P,) > 27%/2.

We also state the set-multilinearization lemma alluded to before.

» Lemma 6 ([20, Proposition 9]). Let s, N, d, A be growing parameters with s > Nd. If C is a
circuit of size at most s and product-depth at most A computing a set-multilinear polynomial
P over the sets of variables (X1,...,Xq) (with | X;| < N), then there is a set-multilinear
circuit C' of size do(d)poly(s) and product-depth at most 2A computing P.

3 Proof outline

From the discussion in Section 1 and Lemmas 5 and 6, in order to prove general circuit
lower bounds, it suffices to prove that there is a high rank word polynomial that needs large
set-multilinear formulas. For a word (and hence set sizes) of our choice, we show that relrk,,
is small for set-multilinear formulas of a certain size.

Let k be an integer close to logyn. In [20], the authors choose the positive entries of
the word w to be an integer close to k/v/2 and the negative entries to be —k. Evidently,
these entries are independent of the product-depth A. In this paper, we take the positive
entries to be (1 — p/q)k and the negative entries to be —k where p and ¢ are suitable integers
dependent on A. This depth-dependent construction of the word enables us to improve the
lower bound. We demonstrate the high level proof strategy of the lower bound for the case
of product-depth 3.

Proof overview of Theorem 2 for A = 3. Define G(i) = 1/u(i) = F(i) — 1 for all ¢ and
let A = [d"/¢®)]. Consider a set-multilinear forumula C' of product-depth 3 and let v be a
gate in it. Suppose that the subformula C'(*) rooted at v has product-depth § < 3, size s and
degree > A9 /2. We will prove that relrk,, (C(")) < s27%/48 by induction on §. This will
give us the desired upper bound of the form s2=5/48 = sn=2(@ @) o the relative rank of
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the whole formula when v is taken to be the output gate. Write C(*) = C; + - - - + C; where
each C; is a subformula of size s; rooted at a product gate. Because of the subadditivity of
relrk,,, it suffices to show that relrk,, (C;) < 5;27kA48 for all g.

Base case. If § =1, then C; is a product of linear forms. Thus, it has rank 1 and hence
low relative rank.

Induction step. ¢ € {2,3}. Write C; = C;;1...C;+, where each C; ; is a subformula of
product-depth  — 1. If any C; ; has degree > AGO=1) /2 then by induction hypothesis, the
relative rank of C; ; and hence C; will have the desired upper bound and we are done.

Otherwise each C; ; has degree D;; < A\G(0-1) /2. As the formula is set-multilinear, there
is a collection of variable-sets (Xl)lesj with respect to which C; ; is set-multilinear. For
J € [ti], let a;; be the number of positive indices in S i.e. the number of positive sets in the
collection (X;);cs;. Then the number of negative indices is (Dj; — asj).

We consider two cases: if a;; < Dy;/3, then ws; < (D;;/3) - (1 —p/q)k + (2Di;/3) - (—k)
< —D;jk/3. Otherwise a;; > D;;/3 and if we can prove that [ws,| > aijk/(4AF@)=1) then
in both of the above cases, we would have |wg,| > Dyjk /(122G ~1) By the multiplicativity

ti 5|Ws .
and imbalance property of relrk,,, it would follow that relrk,, (C;) < 223-:1 —zlws;| < 9—kA/48
and we would be done. Thus, we now only have to show that |wg,| > aijk/(ANCO)=1) We
have

lws;| = lai;(1 —p/q) — (Dij — ai;)| k .

Notice that |ws,|/k is the distance of a;;p/q from some integer, so it must be at least the
minimum of {a;;p/q} and 1 — {a;;p/q} where {.} denotes the fractional part. The number
a;;p/q being rational, has a fractional part ¢ = (a;;p mod ¢)/q and hence it comes down to
solving the following system of inequalities:

min (¢, 1 —¢) > ai;/(4XEO71) for § € {2,3} when a;; < D;; < AG0~1 /2

Assign p =\, ¢ = A? + 1. The § = 2 case is clearly satisfied as (a;;A mod (A% + 1)) = a;;\
when 0 < a;; < \/2.

