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Fig. 1. 3D meshes with textures generated by our method. We show a gallery of 3D meshes with textures generated by our method (left) and the texture
map and multi-view renderings of the bird model (right). Our approach models the distribution of mesh textures at high resolution, generating high-quality
textures from text and image prompts, more multi-view renderings are shown in fig. 5.
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While high-quality texture maps are essential for realistic 3D asset rendering,
few studies have explored learning directly in the texture space, especially on
large-scale datasets. In this work, we depart from the conventional approach
of relying on pre-trained 2D diffusion models for test-time optimization
of 3D textures. Instead, we focus on the fundamental problem of learning
in the UV texture space itself. For the first time, we train a large diffusion
model capable of directly generating high-resolution texture maps in a feed-
forward manner. To facilitate efficient learning in high-resolution UV spaces,
we propose a scalable network architecture that interleaves convolutions on
UV maps with attention layers on point clouds. Leveraging this architectural
design, we train a 700million parameter diffusionmodel that can generate UV
texture maps guided by text prompts and single-view images. Once trained,
our model naturally supports various extended applications, including text-
guided texture inpainting, sparse-view texture completion, and text-driven
texture synthesis. Project page is at https://cvmi-lab.github.io/TEXGen/.

CCS Concepts: • Computing methodologies → Mesh models; Shape
analysis; Neural networks.

Additional Key Words and Phrases: Generative model, texture generation
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1 INTRODUCTION
Synthesizing textures for 3D meshes is a fundamental problem in
computer graphics and vision, with numerous applications in virtual
reality, game design, and animation. However, the most advanced
learning-based methods [Cheng et al. 2023; Oechsle et al. 2019; Sid-
diqui et al. 2022; Yu et al. 2023a] are restricted to generating textures
for specific categories due to scalability and data limitation. Recently,
test-time optimization-based methods have emerged, which utilize
pre-trained 2D diffusion models to produce image priors via score
distillation sampling [Lin et al. 2023; Poole et al. 2022; Wang et al.
2023b; Yu et al. 2023b] or by synthesizing pseudo-multi-views [Chen
et al. 2023b; Richardson et al. 2023; Zeng 2023]. While these methods
can generate textures for a wide range of objects, they suffer from
certain drawbacks, such as time-consuming per-object optimization
and parameter tuning, susceptibility to the limitations of 2D priors,
and poor 3D consistency in texture generation.
In recent years, there has been a surge in the development of

large models across various domains, including natural language
processing [Achiam et al. 2023; Touvron et al. 2023], image and video
generation [Betker et al. 2023; Blattmann et al. 2023; Saharia et al.
2022], and 3D creation [Hong et al. 2023; Li et al. 2023; Tochilkin
et al. 2024; Wang et al. 2023c; Xu et al. 2023; Zou et al. 2023]. These
models produce high-quality results and demonstrate remarkable
generalization capabilities. Their success can be primarily attributed
to two key factors: (1) scalable and effective network architectures
that improve performance as model size and data amount increase,
and (2) large-scale datasets that facilitate generalization. In this
paper, we explore the potential of building a large generative model
by scaling up model size and data for generalizable and high-quality
mesh texturing.

We introduce TEXGen, a large generative model for mesh textur-
ing. Our model utilizes a UV texture map as the representation for
generation, as it is scalable and preserves high-resolution details.
More importantly, it enables direct supervision from ground-truth
texture maps without solely relying on rendering loss [Hong et al.
2023; Li et al. 2023], making it compatible with diffusion-based train-
ing and improving the overall generative quality. Previous works
such as Point-UV-Diffusion [Yu et al. 2023a] and Paint3D [Zeng
2023] have attempted to leverage diffusion models to learn the dis-
tribution of mesh textures. However, neither of these approaches
achieved end-to-end training or feed-forward inference on general
object datasets [Deitke et al. 2023], resulting in error accumulation
and scalability issues.
To perform effective feature interaction on mesh surfaces, we

propose a scalable 2D-3D hybrid network architecture that incor-
porates convolution operations in the 2D UV space, followed by
sparse convolutions and attention layers operating in the 3D space.
This simple yet effective architecture offers several key advantages:
(1) by applying convolution operations in the UV space, the net-
work effectively learns local and high-resolution details; and (2)

by further elevating the computation into 3D space, the network
can learn global 3D dependencies and neighborhood relationships
that are disrupted by the UV parameterization process, ensuring
global 3D coherency. This hybrid design allows us to use sparse fea-
tures in 3D space instead of dense voxel [Chen et al. 2018] or point
features [Nichol et al. 2022; Yu et al. 2023a] for manageable computa-
tions while still maintaining 3D continuity, making the architecture
scalable. By stacking multiple blocks, we train a large texture diffu-
sion model capable of directly synthesizing high-resolution textures
(e.g., 1024×1024 texture maps) in a feed-forward manner guided by
single-view images and text prompts. Moreover, our pre-trained
model enables various applications, including text-guided texture
synthesis, inpainting, and texture completion from sparse views.

