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MVImgNet is a large-scale dataset that contains multi-view images of ~220k
real-world objects in 238 classes. As a counterpart of ImageNet, it introduces
3D visual signals via multi-view shooting, making a soft bridge between 2D
and 3D vision. This paper constructs the MVImgNet2.0 dataset that expands
MVImgNet into a total of ~520k objects and 515 categories, which derives
a 3D dataset with a larger scale that is more comparable to ones in the
2D domain. In addition to the expanded dataset scale and category range,
MVImgNet2.0 is of a higher quality than MVImgNet owing to four new fea-
tures: (i) most shoots capture 360° views of the objects, which can support the
learning of object reconstruction with completeness; (ii) the segmentation
manner is advanced to produce foreground object masks of higher accuracy;
(iii) a more powerful structure-from-motion method is adopted to derive the
camera pose for each frame of a lower estimation error; (iv) higher-quality
dense point clouds are reconstructed via advanced methods for objects cap-
tured in 360° views, which can serve for downstream applications. Extensive
experiments confirm the value of the proposed MVImgNet2.0 in boosting
the performance of large 3D reconstruction models. MVImgNet2.0 will be
public at [uyues.github.io/mvimgnet2, including multi-view images of all 520k
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objects, the reconstructed high-quality point clouds, and data annotation
codes, hoping to inspire the broader vision community.

CCS Concepts: « Computing methodologies — Reconstruction.

Additional Key Words and Phrases: 3D Object Dataset, 3D Object Recon-
struction, Image-based Modeling
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1 INTRODUCTION

The field of deep learning has witnessed remarkable advancements,
fueled primarily by learning from vast amounts of data [Deng et al.
2009; Krishna et al. 2017; Lin et al. 2014; Miech et al. 2019]. Learning
from large-scale data has proven to be a key driver in scaling up
deep learning models to tackle complex understanding or gener-
ative tasks, especially for the development of large models in the
fields including natural language processing [Achiam et al. 2023;
Thoppilan et al. 2022; Touvron et al. 2023], computer vision [Kirillov
et al. 2023; Liu et al. 2023b, 2024b; Ren et al. 2024], and multimodal
learning [Li et al. 2023a; Lin et al. 2023; Liu et al. 2024a].

This learning regime also attracts great attention in the field of
3D vision. In spite of the greater difficulty in collecting and label-
ing 3D data compared with textual or 2D visual data, there are
still some efforts contributed to constructing large-scale or high-
quality 3D generic datasets [Chang et al. 2015; Deitke et al. 2023,
2022; Downs et al. 2022; Reizenstein et al. 2021; Wu et al. 2023b;
Yu et al. 2023]. Among them, one line of work constructs datasets
like ShapeNet [Chang et al. 2015] and Objaverse [Deitke et al. 2022]
composed of synthetic data, which limits the application in real
scenarios. Differently, another line of work collects 3D data of real-
life objects via scanning or multi-view photogrammetry. However,
such datasets like CO3D [Reizenstein et al. 2021] and GSO [Downs
et al. 2022] are limited in scale and category range until Yu et al.
make the first step in constructing a large-scale one, MVImgNet [Yu
et al. 2023], consisting of ~220k multi-view images of 238 classes of
common objects. The massive multi-view data do not only prove
valuable in 2D visual understanding [Yu et al. 2023] via learning
cross-view consistency, but also support the learning of generic
shape priors to benefit 3D reconstruction [Hong et al. 2023; Wang
et al. 2023; Wu et al. 2023a; Xu et al. 2023]. Considering the larger
scale of datasets in the 2D domain, e.g. ImageNet [Deng et al. 2009],
containing over 1 million images of 1k categories, MVImgNet is
still inferior in scale that may limit its potential to support scaling
up 3D learning. Therefore, we propose MVImgNet2.0 that expands
MVImgNet to twice its original scale and category range. With a
total of 520k objects and 515 categories that is half the scale
of ImageNet, MVImgNet2.0 makes a further step towards a larger
real-world 3D dataset with a smaller gap to ones in the 2D domain.

In addition to the expanded data scale and category range, MVImg-
Net2.0 has some other new features in data acquisition and annota-
tion to improve the dataset quality. The biggest difference in data
acquisition is that MVImgNet videos usually cover 180° views of ob-
jects, while most of the videos (230k/300k) collected in MVImgNet2.0
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capture 360° object views to represent a more complete shape. On
the other hand, the annotations in MVImgNet2.0 are of higher qual-
ity in three aspects: (i) the foreground object masks in each frame
are provided of higher accuracy; (ii) the camera poses of each view
are estimated of lower error; (iii) the dense reconstructions are
advanced to produce object point clouds of higher accuracy and
robustness. To get the masks of objects of interest in each video
frame, we advance the segmentation method in MVImgNet into
a new detection-segmentation-tracking pipeline, which adopts a
coarse-to-fine paradigm with temporal information [Kirillov et al.
2023; Liu et al. 2023b; Yang and Yang 2022] also incorporated to gen-
erate accurate object masks finally. For the camera pose estimation,
we apply a more advanced structure-from-motion (SfM) algorithm
that refines keypoints and bundles using deep features [Linden-
berger et al. 2021] to compute camera poses of higher accuracy,
especially for objects with fewer textures. The dense reconstruc-
tions in MVImgNet are generated by the multi-view stereo method,
which is also advanced in MVImgNet2.0 based on neural surface
rendering with multi-resolution 3D hash grids [Li et al. 2023b; Ye
2023] to improve the reconstruction accuracy and robustness.