Consider the case of § = 3 and a;; < A\?/2. Write a;; = 11\ + yo for integers
1 = lai;j/A] < A/2 and yo < A — 1. Thus, a;;A = —y1 + yoA mod (A\? + 1). Through

some case analysis, one can show that min (|y0)\ — 1]y, A2 41— |yoX — y1|> > y; which

immediately implies the inequality for the § = 3 case as y1 = |as;/A] > a;;/(2N).

We can attempt to extend this proof technique to product-depth 4 as follows:
We would similarly want to express a;; as a;; = y2 A2 +y1 A\ +yo for integers yo = [a;;/A?],y0 <
A —1and y; <\ — 1. Ideally, we would want that for some ¢ ~ \*,

pA2 =1mod ¢, pA = —X? mod ¢ and p = X\* mod ¢

so that a;;p = y2 — y1A? + yoA* mod ¢ and then we can carry out a similar analysis as in the
A = 3 case. But this is not possible since multiplying the second congruence equation by A
gives pA? = —\3 mod ¢, which contradicts the first congruence equation. So we decide to
express a;;j as a;; = yaba +y1b1 +yobo where ba, by, by are close to A%, \, 1 respectively, instead
of being precisely equal to these powers of \. Then we choose ¢y ~ 1,¢; = —A2,co ~ A3 and
we assign values to p and ¢ such that

pbs = ¢ mod ¢q, pby = ¢; mod ¢ and pby = ¢g mod q.
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It is easy to verify that all these conditions are satisfied if we define

bo = ].,bl :>\,b2 :b1(>\7 1)+b0, Cy = ].,Cl = 7)\2,60 202701()\7 1),
p=co and ¢ = pb; — c;.

This inspired our construction of the sequences {b,,} and {¢,,} for general product-depth A.

Proof overview of Theorem 3. As mentioned before, we would like to find a family of
polynomials for which our lower bound is tight. All the same, we want to maintain high
relative rank of these polynomials. If we are able to achieve this and find the appropriate
small sized formulas for the said polynomials, we will have that the lower bound cannot be
improved using the relative rank measure.

The polynomial P we define will be a close variant of the word polynomials from before.
This will ensure that the partial derivative matrix has the maximum possible rank for a
matrix of its dimension. From the Imbalance property, the relative rank we obtain is 2~ 1%1l/2
where we have ensured that wig is small. We want to construct the formula F' for P such
that it has a nice inductive structure. That is, we want the polynomials computed by the
subformulas of F' to also have high relative rank. This will help us construct a formula from
its sub formulas while maintaining high relative rank.

Suppose a subformula F’ of F is set multilinear with respect to a subtuple T of the sets
of variables X (w). Let these sets in 7 be indexed by a set S7 C [d]. As we would like high
relative rank of F”, the Imbalance property again suggests that |wg, | be small. And we
desire this of every subformula, their subformulas, and so on. So roughly, we want a way to
partition our intial index set [d] into some number of index sets S, ..., S, such that each
lws, | is small. Suppose we are then able to create subformulas of rank 2~1“s:1/2, Tt turns out

that we will have to add roughly 2Z lws; | many of them to get a polynomial of high relative
rank. So to control the size of the formula, we would like ) . Jwg,| to be small as well.

In their Depth Hierarchy section, [20] use Dirichlet’s approximation principle [27] to pick
these nice index sets {S;}. Their procedure only works for the particular two variable-set
sizes they choose. We extend this to any two set sizes in Claim 13. Interestingly, we do not
use Dirichlet to pick the index sets but rather to obtain a lower bound on the size of the
sets that we do eventually pick. We think of picking sets as an investment process: when we
pick a set S, we buy the |S| elements in it for a cost of |wg|. Hence the cost per element is
|ws|/]S|. At each product-depth, we are only allowed to pick sets of size under a certain
threshold and we pick the ones with the lowest cost per element. It turns out that this lowest
cost decreases exponentially as the depth increases and helps us build a small formula. The
decrease is captured by the Fibonacci numbers and is the reason why they emerge in our
lower bound and upper bound.