To summarize, our contributions are as follows:
• We introduce a novel network architecture designed for learn-
ing high-resolution UV texture maps, wherein we build a
hybrid 2D-3D denoising block for effective feature learning.

• Based on this architecture, we have trained a large diffusion
model for high-resolution texture map generation. To the best
of our knowledge, this is the first work capable of generating
texture maps in an end-to-end manner without requiring
additional stages, or test-time optimization.

• Our method achieves state-of-the-art results and serves as a
foundation model supporting various training-free applica-
tions, such as text-guided texture synthesis, inpainting, and
texture completion from sparse views.

2 RELATED WORK
Texture generation via 2D diffusion models. A prevalent method

for texturing 3D meshes involves test-time optimization with pre-
trained 2D diffusion models. Techniques such as those based on
score distillation sampling [Chen et al. 2023a; Lin et al. 2023; Met-
zer et al. 2023; Poole et al. 2022; Wang et al. 2023b; Yeh et al. 2024;
Yu et al. 2023b], synthesize textures on 3D shapes by distilling 2D
diffusion priors. However, these approaches have significant draw-
backs, including high computational demands and inherent artifacts
like the Janus problem and unnatural color. Another line of ap-
proach [Cao et al. 2023; Ceylan et al. 2024; Chen et al. 2023b; Gao
et al. 2024; Liu et al. 2023; Richardson et al. 2023; Wu et al. 2024;
Zhang et al. 2024] leverages geometry-conditioned image genera-
tion and inpainting to progressively generate the textures. TEXTure
[Richardson et al. 2023], for example, generates a partial texture
map from one perspective view before using inpainting to complete
other views. However, this method struggles with inconsistencies
due to the lack of global information across views. Text2Tex [Chen
et al. 2023b] introduces an automated strategy for optimized view-
point selection to avoid manual intervention. Meanwhile, TexFusion
[Cao et al. 2023] proposes to aggregate appearances from multiple
viewpoints during the diffusion denoising steps, producing a more
consistent and cohesive texture map. Despite the advances, these
methods predominantly lack 3D awareness due to their reliance on
2D diffusion models and often require time-consuming per-instance
optimization.

Texture generative models. A variety of learning-based approaches
have been developed to train generativemodels from 3D data [Chang
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et al. 2015] for mesh texturing. Early methods [Oechsle et al. 2019]
introduced implicit texture fields that assign colors to each point
on the 3D surface. However, these methods often struggle to repro-
duce high-frequency details due to the continuous nature of implicit
fields. Texturify [Siddiqui et al. 2022] andMesh2Tex [Bokhovkin et al.
2023] design convolution operations tailored for mesh structures to
facilitate learning directly on surfaces, which use the StyleGAN ar-
chitecture [Karras et al. 2019] to predict textures for each mesh face
and relies on GANs [Goodfellow et al. 2020] for training. Despite
these advances, these methods are susceptible to mode collapse due
to the instability of GAN training. More recent approaches, such as
TUVF [Cheng et al. 2023] and Point-UV Diffusion [Yu et al. 2023a],
attempt to generate UV maps directly for 3D shapes, addressing
some of the aforementioned challenges. However, these methods
are generally limited to category-specific objects and struggle with
generalized objects. Paint3D has demonstrated the capability of
handling generalized objects by fine-tuning a diffusion model for
texture maps on larger-scale datasets [Deitke et al. 2023]. Nonethe-
less, it still requires test-time optimization to generate the initial
textures, and the trained diffusion model is only capable of removing
light effects and filling holes. The two-stage pipeline can lead to
cumulative quality losses, often resulting in degenerated details in
the final output.

Feed-forward methods for 3D generation. Recently, there has been
a notable shift in the community towards training feed-forward
3D generative models using large-scale datasets. These models are
designed to accept minimal input conditions and directly output
3D representations, thereby eliminating the need for per-instance
optimization [Chen et al. 2023a; Lin et al. 2023; Metzer et al. 2023;
Poole et al. 2022; Wang et al. 2023a,b; Yu et al. 2023b]. Notably, Large
Reconstruction Model (LRM) and its variants [Hong et al. 2023; Li
et al. 2023; Tochilkin et al. 2024; Xu et al. 2024; Zou et al. 2023] adopt
a transformer-based architecture to infer 3D shapes from single or
sparse-view inputs, which show significant improvements on the
quality and efficiency of feed-forward 3D reconstruction. However,
these methods often result in over-smoothed appearances, espe-
cially in areas not visible in the input views, and lack the capability
to produce varied outcomes by design. Furthermore, adapting these
models for texture generation given the 3D geometry poses signifi-
cant challenges, as they typically manage feature interactions in a
coarse-grained 3D space rather than directly on surfaces.

3 OVERVIEW
Given a 3D mesh 𝑆 , our objective is to develop a generative model
capable of producing high-quality textures for 3D surfaces based on
user-defined conditions such as images or text prompts, as illustrated
in fig. 3 (a). The modeling comprises the following principal steps:

(i) Data representations. We use UV texture maps as the mesh
texture representation, which is compact and suitable for diffusion
training. We discuss its characteristics in section 4.1 which motivate
us to develop a new network architecture in section 4.2.
(ii) Model construction and learning. We develop a novel

hybrid 2D-3D network structure that effectively handles the unique
characteristics of texturemaps (section 4.2).We then train a diffusion
model [Ho et al. 2020] to generate high-resolution texture maps for

a given mesh based on a single-view image and a text description
(section 4.3).