While MVImgNet proves valuable in various visual tasks in-
cluding radiance field reconstruction, multi-view stereo, and view-
consistent image understanding [Yu et al. 2023], our experiments
mainly focus on the task of 3D reconstruction. We first demonstrate
that the more accurate camera poses estimated in MVImgNet2.0 can
better support the per-scene 3D reconstruction. Besides, our experi-
ments pays more attention to the application of generic 3D object
reconstruction. We deploy three recent large reconstruction models
- LRM [Hong et al. 2023], LGM [Tang et al. 2024] and TriplaneGaus-
sian [Zou et al. 2023], and justify the value of MVImgNet2.0 data in
improving their reconstruction quality and generalizability.

The contributions of this work are then summarized as follows:

e We propose MVImgNet2.0 that expands MVImgNet to a total
of 520k real-life objects and 515 categories, which makes a
further step to a larger-scale 3D generic dataset.

e MVImgNet2.0 has some new features in both data acquisition
and annotation: (i) most of the added videos capture objects
in 360° views; (ii) frames are annotated with more accurate
object masks and (iii) more accurate camera poses; (iv) objects
are densely reconstructed with an advanced method.

o Extensive experiments validate MVImgNet2.0’s value in the
task of 3D reconstruction, especially in improving the perfor-
mance of large 3D reconstruction models.

2 RELATED WORK

Large-scale datasets. Expanding the size and breadth of training
datasets has proven to be a highly effective strategy for enhanc-
ing the performance and robustness of deep learning models. In
computer vision, the introduction of large-scale datasets such as
ImageNet [Deng et al. 2009] and MS-COCO [Lin et al. 2014] has
driven significant advancements across various tasks, including
image classification, object detection, and captioning. This trend
has persisted, with the diversity and scale of available datasets
growing exponentially. Notable examples include image datasets
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like OpenImages [Kuznetsova et al. 2020] and Visual Genome [Kr-
ishna et al. 2017], video datasets like Kinetics [Kay et al. 2017] and
HowTo100M [Miech et al. 2019], and multi-modal datasets like Con-
ceptual Captions [Sharma et al. 2018], YFCC100M [Thomee et al.
2016], and LAION [Schuhmann et al. 2022], which support com-
prehensive vision-language correlations. By increasing the scale
and coverage of these datasets, researchers and practitioners have
achieved substantial improvements in the capabilities of computer
vision and multi-modal systems [Dosovitskiy et al. 2020; Jia et al.
2021; Liu et al. 2023b; Radford et al. 2021].

3D datasets. 3D datasets encompass a broad spectrum, ranging
from indoor to outdoor scenes and from human subjects to var-
ious objects. This paper primarily focuses on generic object 3D
datasets. These datasets can be categorized into two main groups.
The first group consists of synthetic 3D objects, such as those
found in ShapeNet [Chang et al. 2015], ModelNet [Wu et al. 2015],
ABO [Collins et al. 2022], and Objaverse [Deitke et al. 2023, 2022].
These datasets offer high-quality computer-aided design (CAD) mod-
els as 3D ground truths and can render 2D views in simulation to
support 3D reconstruction learning. Though Objaverse collects over
800k CAD models, the quality of models is hard to guarantee, of
which only ~170k (21%) have textures and less are of high quality for
training, e.g. ~80k (10%) are used in LGM training [Tang et al. 2024].
Besides, the main limitation of such datasets lies in the intrinsic do-
main gap between synthetic and real objects. Another group focuses
on collecting real-world 3D data through scanning or multi-view
shooting. Dedicated scanning methods can produce high-quality
3D assets from real-life objects, as seen in ScanObjectNN [Uy et al.
2019], NAVI [Jampani et al. 2023], GSO [Downs et al. 2022], and
OmniObj3D [Wu et al. 2023b], which collect 14k, 8k, and 6k 3D
object data, respectively. Given the high cost of scanning, which
limits scalability, MVImgNet [Yu et al. 2023] collects 220k 3D objects
from 238 categories of real-life objects using multi-view shooting,
marking a significant step toward constructing large-scale generic
3D datasets comparable to extensive 2D visual datasets. Another re-
lated dataset, CO3D [Reizenstein et al. 2021], employs a similar data
collection method but on a smaller scale, with 19k objects and 38k
objects in its new version. The proposed MVImgNet2.0 dataset ad-
vances this approach by expanding the scale and category range of
MVImgNet to 520k objects in 515 categories, potentially facilitating
the learning of large models for 3D understanding and generation.