Making these ideas precise requires extensive notation and we postpone further discussion
to Section 5.

4  The lower bound: Proof of Theorem 2

In this section we prove the set-multilinear lower bound of Theorem 2.

Fix the product-depth A for which we want to prove the lower bound. Define G(i) :=
F(i) —1 for all i and X\ = [dY/%(®)|. We can assume that A > 3 because otherwise d*(*) < 3
and in that case, the lower bound is trivial. The lower bound we aim to prove is G
We first define the sequences {b,,} and {¢,, } mentioned in the proof overview:

Let 7y, := AGm+D=G0m) _ 1 for 0 < m < A — 2.
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Define
bop:=1, by:=Aand by, :==byp—92+rp_1bp_1for2<m<A-2.
Define

camz = (—1)27% cp_gi= (m1)ATINGATNZEA2) apg

em = (=)™ (|lems2] + rma1leme1]) for A—4>m >0.

Note that the sign parity of ¢,, is (—1)™ for all m.
Thus, ¢m_2 = (—1)""2(lem| + Pm_1lem_1]) = ¢m — Pm_1¢m_1 which implies

Cm = Cm—2+Tm_1Cm_1for2<m<A-2.

It can be shown (see the full version for the proof) that each b, is close to A“(™) and
(A—1)—G(m+1)

each |c,,| is close to ¢

\G(m) Gm) N\G(A-1)-G(m+1) G(A-1)—C(mi1)
5 <by, <A and — <lem] < A for all m. (1)
Define

p:=co and q:=pby —c1 =co(ro+1)—cy .

By defining the integers p and ¢ this way, we have ensured that pby = ¢y mod ¢ and
pby = ¢1 mod ¢q. Hence from the relations b,,, = b, _o+7pm_1bm_1 and ¢, = Cm_o2+Tm—_1Cm_1,
it inductively follows that

pby, =cp,modg  for0<m<A—-2. (2)

Constructing the word. Define « =1 —p/q. As P < €0

——  =1/), we have o > 1/2.
q_C(](T0+1) / /

Since ¢ = cgA — c1, it implies that
q < lcolA+ |e1| < 209D < d < |logyn]/2

where the second inequality follows from the upper bound on each |¢,,| in (1). Therefore,
there exists a multiple of ¢ in the interval [%, |log, nJ} Let k be this multiple of q.
Then ak is an integer. We can construct a word w over the alphabet {ak, —k} such that w
is k-unbiased. This can be done using induction: if |wy;| <0, set w; 11 = ak, otherwise set
Wi4+1 = —k.

With these definitions in place, we are ready to prove Theorem 2. Assume the following
lemma;

» Lemma 7. Let 6 < A be an integer and o, k be as defined above. Let w be any word of
length d over the alphabet {ak,—k}. Then any set-multilinear formula C of product-depth ¢,
degree D > \°©) /8 and size at most s satisfies

relrk,, (C) < s27FA/256,
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Proof of Theorem 2. By lemma 5, there exists a set-multilinear projection P,, of IMMy« 4
such that relrk,, (P,) > 27F. If there is a set-multilinear circuit of size s and product-depth
A computing IMM,, 4, then we can expand it to a set-multilinear formula of size at most
522 which computes the same polynomial. Hence we will also have a set-multilinear formula
of size at most 22 computing P,. As d > A\G(») /8 taking the particular case of § = A in
Lemma 7, we obtain relrk,, (P,,) < s22427#3/256 This gives the desired lower bound

n 41/G(A) -
512 A
§28 > 9kokA/256 5 (Z) /n = U@ ) <

Proof of Lemma 7. We proceed by induction on 6. We can write C = Cy + - - - + C; where
each C; is a subformula of size s; rooted at a product gate. Because of the subadditivity of
relrk,,, it suffices to show that

relrk,, (C;) < 5,27 k256 for all 1.