(iii) Inference. After training is done, our model can start from
a noise image and iteratively denoise it to generate high-resolution
texture maps. Additionally, our model supports various training-free
extensions, such as text-guided texture synthesis, texture inpainting,
and texture completion from sparse views (section 4.4).

4 METHOD

4.1 Representation for Texture Synthesis
A surface can be fundamentally viewed as a two-dimensional signal
embedded within a three-dimensional space. Consequently, a tradi-
tional technique in graphics for processing mesh structures is UV
mapping, which flattens the 3D structure into a compact 2D repre-
sentation (refer to fig. 2). This transformation allows 3D attributes,
such as textures, to be reorganized and represented on a 2D plane.
The 2D UV space effectively captures neighborhood dependencies
within individual islands, enhancing computational efficiency for
texture generation [Yu et al. 2023a] thanks to its grid structure. Ad-
ditionally, the explicit nature of the texture map facilitates direct
supervision, making it well-suited for integration with diffusion
models.

The advantages outlined above motivate our adoption of a 2D UV
texture map as the representation for texturing 3Dmeshes. However,
despite its merits, this approach inevitably loses the global-level
3D consistency among different islands due to the fragmentation
inherent in UV mapping. As illustrated in fig. 2, islands 𝑆1 and
𝑆2 are contiguous on the 3D surface but are positioned far apart
on the UV map. Conversely, 𝑆1 and 𝑆3, which are adjacent on the
UV map, do not share a physical connection on the surface. This
fragmentation can lead to inaccurate feature extraction in conven-
tional image-based models. To address this issue, we propose a novel
model that synergizes the strengths of the 2D UV space—enabling
high-resolution and detailed feature learning—with the incorpora-
tion of 3D points to maintain global consistency and continuities.
These components interleave and refine representations, facilitating
effective learning for generating high-resolution 2D texture maps.
Further details will be in section 4.2.

4.2 Model Construction
Utilizing 2D texture representations, we can train a diffusion model
that conducts iterative denoising to generate a high-quality 2D tex-
ture map, given a specific condition, such as a posed single image
or a text prompt. The core of our model is a hybrid 2D-3D network
that learns features in both 2D and 3D spaces (see fig. 3). Unlike un-
conditional generation, our work prioritizes conditional generation,
particularly conditioning on textual and visual inputs. Text prompts
provide an intuitive interface for users to specify desired attributes
in the generated content, making the model more accessible and
responsive to user intentions. On the other hand, conditioning on
images offers precise control over the generation process by captur-
ing pixel-level details that text alone may overlook, thus offering
stronger guidance for diffusion models. Moreover, a single image
with rich textures can serve as a valuable prior in the diffusion
process, facilitating more effective learning. Since it is feasible to
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Fig. 2. An illustration of (a) a mesh with its (b) UV map. Three islands
𝑆1, 𝑆2 and 𝑆3 are shown both on the mesh surface and its flattened UV map,
where continuous islands 𝑆1 and 𝑆2 are positioned far apart on the UV map
while disconnected islands 𝑆1 and 𝑆3 show closer distance on the UV map.

generate an image from text alone using text-to-image models [Rom-
bach et al. 2022; Zhang et al. 2023], we choose to condition on both
text and images for training. During inference, the model remains
flexible, allowing for the inclusion or omission of image data based
on its availability to the user (see section 4.4).

Network. As depicted in fig. 3, our training pipeline utilizes a
diffusion-based approach. At each denoising step, our network pro-
cesses multiple inputs: the noised texture map 𝑥𝑡 , position map 𝑥pos,
mask map 𝑥mask, a single image 𝐼 , text prompt 𝑐 , and timestep 𝑡 , to
guide the removal of noise from 𝑥𝑡 . The integration of the image
𝐼 into the network occurs in two distinct ways: (1) Projection of
image pixels: The image pixels are projected back onto the surface
to derive a partial texture map 𝑥𝐼 , which serves as an additional
input. (2) Global embeddings extraction: Using an image encoder
from CLIP [Radford et al. 2021] and a text encoder, we extract global
image and text embeddings, respectively. A learnable timestep em-
bedding accommodates different values of 𝑡 . These embeddings are
processed through separate MLPs and subsequently combined to
form the global condition embedding 𝑦. This embedding modulates
features within the network to incorporate condition-specific in-
formation, similar to [Peebles and Xie 2023]. The network predicts
the velocity 𝑣𝑡 [Salimans and Ho 2022], which can be equivalently
transformed into a prediction of noise 𝜖 or a prediction of 𝑥0. Similar
to the denoising network described in [Ho et al. 2020], our archi-
tecture is based on the UNet framework [Ronneberger et al. 2015].
However, we uniquely enhance it by incorporating hybrid 2D-3D
blocks at each stage. This adaptation enables our network to adeptly
manage the distinct characteristics of texture maps.