3D reconstruction. 3D reconstruction from a single view or mul-
tiple views is a challenging task and also an important applica-
tion for 3D datasets. Significant advancements have been made
in single image to 3D reconstruction, starting with early methods
focusing on point clouds [Fan et al. 2017; Wu et al. 2020], vox-
els [Chen and Zhang 2019; Choy et al. 2016; Tulsiani et al. 2017],
meshes [Gkioxari et al. 2019; Wang et al. 2018], and introducing
shape priors like 3D templates [Goel et al. 2020; Kanazawa et al.
2018; Kulkarni et al. 2020; Roth et al. 2016], semantics [Li et al.
2020], and poses [Bogo et al. 2016; Novotny et al. 2019] has also
been extensively researched. With the emerging techniques based
on implicit representations like SDFs [Mittal et al. 2022; Park et al.
2019], occupancy networks [Mescheder et al. 2019], and NeRF [Jang
and Agapito 2021; Mildenhall et al. 2020; Miiller et al. 2022b; Yu
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et al. 2021], some category-agnostic methods show great general-
ization potential [Niemeyer et al. 2020; Yan et al. 2016] but suffer
from the lack of fine-grained details [Xu et al. 2019; Yu et al. 2021].
The field of 3D reconstruction from multiple views has also been
a major focus in computer vision and graphics for decades. Tradi-
tional approaches to this task include structure-from-motion (SfM)
methods for sparse reconstruction and calibration [Agarwal et al.
2011; Pollefeys et al. 2004; Schonberger and Frahm 2016a; Snavely
et al. 2006], as well as multi-view stereo (MVS) techniques for dense
reconstruction [Furukawa and Ponce 2009; Pollefeys et al. 2008;
Schénberger et al. 2016]. More recently, deep learning-based MVS
methods have emerged [Cheng et al. 2020; Gu et al. 2020; Shen
et al. 2021; Yao et al. 2018, 2019], providing efficient, high-quality
reconstruction through a feed-forward process. More recently, the
use of pre-trained image/language models has introduced semantics
and multi-view guidance [Li et al. 2023a, 2022; Radford et al. 2021;
Rombach et al. 2022; Saharia et al. 2022] for image-to-3D reconstruc-
tion [Anciukevicius et al. 2023; Deng et al. 2023; Li et al. 2023¢; Liu
et al. 2023a; Shen et al. 2023; Tang et al. 2023]. Further, with the
emergence of large-scale 3D datasets [Deitke et al. 2022; Reizenstein
et al. 2021; Yu et al. 2023], some works explore a purely data-driven
approach that learns a large model to reconstruct generic objects
in the wild from 3D datasets [Hong et al. 2023; Tang et al. 2024;
Wang et al. 2023; Xu et al. 2024; Zhang et al. 2024; Zou et al. 2023].
The proposed dataset has great potential in supporting these large
reconstruction models to scale up their 3D reconstruction capability.

Application and impact of MVImgNet. The MVImgNet dataset [Yu
et al. 2023], which provides a vast collection of multi-view images
of real objects, has been extensively utilized in a variety of down-
stream tasks. In addition to fundamental 2D/3D understanding tasks
as demonstrated in [Aubret et al. 2024; Chen et al. 2024a; Ke et al.
2024a; Lee et al. 2024], MVImgNet has significantly influenced the
field of 3D object reconstruction. It offers a robust 3D prior through
its extensive multi-view captures of diverse objects and also en-
hances the robustness of models in real-world reconstruction sce-
narios, as shown in [Hong et al. 2023; Jiang et al. 2024; Ntavelis et al.
2023; Wang et al. 2023; Wu et al. 2024]. Furthermore, researchers
have explored employing MVImgNet data to train or finetune the
multi-view diffusion models [Gao et al. 2024; Xu et al. 2023] and
video diffusion models [Chen et al. 2024b; Han et al. 2024; Xie et al.
2023; Zuo et al. 2024] for high-quality 3D reconstruction. MVImgNet
is also applied in some other related tasks, such as scene-level recon-
struction and generation [Anciukevicius et al. 2024], generalizable
novel view synthesis [Jang and Agapito 2024; Zhu et al. 2023], video
generation [He et al. 2024], and 3D super resolution [Shen et al.
2024]. With MVImgNet2.0’s larger scale, increased categories, 360-
degree capturing, and higher annotation quality, it is anticipated
to provide an even stronger 3D prior for 3D reconstruction and to
better support other downstream tasks.

3 DATASET

MVImgNet2.0 is a large-scale dataset of multi-view images, which
is efficiently collected via shooting 360°-view videos with phone
cameras surrounding objects in the wild. In this section, we intro-
duce the data acquisition and annotation pipeline in constructing
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Fig. 2. MVImgNet2.0 data visualization. Objects in MVImgNet2.0 are in a wide range. For each object, we visualize the estimated camera poses and then
sample 4 views to present images (whose corresponding camera poses are highlighted in dark color). We also visualize the point cloud annotations (PCL).
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Fig. 3. The data acquisition and annotation pipeline in MVImgNet2.0. One
video is first collected, uploaded, and qualified by collectors and annotators,
then we extract frames from the video to conduct annotation including cam-
era pose estimation via PixSfM, then object segmentation via a detection-
segmentation-tracking pipeline, and lastly dense point cloud reconstruction
via Instant-Angelo. All annotations are qualified by human annotators fi-
nally to filter out failure cases. New features in the MVImgNet2.0 pipeline
are highlighted in brown or red color.
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MVImgNet2.0, as shown in Fig. 3, mainly focusing on showing the
differences between MVImgNet [Yu et al. 2023] and MVImgNet2.0.