Base case. C has product-depth 6 = 1 and degree D > A\/8.
Then C; is a product of linear forms. If L is linear form on some variable set X (w;), then
relrk,, (L) < 271wil/2 < 27%/4 Therefore by the multiplicativity of relrk,,,

relrk,, (C;) < 2= kD/4 < 9=kA/32
Induction hypothesis. Assume that the lemma is true for all product-depths < § — 1.

Induction step. Let C be a formula of product-depth § and degree D > )\G(‘S)/S.
We can write C; = C 1 ... C; 4, where each C; ; is a subformula of product-depth ¢ — 1.
If C; has a factor, say C; 1, of degree > AGOO=1) /8 then by induction hypothesis,

relrk,, (C;) <relrk,,(C; 1) < §,27FA/256

Otherwise every factor of C; has degree < )\G(‘S_l)/& Let C; = C;,1...C;+, where each
C;,; has degree D;; < NGO=1) /8 Tf C; is set-multilinear with respect to (X;);cs, then let
(S1,...,5:) be the partition of S such that each C;; is set-multilinear with respect to
(X1)ies; -

For j € [t;], let a;; be the number of positive indices in S;. We have two cases: If a;; < D;;/2,
then

Dijp]{; < _Dijk’

D.. D;;
ws, < ok + S (<h) = -2k < -8

J 2 2
where the last inequality follows from % > m = % The other case is a;; > D;;/2. If
we can prove that |wg,| > a;;k/(8A%(9~1), then in both of the above cases, we would have
lws,| > Di;k/(16AG@)~1). By the multiplicativity and imbalance property of relrk,, and the
assumption D > \¢() /8, it would follow that

relrky (C1) < Ht 1 9~ §lws;| < 9~ Dol Digh/(3229071) 9—=Dk/(B22O 1) 5—ka/256
Jj=

and we would be done. Thus, we now only have to show that |wg,| > a;;k/(8AF®)~1).

p
lws, | = laij - ok + (Dij — ag;) - (—k)| = @iy~ (2ai; — Dij)| k as a=1-p/q
> |2ub {a”p-‘ ‘ k where |.] denotes the nearest integer.
q q
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ij i d
The fractional part of 4P is 4P Mo g Hence in order to prove that |ws,| >
q
aijk/(8AG)=1) it is enough to verify that the following inequality is satisfied:
. (aijpmodg . aipmodg S G
min < . ,1 . Z eI (3)

Showing that the p, g we defined satisfy the inequality (3). We will first find what we

call the base (b, . ..,ba—2) representation of the number a;;. For 0 < m < A —2, inductively
A—2
define y,,, to be the integer quotient when (aij - > bm/ym/> is divided by b,,. Then we
m/=m+1

A2
can express a;j as i; = . byYm. Since by, > AE(m) /9 for all m and a;j < Dj; < \GO=1) /8
=0

we have the following bounds on the values of Ym'

Ym =0 form >3 —1, (4)
AGL-D G(5—-1)—G(6—2)
Qij A -1 rs_9
2
it — 1
ymg{?J:rmform<5—2. (6)
A—2

By (2), aijp= ) ¢mYym mod q. Therefore,
m=0

a;;p mod g a;;p mod ¢ =2 =
min < o q ,1— B q > = min < § CmYm /qa 1- 5 CmYm /Q> (7)
m=0 m=0

if
proof):

ZA;?) cmym‘ /q < 1, which is true by the following claim (see the full version for the

m

A—2

> Claim 8. If 0 < y,,, <1y, for all m, then | > cmym’ < q-—co.
m=0

Now let f be the highest index such that y; > 1 (by (4), f < —2) and e be the smallest
index such that y. > 1. Then ‘Zﬁ;(?) cmym‘ = ‘ZLZS cmym‘. We need two more claims
whose proofs can be found in the full version.