Hybrid 2D-3D block. The key to our design is the hybrid 2D-3D
block, which facilitates efficient feature learning for 2D texture map
generation. As shown in fig. 3 (b), our hybrid block comprises a UV
head and several 3D point-cloud blocks. An input UV feature 𝑓in
is first processed through a 2D convolution block (see fig. 3 (c)) to
extract local features in the UV space. 2D convolutions are computa-
tionally more efficient compared to 3D convolutions or point cloud
KNN searches for establishing neighbors and weighting, making it

more scalable to higher resolution. Furthermore, within an island,
2D convolutions ensure that the aggregation of adjacent features
is based on surface neighborhoods rather than volumetric neigh-
borhoods, where geodesic distances can be larger. Thus, this step
efficiently ensures the preservation of high-resolution information.
To establish 3D connections among islands in UV space, we em-

ploy rasterization to remap the output UV features 𝑓 uvout back into the
3D space, thus reorganizing these UV features into 3D point cloud
features 𝑓 pointin . The primary objective in the 3D space is to acquire
3D neighborhood relationships and global structural features to im-
prove 3D consistency rather than extracting high-resolution detail
features. Consequently, we employ relatively sparse features and
design an efficient module to ensure scalability. A brief illustration
is shown in fig. 4. The key components are detailed as follows:

• Serialized attention. For the input dense point features
𝑓
point
in , we adopt grid-pooling [Wu et al. 2022] to sparsify
the number of points and obtain 𝑓

sp
in . The pooled features are

then treated as tokens and processed by point attention layers
for learning. To boost the efficiency, we utilize Serialized
Attention [Wu et al. 2023], which facilitates efficient patch-
based attention. Specifically, the point features are partitioned
into different groups based on their sterilized codes, defined
by space-filling curves, such as the z-order curve [Morton
1966] and the Hilbert curve [Hilbert and Hilbert 1935].

• Position encoding. Position encoding plays a critical role in
incorporating 3D position information into our model. Tradi-
tional methods that use point coordinates as cues for position
encoding [Lai et al. 2022; Yang et al. 2023] are less effective
compared to conditional positional encoding [Chu et al. 2021;
Wang 2023; Wu et al. 2023], which utilizes convolution layers
for this purpose [Wu et al. 2023]. Initially, we implemented
the xCPE [Wu et al. 2023], which integrates a sparse con-
volution layer directly before the attention layer. However,
this approach proved to be inefficient and time-consuming
as the transformer dimension increases (i.e., 𝑑 = 2048). To ad-
dress these inefficiencies, we developed a modified approach,
termed sCPE, which uses a linear layer to reduce the input’s
channel dimension before executing the sparse convolution.
Subsequently, another linear layer is used to expand the chan-
nel dimension back to its original size to match the feature
dimension of the skip connection.

• Condition modulation. For both our 2D and 3D blocks, we
utilize the global condition embedding to modulate intermedi-
ate features, enabling the injection of conditional information.
Specifically, inspired by DiT [Peebles and Xie 2023], we em-
ploy MLPs to learn modulation vectors 𝛾 and 𝛽 from the
condition embedding 𝑦. These vectors are used to scale and
shift the intermediate features across their channel dimen-
sions, formulated as 𝑓mod = (1 + 𝛾) · 𝑓in + 𝛽 . Besides, we also
learn a gated scale 𝛼 to scale the output feature before its
fusion with the feature from the skip connection, expressed
as 𝑓fuse = 𝛼 · 𝑓out + 𝑓skip.

The learned sparse point features 𝑓 spout are then scattered to dense
coordinates based on grid partition, resulting in 𝑓

point
out . Before fusion
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Fig. 3. An overview of TEXGen. (a). An overview of our training pipeline. We train a diffusion model to generate high-resolution texture maps for a given
mesh 𝑆 based on a single-view image 𝐼 and text descriptions by learning to denoise from a noise texture map 𝑥𝑡 . The core of our denoising network is our
proposed hybrid 2D-3D block. (b). The structure of a single hybrid block. (c)-(d). The detailed designs of our UV head block and point block.

with the skip-connected UV feature, we also learn a gated scale
𝛼point from the condition embedding 𝑦 to scale the point features.
The final fused feature is given by: 𝑓out = 𝑓 uvout + 𝛼point · 𝑓 pointout

4.3 Diffusion Learning
Given a real texture map 𝑥0, we randomly sample a time-step 𝑡

(𝑡 ∈ {0, 1, . . . , 1000}) and add noise to the texture map by

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝜖 ∼ N(0, I), and {𝛼𝑡 } are hyperparameters that follow a
certain noise scheduler. Specifically, we use a noise scheduler from