3.1 Raw Data Acquisition

Similar to MVImgNet, the raw video data is gained through crowd-
sourcing. We first specify the diverse data categories to collect and
the maximum amount for each category. The categories are chosen
following the WordNet [Miller 1994] taxonomy and also from the
common objects encountered or utilized in human daily life, and
the maximum amount is determined by their generality and the
complexity involved in capturing them. In addition to quantitatively
expanding some of MVImgNet’s categories with a small number of
videos (70 categories), we have also collected 277 new categories to
expand MVImgNet’s collection of categories. Then, we draw up the
requirements for the captured videos: (i) The length of each video
must be around 10 seconds; (ii) The frames in the video must not
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be blurred; (iii) The presence proportion of the object in the video
frames must be above 15%; (iv) Each video can only contain one class
of principal object; (v) The captured object must be rather “three-
dimensional” (excluding ones that are too flat and thin, or lacking
in depth); (vi) Each video must capture 360° view of the object as
much as possible. A visualization of camera poses in data collection
is shown in Fig. 2. After setting up the requirements, similar to
MVImgNet, we employ around a thousand normal collectors to take
videos and upload them to the backend. Meanwhile, well-trained
expert data cleaners are responsible for reviewing each submission
and ensuring it fulfills the aforementioned capture requirements.
The whole procedure ensures both the diversity and quality of the
raw videos.

To sum up, data in MVImgNet2.0 has two main differences from
ones in MVImgNet: 1) the data scale and category range are ex-
panded, which allows for learning a more generalizable model; 2)
videos are collected by capturing 360° view of objects, which allows
for learning a better shape prior.

3.2 Data Annotation

For each qualified video submission, we exploit a similar data pro-
cessing procedure as in reconstructing the MVImgNet dataset to
conduct semi-automated annotation, as shown in Fig. 3. At first,
around 30 frames are extracted from each video for sparse recon-
struction, which derives the estimated camera poses of each view.
Then, we generate object masks via segmentation methods for each
extracted frame. Finally, given the camera poses and the masks in
each view, we conduct dense reconstruction to produce the object
point clouds. The main differences in MVImgNet2.0 lie in the ad-
vanced approaches to achieve higher-quality annotations, including
1) camera poses, 2) foreground object masks, and 3) point clouds.



MV1-Anno MV2-Anno MV1-Anno MV2-Anno

TP ’ Frowwen et t 0
s i
N
AN

Fig. 4. The sparse reconstruction results comparison between using the orig-
inal approach in MVImgNet (MV1-Anno) and using our advanced approach
(MV2-Anno) for camera pose estimation (cameras are visualized in purple).

Sparse reconstruction. The sparse reconstruction aims to recon-
struct the camera intrinsic and extrinsic for each video, by apply-
ing the Structure-from-Motion (SfM) algorithm [Schonberger and
Frahm 2016b] on a series of equal-time-interval chosen frames. In
MVImgNet2.0, we apply the Pixel-Perfect Structure-from-Motion
(PixSfM) algorithm [Lindenberger et al. 2021] to obtain the sparse
reconstruction results, which can estimate more precise camera
parameters via two steps of keypoint and bundle adjustment based
on dense features. The sparse reconstruction quality is improved
by PixSfM, especially for objects with smooth surfaces and fewer
textures, where classical SfM usually fails to produce reasonable
estimation, as shown in Fig. 4.

Foreground object segmentation. MVImgNet uses the open-source
segmentation tool CarveKit [Selin 2024] to generate the foreground
object masks, which often results in ambiguous boundaries or in-
correct masks, especially for those with a bit complex background.
To obtain accurate object masks, we apply an advanced detection-
segmentation-tracking pipeline, based on an open-set object detec-
tor Grounding-DINO [Liu et al. 2023b], a segmentation tool Segment-
Anything (SAM) [Kirillov et al. 2023] [Ke et al. 2024b], and a video
object tracker DeAOT [Yang and Yang 2022]. Given a sequence of
video frames, we first apply Grounding-DINO to generate bounding
box (bbox) candidates of foreground objects, where the category
name is used as the text prompt. With the detection results giv-
ing coarse indications, we then apply SAM to generate an object
mask for each bbox by using the image as input and the bbox as the
prompt. We also initially filter out masks that may be inaccurate,
according to their size, distance from the image boundary, number
of connected components, etc. Finally, we further take the temporal
information, the relation between neighboring frames, into consid-
eration, where one mask is selected as the input of the video object
tracker DeAOT to generate the final accurate masks. In addition,
to obtain more precise object masks, we also manually check some
results of each category and adjust the segmentation pipeline for
some categories. We visualize some segmentation results in Fig. 5 to
show the improved mask quality in MVImgNet2.0. A quantitative
comparison between the segmenting performance by the original
and advanced approach is presented in the SupMat’s Tab. R.1.