> Claim 9. Let y,, be non-negative integers such that y. > 1. Then ‘21’;:6 CmYm| >
min (nyf, lep—1l = |Cf?/f|>-

> Claim 10. Let {ym}5m_:20 be a sequence of non-negative integers. Let f < d — 2 be the

highest index such that yr > 1. Iff ys_o = |57= | <rs_2/2and 0 < yp, < 7y forallm < §—-2,

i
5—2

ehen i (Jegygl 1| legus|) = feo-aais /(23]

If § =2, then f =0 by (4). Thus ¢ — ‘ZTJ;:e Cm¥Ym| > coTo — |coyo| > coro/2 > |eryyl
where the last two inequalities follow from (5).
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Otherwise § > 2. By Claim 8, ¢ — ’Z&:e cmym’ > ¢p. From the definition of the sequence

{em}, we have cg > |cyry| > |cpys| when f > 0. But when f = 0, it follows that ys_o =0
implying a;; < bs—2. This further implies ¢y > |cs—2| > |cs—2ai;/bs—2].
From the analysis of the two cases above and by Claims 9 and 10, we get that

f f
min < Z CmYm Z CmYm >/q >
m=e m=e

The bounds on each b, and |¢;,| given in (1) imply the following:

C5—2045
2bs—2q

y 4 —

|C572| Z )\G(A—l)_G(é—l)/2, b572 S )\G(6—2)’ q S |CO|)\ + |Cl| S 2)\G(A—1) .

aij aij

f f —
Dm—e Cmym‘/qv 1 - ’Zm:e Cmym‘/q) e SAG(-1)+G(3-2) ~ g{)\G(8)-1
which together with (7) implies (3). <

Hence min (

5 Limitations on improving the bounds: Proof of Theorem 3

We will show here that the techniques of [20] cannot hope to prove much stronger lower
bounds. We do this by constructing polynomials for which the lower bound we proved earlier
is tight. We begin by showing this in the case of two different set sizes. We can normalize
with respect to the bigger set size to assume that the weights are —k and ak (a € [0,1])
without loss of generality. Clearly, k£ < logn.

» Lemma 11. Let n,d, A be such that d < n. For any a € [0,1] let w € {—k, ak}? be a word.

There is a polynomial Pa € Fsp, [ X (w)] which is computable by a set-multilinear formula of

@)
product-depth at most A, size at most nO(8d“®)

rank.

and has the mazximum possible relative

» Remark. We can replace ak with |ak| and assume that the weights in w are integers. It
can be shown that this will not change the arguments in any significant way (see Claim 21
in the full version).

We will need the extensive notation from [20]. We restate it here.

Notation.
As in Section 2 and from the remark above, we assume | X (w;)| = 2/ and that the
variables are indexed by binary strings {0, 1}%:l.
Given any subset S C [d], we denote by Sy = {i € S | w; > 0} the positive indices of S
and similarly by S_, the negative indices.
Welet K =3¢ |wil, b+ =3 eq, [wil and k- =37, .o wi|. We say S is P-heavy if
ki > k_ and N-heavy otherwise.
Setting I = [K|, we partition the set I = I; U--- U I; where I; is an interval of length
lwj| that starts at 37, |w;| + 1. Given a T' C [d], we let I(T') = U, cr I
Let m = mym_ € M2 be any monomial. The boolean string o(m ) associated with
the positive monomial (as defined in Section 2) can be thought of as a labelling of the
elements of I(S}) in the natural way - o(my) : I(S+) — {0,1}. Similarly for o(m_).

Given a set S, we define a sequence of polynomials that we will later show to have small
size set multilinear formulas but large rank.
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Fix Jy C I(S4) and J_ C I(S_) such that |J| = |J_| = min{ky,k_}. Let m be a
bijection from J to J_. Such a tuple (S, J4, JJ_,7) is called valid. Fix a valid (S, Jy, J_, 7).
A string 7 € {0, 1}/*+=F-I defines a map I(Sy)\ J; — {0,1} if S is P-heavy and a map
I(S_)\ J- — {0,1} if S is N-heavy.
The polynomial P(s s, j_ - is the sum of all monomials m such that
1. o(my)(j) = o(m_)(xw(j)) for all j € J4, and
2. o(m4)(j) = 7(j) for all j € I(Sy)\ Jy if S is P-heavy or o(m_)(j) = 7(j) for all
jeI(S_)\ J- if S is N-heavy.