Stable Diffusion [Rombach et al. 2022] and adopt zero-terminal SNR
[Lin et al. 2024] to scale the original noise scheduler such that 𝛼𝑡 = 0
when 𝑡 = 1000. This helps eliminate the gap between training and
inference at the initial starting point. During training, we randomly
drop text embeddings and image embeddings with a probability
𝑝 = 0.2 so that we can utilize classifier-free guidance [Ho and
Salimans 2022] during inference. For the network output 𝑥out, we
use v-prediction [Lin et al. 2024; Salimans and Ho 2022] to compute
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Fig. 4. An illustration of the feature learning procedure in 3D space.
In panel (a), we start with rasterized dense point features, which we sparsify
using grid-pooling to create sparse point features shown in (b). Different
pools are indicated by various colors in (a). These points are then serialized
to determine their order for subsequent group-based self-attention, as part
of the learning process shown in (d). In (c), we visualize different groups
formed based on Hilbert serialization, where each color signifies a distinct
group. Finally, the processed features are scattered back to their original
coordinates, providing the output dense point features.

the diffusion loss, i.e.,

𝑣𝑡 =
√
𝛼𝑡𝜖 −

√
1 − 𝛼𝑡𝑥0,

Ldiff = 𝜆𝑡 ∥𝑣𝑡 − 𝑥out∥2
2 ,

(2)

where 𝜆𝑡 is the soft-min-SNR weight [Crowson et al. 2024].
Notably, we obtain the predicted sample 𝑥0 from the v-prediction

output and apply an LPIPS [Zhang et al. 2018] loss on multi-view
renderings for extra supervision:

Lrender =
1
𝑁

∑︁
LPIPS(𝐼𝑖 , 𝐼𝑖 ), (3)

where 𝐼𝑖 is an image rendered from a random viewpoint using the
predicted texture map 𝑥0, and 𝐼𝑖 is the corresponding ground truth
image. Our final loss is:

L = 𝜆1Ldiff + 𝜆2Lrender, (4)

where we set 𝜆1 = 1 and 𝜆2 = 0.5.

4.4 Texture Generation
After training, our denoising network is ready to generate high-
quality texture maps for 3D meshes (see fig. 1 and fig. 5). We start
by initializing a pure Gaussian noise texture map in UV space. Then,
using conditional information (e.g., single-view image, text prompt),
we iteratively denoise it to generate a final texturemap. To accelerate
inference, we use DDIM [Song et al. 2020] sampling for 30 steps.
Interestingly, although we trained our model guided by a single-
view image and text prompt, it can be generalized to other scenarios
and applications during testing.

Text to texture generation. If only a text prompt is provided, we
can arbitrarily choose a mesh viewpoint, render a depth map, and
then use ControlNet [Zhang et al. 2023] to generate a corresponding
single-view image. This is also a motivation for us to train an image-
conditioned model instead of a text-conditioned model since an
image can be easily obtained from text, whereas a text-conditioned
model lacks the control capabilities provided by an image.

Texture inpainting. During training, the pixel information of the
single-view image is projected back to UV space, resulting in a
partial initial texture map. Our network is trained to fill in the
unseen parts. We found that this capability allows the model to
function as a texture inpainting model during testing. Specifically,
we can take the user-provided partial texture map and mask as 𝑥𝐼
(i.e., skipping the projection from the single-view step) and input
them into the network for inpainting. For the image embedding
required during testing, we set it to zero embedding, as our training
included randomly dropping the image embedding, making the
model robust to this situation.

Texture completion from sparse views. If the user provides a few
sparse-view images, such as two images, we can effectively utilize
the additional information for a generation. We simply project and
fuse each image during the projection step and randomly select one
image for image embedding extraction. Our model can fill textures
in the occluded parts and recover the whole texture map.

5 EXPERIMENTS
We use Objaverse [Deitke et al. 2023] as our raw data source, which
comprises over 800,000 3D meshes. After processing and cleaning
this dataset, we extracted a total of 120,400 data pairs. Of these,
120,000 pairs are designated for training and the remaining 400 pairs
are set aside for evaluation. We provide a detailed data processing
method and implementation details of our model in the Appendix.

5.1 Main Results and Comparisons
We present our primary results, which include the textured 3D mesh
conditioned on a single-view image and a text prompt, as illustrated
in fig. 1. Notably, consider the example of the bird, where the tex-
ture detailing on the feathers demonstrates the model’s capability to
generate highly detailed textures. In fig. 5, we display the conditions
and multi-view results of several examples independently. Our re-
sults demonstrate that the model can generate high-quality textures
with rich local details, preserve condition information, and achieve
global coherence. We compare our method with other generalizable
texture generation methods, including TEXTure [Richardson et al.
2023], Text2Tex [Chen et al. 2023b], and Paint3D [Zeng 2023].

Qualitative comparisons. We conducted a qualitative analysis com-
paring our method with TEXTure and Text2Tex. Both these methods
utilize a 2D pretrained text-to-image diffusion model for test-time
optimization to texture 3D meshes. Their approach involves gener-
ating an image with a depth-conditioned diffusion model that aligns
with the geometry of the current view, which is then projected onto
the mesh. For areas without direct visibility, they iteratively adjust
the viewpoint and employ an inpainting model to complete the tex-
ture. This cycle is repeated to produce a full texture map. For a fair
comparison, we replaced their initial image with the same single-
view image used in our method. As depicted in fig. 6, both TEXTure
and Text2Tex encounter several challenges. In the first example,
despite the conditional image containing rich texture patterns, both
methods produce overly smooth textures. In the second and third
examples, while more details are shown, various artifacts degrade
their quality. Besides, they do not well preserve the guided image
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A wooden chair with a simple, modern design , featuring a rectangular seat and back , and four legs.