Dense reconstruction. Different from MVImgNet which employs
multi-view stereo (MVS) [Schonberger et al. 2016] of COLMAP to
generate the densely reconstructed point cloud, we advance the
point cloud reconstruction approach based on a neural surface re-
construction method, Neural-Angelo [Li et al. 2023b]. It incorporates
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Fig. 5. The comparison of the foreground object segmentation results be-
tween using the original approach in MVImgNet (MV1-Anno) and using
our advanced approach (MV2-Anno).
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Fig. 6. The dense point cloud reconstruction results comparison between
using the original approach in MVImgNet (MV1-Anno) and using our ad-
vanced approach (MV2-Anno).

multi-resolution hash encoding into neural SDF representations that
allows for high-fidelity dense 3D reconstruction. In implementa-
tion, we adopt the open-source Instant-Angelo project [Ye 2023] to
achieve fast point cloud reconstruction. Given the Neural-Angelo re-
construction outputs, similar to MVImgNet, we also manually clean
the point clouds to delete the objects with obvious noisy, extremely
sparse reconstructions, or backgrounds. Example comparisons be-
tween point clouds produced by the approach used in MVImgNet
and MVImgNet2.0 are visualized in Fig. 6, which demonstrates that
the advanced method used in MVImgNet2.0 usually leads to more
accurate and complete reconstructions.

3.3 Dataset Statistics

Tab. 1 shows the statistics of MVImgNet2.0 and other alternatives
and Fig. 2 and Fig. 11 shows some samples of MVImgNet2.0. In
summary, MVImgNet2.0 includes 300k videos with 9 million frames
and 347 object classes, of which 277 are new categories not covered
by MVImgNet, and the annotations comprehensively cover object
masks, camera pose parameters, and point clouds. The categories
are organized in a taxonomic manner in SupMat’s Fig. R.4, and we
recommend our project page for a more detailed display. In addi-
tion, we also give more detailed per-category statistics in SupMat’s
Fig. R.3. With the construction of MVImgNet2.0, the total statistics
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Table 1. Comparison between MVImgNet2.0 and related datasets. “pcl”
denotes point clouds. *Note that only parts of data in CO3D (~30%) and
MVImgNet (~40%) are annotated with point cloud GT.

Dataset ‘ Real ‘ # of objects ‘ # of classes ‘ Multi-view ‘ 3D-GT
ShapeNet [Chang et al. 2015] X 51k 55 render CAD model
ModelNet [Wu et al. 2015] X 12k 40 render CAD model
ScanObjectNN [Uy et al. 2019] | v 14k 15 limited pcl
CO3D [Reizenstein et al. 2021] | v 19k 50 360° views pel*
GSO [Downs et al. 2022] v 1k 17 360° views RGB-D scan
ABO [Downs et al. 2022] X 8k 63 render CAD model
Objaverse [Deitke et al. 2022] X 818k 21k render CAD model
OmniObj3D [Wu et al. 2023b] v 6k 190 360° views RGB-D scan
MVImgNet1.0 [Yu et al. 2023] v 220k 238 180° views pel*
MVImgNet2.0 v 300k 347 180°/360° views pel
MVImgNet1.0+2.0 v 520k 515 180°/360° views pel

of MVImgNet datasets reach 520k objects in 515 categories, which
is closer to the scale of 2D large-scale datasets, e.g. ImageNet with
~1 million data in 1000 categories.

4 EXPERIMENTS

This section aims to validate the value of the proposed MVImgNet2.0
in the application of 3D reconstruction. We first introduce the exper-
iment setup, then conduct per-scene 3D reconstruction to validate
the value of camera pose annotations with higher accuracy, and
finally we pay the main focus on justifying the value of new features
in MVImgNet2.0 in improving the performance of large reconstruc-
tion models, including the larger data scale, the expanded category
range, the 360°-view videos, and the higher-quality annotations.

4.1 Experiment Setup

Datasets. We adopt three datasets in experiments, including the
synthetic dataset Objaverse [Deitke et al. 2022], the original data in
MVImgNet [Yu et al. 2023] (MV1-Data), and the newly added data in
MVImgNet2.0 (MV2-Data). The training set includes multiple views
captured by videos with estimated camera poses or obtained via
rendering the synthetic models from random camera poses. Each
object has over 30 views to support training. The test set consists
of 1k data sampled from 20 held-out categories in MVImgNet2.0
that are unseen in training. Each test sample contains one or more
views with estimated camera poses as input and 8 posed novel-view
images with the resolution of 512x512 as the ground truths. Besides,
we also provide high-quality dense point cloud reconstructions with
manual cleaning by annotators for each sample in the test set as
their shape ground truths.

Evaluation metrics. As MVImgNet2.0 can provide 2D multi-view
ground truths, we mainly employ PSNR/SSIM (higher is better) and
LPIPS [Zhang et al. 2018] (lower is better) as the evaluation metrics
to measure the reconstruction quality in projected views. In the
evaluation of category-agnostic reconstruction, all backgrounds of
test views are masked out as in the training set to focus on the recon-
struction accuracy of foreground objects, but preserved in per-scene
reconstruction experiments. As TriplaneGaussian also outputs the
reconstructed point cloud shape, we also employ Chamfer Distance
(CD) as the measurement of the reconstructed shape quality.