As observed in [20], these polynomials have maximum possible relative rank and other
properties that help in building formulas for them inductively (precise statements in the full
version).

To proceed, we introduce a few notions that help make the ideas in the proof overview
above precise. Fix A as in Lemma 11. We define the fractional cost fc. Set fc(0) = 1 and

fe(d) = q<d“(£r)1>rflc(6_1) lga — |q]|/q for1<6§<A-1
The quantity |ga— |ga]| is the distance to the nearest integer from ga. For 1 <6 < A—1,
we denote by ps the (least) value of ¢ for which the above expression attains the minimum.
We also denote by ns := |psa] the nearest integer to psa. Finally, we set pa = |P,,| (total
number of positive sets) and na = |N,| (total number of negative sets).
We state (without proof) a few properties of the terms defined above and point the reader
to the full version for details.

(C1) (Exponential decline) The fractional cost falls exponentially with depth i.e., fc(d) <
1/(@MA)FO+)=2 for 1 < § < A — 1. This exponential decline causes fc(A — 1) to be
very small: fc(A — 1) < 2d#(®) /pa.

(C2) (Monotonicity) Let A’ < A — 1 be the smallest integer for which fc(A) < 2d*(2) /pa
holds (such a A’ exists from the second part of (C1)). Redefine par11 = pa and
nar41 = na. We have that ps_1 < ps and ng_1 < ng for all § <A’ + 1.

With the notation in place, we can now state the following central claim that constructs the

polynomial needed for Lemma 11:

> Claim 12. Let A, A’ be as fixed above and S C [d] be such that |wg| < k. Then, there
exist J, J_, 7 such that (S, Jy,J_,7) is valid and for any integer 6 < A’ 4+ 1 and for all
T € {0, 1}““*_’“*', the polynomial P(g j, j_ rr) can be computed by a set-multilinear formula
of product-depth § and size at most |S|525k5d“(A).

We finish the proof of Lemma 11 assuming the above claim:

Proof of Lemma 11. As wyg < k, applying Claim 12 to S = [d] and § = A" + 1, gives
a polynomial Pasy; € Fy,,[X (w)] with relrk,, (Pasiq) = 271*@l/2. The polynomial Py
is computable by a set-multilinear formula of product-depth at most A of size at most
dA910kAdH ) < nO(Ad“(A)), since A’ + 1 < A by definition. <

The following claim is the main technical result that helps in proving Claim 12. It is in
the same spirit as [20, Claim 28], but we show the existence of a better partition with a more
careful analysis. Our analysis holds for any « € [0, 1].

> Claim 13. Fix § < A’ + 1. Let S C [d] with |wg| < k such that |S;| < ps and |S_| < ns.
Then there exists a partition of S as S; U S5 U... S, where the following conditions hold:
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1. 1S 4+] <ps—1and |S; | <ns_q
2. 3 lws,| < 5kdH®)
3. |wg,| <k forall i€ [r]

Proof of Claim 13. As long as possible, pick sets S; with |S; +| = ps_1 positive indices and

|S;,—| = ns_1 negative indices. For all such sets picked, we have

lws, | = ‘Zjesi wj‘ =k |ps—1oc —=ns_1| =k |[ps—1a —ng_1| < k. (8)
Suppose the sets chosen after the procedure are Si,...,S,, where m =
min{{%J , {%J} and we are left with the set S’. Since we cannot pick the sets

any more, we must have that [S’ | < ps_1 or |S”| < ns_; (or both). We analyze one case,
others being analogous.

Say m = {%J (ie. || < ps—1). Also suppose [S” | > ns_. We pick a set Sy,41 with
|S", | positive indices and p < (|S_| —m - ns_1) negative indices such that
w0S,11| = K |alS] = p| = k|a(|Ss| = m - ps—1) — p| < k. 9)

Note that we can always choose a|S’ | =1 < p < |5’ | + 1 to satisfy the desired constraints.
This follows from observing that |ps_1a—mns_1| < 1 which gives ps_1a—1 < ns_1 < ps_1a+1.