A woman with fox ears and nine fox tails in an anime style, wearing a white and pink outfit.

A 3D model of Thor 's stone hammer Mjolnir, featuring gray cracked stone head, silver handle, and brown leather grip.

Skull Kid, a character from the Legend of Zelda series, wearing a large, orange, leaf-shaped hat with a brown 
branch-like appendage, an orange tunic, green pants, and brown boots. The character has a wooden mask with red, 

yellow, blue, and purple markings covering its face.

A 3D model of a modern chair with a light blue fabric seat and backrest, and four light brown wooden legs.

Fig. 5. Texture generation results. For given meshes, our method can synthesize highly detailed textures conditioned on guided single-view images and text
prompts. We show three novel view images from our textured results and representative zoom-in regions from the textured mesh. The generated full texture
maps are also shown.
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a green frog sitting on its 
haunches with a red and white 
polka dot belly and a friendly 

smile on its face.

a small house with a chimney, 
featuring a brown roof, white 

walls, and a brown door.

A 3D model of a tote bag, 
featuring a boxy shape, dual 
purple handles, and a purple 

and yellow woven body.

A 3D model of a wooden barrel 
with dark brown wooden barrel 

staves and light gray metal 
hoops.

TEXTure Text2Tex Paint3D Ours

Fig. 6. Comparison with state-of-the-art methods. We compare our method with four representative state-of-the-art methods. Our model can synthesize
more detailed and coherent textures compared to these methods which rely on test-time optimization using a 2D pretrained text-to-image diffusion model.
Also, our method trained on the 3D dataset and 3D representation avoids the Janus problem that commonly occurs in other methods.

information. In the fourth example, they face the Janus problem,
where inappropriate features such as eyes and a mouth appear on
both the front and back of the frog. In contrast, our method success-
fully generates textures with rich detail, maintains global coherence,
and avoids the Janus problem.

Then, we compare our method with Paint3D, which utilizes a two-
stage approach. In the first stage, similar to TEXTure and Text2Tex,
Paint3D generates a texturemap𝑥coarse through iterative inpainting;
additionally, it trains a refinement model 𝐷 to address unrealistic
lighting issues and fill in areas that were not painted in the first
stage. However, this model cannot be used standalone for texture
generation and we observe an inevitable loss of texture details after
the refinement stage. The results in fig. 6 show Paint3D produces
over-smooth results and still exhibits the Janus problem.

Quantitative comparisons. We conduct quantitative comparisons
on 400 test objects. Following [Siddiqui et al. 2022; Yu et al. 2023a],
we render images from textured meshes and calculate the FID and
KID with ground-truth images. As shown in table 1, our method
significantly outperforms other methods. Additionally, we tested
our model’s runtime speed on a single A100 GPU, and our method

Table 1. Quantitative Comparisons. FID and KID (×10−4) are evaluated
on multi-view renderings. Our method achieves state-of-the-art texture
quality with significantly faster inference.

Methods FID(↓) KID(↓) Time(↓)
TEXTure [Richardson et al. 2023] 48.31 48.00 80s
Text2Tex [Chen et al. 2023b] 49.85 47.38 344s

Paint3D [Zeng 2023] 43.55 25.73 95s
Ours 34.53 11.94 10s

is notably faster than others, completing evaluations in under 10
seconds without requiring test-time optimization.
It is worth noting that our method fundamentally differs from

others as it is a feed-forward model. Consequently, we can further
accelerate our model using techniques such as model compression or
diffusion acceleration methods like consistency distillation, which
we leave as future work.

ACM Trans. Graph., Vol. 43, No. 6, Article 213. Publication date: December 2024.



TEXGen: a Generative Diffusion Model for Mesh Textures • 213:9

Fig. 7. An indoor scene with all meshes textured by TEXGen. We generate a single view using text-conditioned ControlNet with depth control for each
mesh and paint them with both the text and single view prompt with TEXGen.

(a) Partial texture map (b) Inpainted texture map

Fig. 8. TEXGen as a texture inpainter.We demonstrate the potential of
TEXGen as a texture inpainter. We showcase here (a) randomly masked
texture maps and (b) the inpainted texture maps, with unknown regions
rendered as black.