Baselines. Our baselines attempt to cover a wide range of re-
construction models. For per-scene 3D reconstruction, we utilize
two baselines, Instant-NGP (INGP) [Miiller et al. 2022a] and 3D
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Gaussian Splatting (3DGS) [Kerbl et al. 2023], which are based on
the technique of neural radiance field (NeRF) and Gaussian splat-
ting [Kerbl et al. 2023], respectively. Furthermore, we adopt three
large reconstruction models as the baselines of category-agnostic
3D reconstructions, which conduct data-driven shape learning from
large-scale 3D data for reconstructing generic real-life objects: (i)
Large Multi-View Gaussian Model (LGM) [Tang et al. 2024] that
can serve for multi-view reconstruction based on the 3D Gaussian
representation; (ii) Large Reconstruction Model (LRM) [Hong et al.
2023] that addresses single-view reconstruction based on the NeRF
representation; (iii) Triplane Meets Gaussian Splatting (Triplane-
Gaussian) [Zou et al. 2023] that addresses single-view reconstruction
requires point cloud supervision in training.

Implementation details. The implementations of INGP, LGM, and
TriplaneGaussian follow the official codes, while 3DGS and LRM are
implemented following two open-source projects, GauStudio [Ye
et al. 2024] and OpenLRM [He and Wang 2023]. We implement the
base version of each 3D reconstruction model if not specified. All
hyper-parameters and training strategies follow the recommended
or default setting in the papers or released projects unless specified.
We use NVIDIA A100 GPUs to train these baselines. In the experi-
ments for investigating the training data factors, we apply LGM-tiny,
following the ablation study setting in the LGM paper [Tang et al.
2024]. Note that LGM, in the original paper, is adopted to recon-
struct from four views generated by multi-view diffusion models
to address the task of image-to-3D or text-to-3D generation, in our
experiments we directly feed four object views into LGM to perform
multi-view reconstruction.

4.2 Per-scene 3D Reconstruction

We begin our investigation with per-scene 3D reconstruction of
object-centric scenarios, utilizing two baseline methods: INGP and
3DGS. We randomly choose 50 objects from 25 categories (2 scenes
for each category) to conduct experiments. Among a total of 30
views for each object, we randomly select 20 of them for optimizing
the parameters in INGP [Miiller et al. 2022a] and 3DGS [Kerbl et al.
2023], and use the remaining 10 views for evaluation. We design
two sets of controlled experiments, each differentiated by a single
variable: the camera poses utilized during training. For the first
group, the camera poses are estimated via the annotation approach
used in MVImgNet (MV1-Anno), while the second group employs
the advanced approach in MVImgNet2.0 (MV2-Anno).

Results. We compute the results averaged across the selected
50 scenes. The quantitative results are shown in Tab. 2, where
both INGP and 3DGS can get a more accurate reconstruction using
the camera poses estimated via the advanced approach in MVImg-
Net2.0. By using the camera poses estimated by the advanced ap-
proach in MVImgNet2.0, INGP can achieve a higher average PSNR by
~1.1dB, and 3DGS can achieve a significant improvement of ~5.8dB
in PSNR. It validates the higher quality of camera poses estimated
in MVImgNet2.0. These results also indicate that MVImgNet2.0 can
better support the learning-based reconstruction methods in the
task of per-scene reconstruction or novel view synthesis.



Table 2. Per-scene 3D reconstruction quality comparison when using
the estimated camera poses by the annotation manners in MVImgNet (MV1-
Anno) and MVImgNet (MV2-Anno) for training. Two baselines are used:
Instant-NGP (INGP) and 3D Gaussian splatting (3DGS).

Baseline | MV1-Anno MV2-Anno | PSNRT  SSIMT  LIPIS|

) ) . v 3605 0980  0.023

INGP [Miller et al. 2022a] v 3717 0984 0.018

v 3644 0982  0.027

3DGS [Huang et al. 2024] v 4219 0991  0.015
MVI1-Data

Input Objaverse MVI-Data MV2-Data GT

”mﬂmxﬁgﬁ

LGM

Fig. 7. Qualitative results of LGM and LRM trained on different data from
Objaverse, MV1-Data, and MV2-Data.

4.3 Category-agnostic 3D Reconstruction

On the task of category-agnostic 3D reconstruction, we perform
experiments to evaluate the performance of large reconstruction
models trained on different kinds of data to validate the value of
MVImgNet2.0. We apply an LGM [Tang et al. 2024] for the task of
multi-view reconstruction, and an LRM [Hong et al. 2023] and a
TriplaneGaussian [Zou et al. 2023] to address the single-view recon-
struction. By using different kinds of multi-view data in training,
we investigate their effect on the learning of large reconstruction
models. Besides, we also use different kinds of point cloud super-
vision in training TriplaneGaussian to further validate the value
of the point cloud annotations in MVImgNet2.0. Finally, we deeply
investigate the factor of data scale, category range, and view range
in training data by evaluating their effects on the performance of a
tiny LGM (LGM-tiny).