Now use the fact that [S”| > ns_1.
The remaining set T'= S’ \ S;,+1 has only negative values which we split into singletons

Sm+2, ..., (there are (|S_| — mns_1 — p) of these sets). As these are singletons, for
m+2 < j <7 we trivially have |wg,| < k.
We also note that since (]S_|—m-ns_1 —p) is positive, it is equal to |m-ns_1+p—|S_||,

which can be rewritten as |(a|Sy| — [S—]) — (m(ps—1a — ns—1)) — (a(|S+| — m - ps_1) — )|

Using the triangle inequality, we can upper bound this quantity by the sum of |«|S4| — |S—]],
|m(ps—1cc —ns—1)| and |a(|S4+| — mps—1) — p|. The first term is less than 1 since |wg| < k
and the last term is less than 1 from (9). Putting it all together, we have

(IS = m-ns_1 — p) < [m(ps_rar — ns_1)| +2. (10)

Finally,

T
> lws,
i=1

T

+ |wsm+1| + Z |w5i

m
=2_lws,

i=1 i=m+2
< kmlps—1cc = ns—1| +k + k(|S-[ —m -ns—1 —p)
<Ekmlps—1a —ns_1| + k4 k|m(ps—1oc — ns—1)| + 2k (using (10))
<k <2 VS“J Ips—10 —ns_1] + 3> <k (2|S+||m_1an5_1| + 3>
Ps—1 Ps—1
< k(2ps-fc(d —1)+3) (By definition of fc)
< 5kd*(D)

where the last inequality is true because fc(§ — 1) < 2d*(®) /ps holds for § < A’ by the
definition of fc and ps; it also holds for 6 = A’ 4+ 1 by the definition of A’. <

Armed with all this, the proof of Claim 12 becomes quite similar to the proof of Claim
27 in [20] (we refer the reader to the full version for details).
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Handling more than two weights. To handle the case when there are multiple weights, we
partition the index set [d] into sets {S;} such that the sub-word indexed by each S; contains
at most two distinct weights (details in the full version). We can assume without loss of
generality that all entries of w are integers as before.

» Lemma 14. Let w € {aq,...,a,}¢ (Jag| < k for all i) be a word with v < d different
weights and |wig)| < k. Then, the index set [d] can be partitioned as Sy U...US, with n < 6y
such that for all i € [n], the sub-word w)g, has at most two distinct weights and |ws,| < k.

We can now use Claim 12 to construct polynomials with small set-multilinear formula
size but large rank, even when the number of distinct set sizes is not two.

> Claim 15. Let S C [d] and let w € {ay, ..., a,}? (Ja;| < k for all i) be a word with v < d dif-
ferent weights and |wg| < k. Then, there exist (J, J_, ), (J,, J_,«") such that (S, J, J_, )
and (S, J,J", ') are valid. For any fixed integer A and for all 7 € {0, 1}/%+~*-I the poly-
nomial Ps, 7, j_ ) can be computed by a set-multilinear formula of product-depth A and
size at most |S|A230kyAd S

set-multilinear formula of product-depth A and size at most |S|*25#4d"

while the polynomial Pg, J,J w,r) can be computed by a
(A=Dy6yk

The proof of Claim 15 is quite similar to that of Claim 12 and we prove it in the full

version. Assuming the claim, we can finally prove Theorem 3:

Proof of Theorem 3. Aswyg < k, applying Claim 15 to S = [d], gives polynomials Px, QA €
Fym [X (w)] with relative rank relrk,,(Pa) = relrk, (Qa) = 2~ 1wl/2 (using the fact that this
class of polynomials has maximum possible relative rank).

The polynomial Pa has product-depth A set-multilinear formula of size at most

JA930kYAdH D) O(yAd D))

The polynomial Qa has product-depth A set-multilinear formula of size at most

n(A—1) X w(A-1)
dA95kAd +6+k < nO(Ad +~,)_ <
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