5.2 Applications
Without any fine-tuning, our model serves as a powerful foundation
for various applications. Firstly, we showcase the ability of our
model to generate mesh textures conditioned solely on text prompts
by integrating it with Depth-ControlNet [Zhang et al. 2023]. As
shown in fig. 7, we compose a scene with the generated objects to
showcase our results. The scene is vivid and highlights the potential
of our model in scene texturing applications. Each object can be
customized using individual text prompts for control.
We also evaluate the text-condition results by two ways. Firstly,

we conducted a user study focused on text alignment and texture
quality. Participants were asked in each round to choose the best of
four texture results based on howwell they matched the text descrip-
tion and the quality of the texture. A total of 423 responses were
collected, and the final analysis, presented in Table 2, shows which
algorithm produced the most preferred results. Besides, we employ

(a) Multi-view images (b) Unseen view (c) Unseen view of painted texture maps

Fig. 9. Texture completion from sparse views. With sparse views of
objects provided (front and back views as shown in (a)), unprojected textures
retain many unseen regions (b). TEXGen effectively fills these unseen regions
with harmonious textures (c).

the Multi-modal Large Language Model (MLLM) Score [Huang et al.
2023b] as an objective metric which provides a robust measure of
the alignment between the input text prompt and the generated
texture, especially under complex conditions that are close to real-
world scenarios. As shown in Table 2, both human preference and
MLLM score prove that our method outperforms other methods.

Then, we demonstrate that our model can flexibly paint different
sources of partial texture maps. In fig. 8, we randomly mask sections
of a texture map and use our model to fill in the gaps. The results
show seamless integration with the existing texture. Additionally,
in fig. 9, we consider a scenario where the user provides multi-view
images. In such cases, there are often many unseen areas. Our model
effectively paints these regions, ensuring continuity and coherence.
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Table 2. Quantitative evaluation on text-condition generation. Pref-
erence refers to the comprehensive user study evaluating the alignment
with the text description and the quality of the texture. ForMLLM Score,
Claude 3.5-sonnet [Anthropic 2024], a state-of-the-art MLLM, is used to
calculate the text-to-texture similarity scores. To be consistent with the
conclusions in [Huang et al. 2023a], we use the same Chain-of-Thought
prompts described in the study.

Methods Paint3D TEXTure Text2Tex Ours

Preference(%)(↑) 16.5 7.1 7.1 69.3
MLLM Score(↑) 64.8 69.8 64.8 74.2

5.3 Model Analysis

(a) Model A (b) Model B (c) Model C

Fig. 10. Qualitative ablation results on the hybrid design. Compared
to the full model A (a), the model B (b) with only UV blocks can not easily
capture overall semantic and 3D consistency while that the model C (c)
with only point blocks struggles with producing high-frequency patterns.

Hybrid blocks. We ablate the hybrid design of our block. For
efficiency reasons, we select objects from the house category in our
dataset for training and testing in this experiment. We use 10,000
models for training and 100 for testing. We reduce the model size
by half to create Model A, which uses the hybrid block. Keeping the
parameter count the same as Model A, we remove the point block
and replace it with additional UV blocks to create Model B. Similarly,
we remove the UV block and replace it with additional point blocks
to create Model C, maintaining the same parameter count as Model
A. We train all three models on 16 A100 GPUs, with a batch size
of 64, for 85K iterations. As seen in fig. 10, compared to Model A,
Model B generates textures with inconsistent styles, such as the
white patches on the roof in the yellow zoom-in region and the seam
artifacts on the wall in the green box. Model C produces relatively
consistent textures, but the texture in the red zoom-in region lacks
high-frequency details and appears blurred. We also tested FID and
KID for the three models. As shown in the table 3, Model A performs
the best, confirming the effectiveness of our hybrid block design.

Classifier-free guidance. A key advantage of our model is its use
of diffusion-based training instead of a regression loss. This allows
us to implement classifier-free guidance [Ho and Salimans 2022]
during inference, which is crucial for enhancing texture synthesis
quality. We found that the scale of the guidance weight significantly
affects the results. While image diffusion models typically use a

Table 3. Quantitative ablation results on the hybrid design. Starting
from the full model, we build a UV block-only model (B) and a point block-
only model (C) by replacing redundant blocks with additional ones, while
maintaining the same number of model parameters. FID and KID (×10−4)
are evaluated on multi-view renderings.

Models/Metrics FID(↓) KID(↓)
Hybrid block (A) 69.74 17.89

w/o point block (B) 72.58 25.52
w/o UV block (C) 94.22 159.94

Table 4. Ablation results of guidance weights. We use different CFG
weights to evaluate TEXGen, and the results show that the weight around
2-3 is optimal.FID and KID (×10−4) are evaluated on multi-view renderings.

Metrics/𝜔 1 1.5 2 3 4 5 7.5

FID(↓) 35.01 34.73 34.53 35.19 35.69 36.69 39.58
KID(↓) 15.06 13.00 11.94 11.71 13.03 14.53 24.45

guidance weight of 𝜔 = 7.5 to balance generation quality and con-
dition alignment, our experiments show that a guidance weight of
𝜔 = 2.0 provides the optimal balance for our model. As demon-
strated in table 4, we varied the guidance weights and evaluated
their performance in terms of FID and KID.