Experiments on LGM and LRM. We train LGM and LRM on three
kinds of data: (i) synthetic data from Objaverse [Deitke et al. 2022];
(ii) real data from MVImgNet [Yu et al. 2023] (MV1-Data); and (iii)
added data in MVImgNet2.0 (MV2-Data). In training, we use 4 ran-
domly selected views as input, and 20 views as supervision to train
an LGM-base model, and use 1 randomly selected input view to train
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Fig. 8. Qualitative results of TriplaneGaussian trained on different view

data and point cloud supervision.

o
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an LRM-base model. As shown in Tab. 3, the quantitative results
of LGM and LRM consistently demonstrate: 1) Using real data for
training can derive a stronger large reconstruction model when
applied to real-world objects. Compared with using Objaverse data
for training, using MV1-Data for training can achieve a higher PSNR
by ~1.9dB for LGM and by ~0.7dB for LRM; 2) Though with a close
scale, using MV2-Data only (300k objects) can lead to a higher recon-
struction quality (~0.5dBT for both LRM and LGM) compared with
using MV1-Data only (220k objects), thanks to the higher quality
of MV2-Data; 3) Further incorporating MV2-Data into MV1-Data
in training can further bring performance gains, i.e., ~0.4dB and
~0.3dB for LGM and LRM, respectively, which additionally confirm
the value of MVImgNet2.0 in benefiting data-driven 3D shape learn-
ing. We also provide some qualitative results in Fig. 7 to visualize
the differences in reconstruction quality.

Experiments on TriplaneGaussian. We train TriplaneGaussian with
different multi-view data and point cloud supervision to further in-
vestigate the value of 360°-view data and the proposed point cloud
annotations in MVImgNet2.0. As shown in Tab. 4, training on the
Objaverse synthetic data results in poor generalization on real data,
getting the lowest PSNR in rendering quality. However, since Ob-
javerse can provide perfect point cloud supervision sampled from
the ground-truth object surface, training on Objaverse can lead to
an acceptable level of shape quality. As MVImgNet only collects
180° views for each object, training on MV1-Data with incomplete
point cloud supervision leads to low quality in both 2D render-
ing and 3D shape. Training on 360° views (MV2-Data) but with
point cloud supervision obtained via the annotation approach in
MVImgnet (MV1-Anno) can bring better reconstruction results in
rendering quality but poor performance in shape quality. Further
using higher-quality point cloud supervision (MV2-Anno) can lead
to improvements in the overall reconstruction quality. To sum up,
the model trained on 360° real-world data (MV2-Data) with more
complete point cloud supervision (MV2-Anno) can achieve a higher
rendering quality by ~1.0dB in PSNR and also a lower Chamfer
distance by 4x10~# than the one trained on Objaverse. Qualitative
results in Fig. 8 also confirm our claim. Thus, the experiment results
validate the value of 360°-view data and the higher quality of point
cloud annotations provided in MVImgNet2.0.

Training data factors. We further investigate the effects of three
factors in training data on training large reconstruction models:
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Table 3. Generalizable 3D reconstruction quality comparison when
using different set of multi-view data for training. Note that when neither
MVImgNet data (MV1-Data) nor MVImgNet2.0 data (MV2-Data) is used,
the baseline model is trained on synthetic data from the Objaverse dataset.
Two baselines are used: LRM and LGM, for single-view and multi-view
reconstruction, respectively.

| MV1-Data MV2-Data | PSNRT SSIMT LIPIS|

23.59 0.932 0.050
v 25.49 0.951 0.035
26.01 0.953 0.034
26.41 0.956 0.032
20.76 0.929  0.065
4 21.42 0.932 0.059
21.97 0.935 0.056
22.27 0936 0.033

Baseline

LGM [Tang et al. 2024]

ANRN

v

LRM [Hong et al. 2023]

ANRN

v

Table 4. Generalizable 3D reconstruction quality comparison when us-
ing different multi-view data and point cloud supervision to train a Triplane-
Gaussian model. The first row uses only Objaverse synthetic data in training,
while the second row uses MVImgNet real data (MV1-Data) for training
with point clouds obtained via the annotation manner in MVImgNet (MV1-
Anno). The last two rows use added MVImgNet2.0 data (MV2-Data) for
training, with point cloud supervision (PCL super.) are obtained via different
annotation approaches used by MVImgnet (MV1-Anno) and MVImgNet2.0
(MV2-Anno).

MV1-Data MVzData PCLsuper. | PSNRT SSIM LIPIS| CDJ(x1072)

Objaverse 21.79 0.923  0.062 0.40

v MV1-Anno | 2243  0.924  0.060 0.82
v MV1-Anno | 2251 0928  0.056 0.89

v MV2-Anno | 22.77 0.929 0.053 0.36

data scale, category range, and view range. The baseline model is
based on an LGM-tiny for multi-view reconstruction, and the im-
age resolution for training and testing is 256x256 for efficiency. In
the first group of experiments, we basically use 40k MV1-Data and
progressively increase the number of MV2-Data from 20k to 140k
added for training. As shown in Fig. 9(a), LGM achieves increasingly
better performance with the added MV2-Data grows in scale.In the
second group, we hold the added MV2-Data volume constant as
100k but increase the number of categories covered in these data.
As the category range expanded, LGM can also achieve iterative
performance gains, as shown in Fig. 9(b). Next, we control the ratio
of 360°-view data in a total of 100k MV2-Data added, and find that a
higher ratio of 360°-view data is positive to the final reconstruction
quality of LGM (see Fig. 9(c)). These results indicate that training
on data of a larger scale, covering richer categories, and capturing
a wider view range are important to improve the performance of
large reconstruction models. Finally, we use a constant scale of 100k
data (MV1-Data + MV2-Data) in total for training, but gradually
increase the ratio of MV2-Data from 0% to 100%. It leads to a gap
of ~0.5dB between using 0% and 100% of MV2-Data, as shown in
Fig 9(d), which demonstrates that with higher quality, MV2-Data is
of larger value than MV1-Data for the learning of large reconstruc-
tion models. Some qualitative results of LGM-tiny are included in
SupMat’s Fig. R.2.

5 CONCLUSION

In this paper, we propose MVImgNet2.0, a larger-scale dataset with
multi-view images for generic real-world objects. It expands the
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Fig. 9. The experiments for analyzing the effects of three factors in training
data to the learning of LGM, including data scale (a), category range (b),

and view range (c).

MVImgNet dataset and doubles the original scale and category
range. Besides, MVImgNet2.0 also advances the data processing
approaches to provide annotations of higher quality, including the
foreground object masks, the estimated camera poses, and the recon-
structed point clouds. To validate the value of MVImgNet2.0 data,
we conduct extensive experiments on the task of 3D reconstruction
and demonstrate that MVImgNet2.0 data not only can be used as
high-quality per-scene reconstruction data but also is promising to
provide a stronger 3D prior for generalizable object reconstruction.
All data and annotations will be released to the public to inspire the
computer vision and graphics communities.

Limitations and future work. MVImgNet2.0, while impressive,
does have some limitations. Firstly, due to the challenges in cap-
turing, we have excluded large-scale objects such as buildings and
dynamic subjects like animals that are difficult to stabilize for imag-
ing. Future multi-view datasets could aim to capture these “hard
categories” to facilitate learning a more comprehensive 3D prior. Sec-
ondly, there is significant potential for improvement in annotation
quality, particularly in dense reconstructions, which is an important
area for future work, especially with the ongoing advancements
in dense reconstruction techniques. Thirdly, the majority of the
videos focus on a single central object, resulting in camera trajecto-
ries that are relatively monotonous, i.e. orbiting around the main
subject. We plan to expand our collection to include videos with
complex arrangements of multiple objects and to explore alternative
camera trajectory modes to support more sophisticated scene-level
reconstructions.
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A MORE DETAILS ABOUT MVIMGNET2.0 DATA

Per-category data distributions. We count the number of object
videos in each category in the proposed MVImgNet2.0 dataset. Note
that among all 347 classes, 70 are old classes from MVImgNet [Yu
et al. 2023], and these classes are not required to collect more than
1000 videos in the data acquisition process of MVImgNet2.0. Exclud-
ing them, ~60% of classes (164/277) cover 1000 or more objects. We
provide a histogram for the number of objects in each MVImgNet2.0
new class in Fig. R.1. As shown, categories can be divided into three
groups: the first group is “hard classes”, where less than 500 videos
can be collected, while another two groups of categories can get
around 1000 and even 2000 videos collected, respectively. A more
detailed statistics of the number of objects in each category is shown
in Fig. R.3.

Category taxonomy. The category taxonomy is shown in Fig. R.4
to better exhibit the categories and their hierarchical relationships
in MVImgNet2.0.

Table R.1. Quantitative segmentation results (MSE| x10~!) on the ECCSD
dataset, the DAVIS dataset, and a subset of 500 MVImgNet images (MV1-
500) with ground-truth object masks.

Methods ‘ECCSD DAVIS  MV1-500

MV1-Anno 0.143 0.195 0.243
MV2-Anno (ours) | 0.103 0.143 0.172

B MORE EXPERIMENTS

Mask annotation quality. In the annotation process, we adopt
a detection-segmentation-tracking pipeline to generate the fore-
ground object mask in each view. To better demonstrate the supe-
riority of the used segmentation manner over the original one in
MVImgNet, we further evaluate the performance of this pipeline on a
subset of MVImgNet data where 500 frames (randomly selected from
different categories) are manually annotated with object segmenta-
tion masks, and also on other object-centric datasets with ground-
truth object masks, i.e., ECSSD [Shi et al. 2015] and DAVIS [Pont-
Tuset et al. 2017]. The segmentation results of CarveKit [Selin 2024]
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Fig. R.1. The histogram of object number in each class.
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(the original manner, denoted as MV1-Anno) and the advanced one
(MV2-Anno) are presented in Tab. R.1. As shown, the performance
of MV2-Anno surpasses MV1-Anno by a considerable margin.

More qualitative results. We visualize more results of LGM-tiny
for multi-view object reconstruction. We mainly show the recon-
struction quality of LGM-tiny when trained with MVImgNet1.0 data
(MV1-Data), MVImgNet2.0 data (MV1-Data), and both of them. As
shown in Fig. R.2, LGM trained with MV2-Data can achieve a higher
reconstruction ability, and the use of both of them can further lead
to improvements.
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Fig. R.2. More qualitative results of LGM-tiny when trained with different
kinds of data: MVImgNet1.0 (MV1.0), MVImgNet2.0 (MV2.0), and both.
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Fig. R.3. Amounts of objects in each category in the proposed MVImgNet2.0 dataset.
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Fig. R.4. The category taxonomy of the proposed MVImgNet2.0 dataset.
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