6 CONCLUSION
In this work, we have presented TEXGen, a large generative diffu-
sionmodel designed for creating high-resolution textures for general
3D objects. TEXGen departs from conventional methods that de-
pend on pre-trained 2D diffusion models that necessitate test-time
optimization. Instead, our model efficiently synthesizes detailed and
coherent textures directly, leveraging a novel hybrid 2D-3D block
that adeptly manages both local detail fidelity and global 3D-aware
interactions. Capable of generating high-resolution texture maps
in a feed-forward manner, TEXGen supports a variety of zero-shot
applications, including text-guided texture inpainting, sparse-view
texture completion, and text-to-texture synthesis. As the first feed-
forward model capable of generating textures for general objects,
TEXGen sets a new benchmark in the field. We anticipate that our
contributions will inspire and catalyze further research and advance-
ments in texture generation and beyond.
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A APPENDIX

A.1 Implementation Details
We use Objaverse [Deitke et al. 2023] as our raw data source, which
contains over 800K 3D meshes. However, the texture structure of
these meshes is not uniform and requires processing and filtering.
For instance, some meshes are divided into parts with multiple tex-
ture images, while others have only base color information without
texture images. To clean and reorganize the data, we first filter out
meshes with poor texture quality. For the remaining meshes, we use
xAtlas [Young 2018] to re-unfold the UVs, ensuring they are repre-
sented by a single UV atlas. Then, we bake the diffuse color from
the original mesh files onto the newly parameterized meshes. Fur-
thermore, we use Gemini [Team et al. 2023] to acquire each mesh’s
caption based on their rendered images. Ultimately, we processed
and obtained 120,400 meshes with their corresponding texture im-
ages, using 120,000 for training and 400 for evaluation. We use five
stages to construct our network (i.e., four downsampling and four
upsampling stages). For efficiency, we use only UV blocks in the first
stage. In the second stage, we use hybrid blocks but replace point
attention with sparse convolution. In the remaining three stages, we
use our designed hybrid blocks, with the attention layers having 2, 4,

and 6 layers, respectively. The number of channels for each stage is
32, 256, 1024, 1024, and 2048, respectively. We use grid sizes of 0.02
and 0.05 in the sparse convolution blocks in the second stage and the
attention blocks of the last three stages. The serialized point patch
sizes are set to 256, 512, and 1024 in the final three stages. We train
our model using the AdamW optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999,
and a weight decay of 0.05. The training process takes place on 32
A100 GPUs, with a total batch size of 64, spanning 400K iterations. A
cosine scheduler is used to reduce the learning rate from 2e-4 to zero.
The code is available at https://github.com/CVMI-Lab/TEXGen.

A.2 MoreQualitative Results
Firstly, in the video file submitted as supplementary material, we
provide a video of the mesh rendering to demonstrate the results
of our model. Additionally, our method demonstrates the ability
to avoid the Janus problem and is applicable to real-scan models.
The Janus problem in texture generation refers to the unintended
duplication of features such as eyes and noses on both sides of 3D
assets, particularly human faces. This issue typically occurs when
methods lack 3D-awareness, often relying on pre-trained image
generation models to independently generate textures for different
views. Since our model is trained on 3D data and directly produces
the full UV map in a forward manner, it effectively prevents this
issue, as illustrated in fig. 11. Real-scan models often present unique
challenges due to their non-smooth surfaces and fragmented, irregu-
lar UV maps. Despite these complexities, our method proves robust
in handling real-scan models, effectively managing to generate high-
quality texture maps that maintain the details and authenticity of
the original objects, as demonstrated in fig. 12.

A.3 Limitations and Discussions
Currently, the condition images used during the training of our
model are pose-aligned and shape-aligned, which may not meet
the needs of users who wish to “transfer” textures using arbitrary
images. However, we believe our network architecture could poten-
tially handle such scenarios by incorporating dense image informa-
tion through mechanisms like cross-attention, rather than relying
on pixel projection. The primary challenge remains in constructing
a suitable dataset for this purpose. As a future work, we plan to
extend our model to generate Physically Based Rendering (PBR)
material maps. It can be achieved by collecting and processing data
necessary to train the model to generate PBR maps.
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A 3D model of a male teenager with long brown hair, wearing an orange t-shirt, gray cargo pants, and a black beanie.

A 3D model of Mr. Mime, a bipedal, humanoid Pokémon with pink skin, blue hair, and large, blue, ear-like protrusions.

Octane, a character from the game Apex Legends, wearing a green and grey outfit, a brown mask, and a green and
yellow backpack.

a young man with brown hair and blue eyes, wearing a blue shirt, green camouflage pants, a brown vest with a yellow
buckle, headphones, and brown boots.

Fig. 11. Results on 3D avatars. Our model, trained on 3D data, adeptly avoids the Janus problem.
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A round cake with a golden crust, topped with sliced figs and red berries, served on a white plate with a golden rim.

A dark blue leather handbag with a silver buckle and a long shoulder strap.

A 3D model of a wooden sculpture of a garden gnome with a pointy hat and a long beard, standing on a square
concrete base.

A 3D model of an anthropomorphic owl-shaped red clay pot with a spout and two handles, wearing a hat and a belt,
and having geometric and owl facial features.

Fig. 12. Results on real-scan models. Our method is robust to real-scan models with non-smooth surfaces and fragmented UV maps.
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