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ABSTRACT
With heightened awareness of data privacy protection, Federated
Learning (FL) has attracted widespread attention as a privacy-
preserving distributed machine learning method. However, the
distributed nature of federated learning also provides opportuni-
ties for backdoor attacks, where attackers can guide the model to
produce incorrect predictions without affecting the global model
training process. This paper introduces a novel defense mechanism
against backdoor attacks in federated learning, named GANcrop.
This approach leverages contrastive learning to deeply explore
the disparities between malicious and benign models for attack
identification, followed by the utilization of Generative Adversarial
Networks (GAN) to recover backdoor triggers and implement tar-
geted mitigation strategies. Experimental findings demonstrate that
GANcrop effectively safeguards against backdoor attacks, particu-
larly in non-IID scenarios, while maintaining satisfactory model
accuracy, showcasing its remarkable defensive efficacy and practical
utility.
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1 INTRODUCTION
With the rise in awareness of data privacy protection, centralized
data collection faces significant challenges, making collecting train-
ing data a pressing issue in machine learning. Federated learning,
as a novel distributed machine learning method that protects pri-
vacy [11], cleverly bypasses data collection challenges and has thus
received widespread attention.

In Federated Learning (FL), training data is kept locally on the
user’s device, and only themodel initialization and trainedmodel pa-
rameters are transmitted between the server and participating users.
This method allows for secure training collaboration among multi-
ple parties while protecting user privacy. Nevertheless, owing to
the data being distributed among various participating entities, this
distributed characteristic, while rendering the model training more
flexible and secure, concurrently offers attackers a foothold[4, 17].
They can stealthily guide the model to produce specific predictions
for certain triggers without impacting the global model training
process [1], thereby diminishing the model’s accuracy and credibil-
ity. Thus, researching effective defenses against backdoor attacks
in federated learning is crucial for ensuring the model’s security
and reliability.

In the field of deep learning, there has been considerable re-
search dedicated to defending against backdoor attacks. Methods
for recovering backdoor triggers, such as NC [16] and GANsweep
[19], aim to mitigate backdoor attacks by recovering the triggers of
poisoned models, thereby achieving defense objectives. However,
due to the specific data distribution in federated learning, applying
methods from centralized learning directly to FL may lead to poor
defense outcomes or model performance, often resulting in the
global model failing to converge. Furthermore, the model updating
process in federated learning involves parameter exchange and
model aggregation among servers and multiple users, which adds
to the defense’s complexity. Therefore, developing new defense
mechanisms tailored to the peculiarities of federated learning is
necessary to address potential backdoor attack threats.

Existing federated learning backdoor defences schemes can be
mainly divided into two categories: methods based on anomaly
detection and those utilizing pruning or noise addition techniques.
Methods based on anomaly detection usually require extensive
computations on the server side [5], detecting backdoor attacks by
monitoring the similarity between models or the abnormal changes
in update behaviors. However, due to the complexity of federated
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learning models and the heterogeneity of data distribution, these
methods often incur excessive computational costs and have high
prerequisites for the scenarios [14, 18]. On the other hand, methods
based on pruning or adding noise work by diluting or reducing the
impact of malicious model updates on the global model through
the insertion of noise into the model updates [10, 15]. Although
this approach can enhance the robustness of the model, the added
noise often leads to a decrease in model performance and accuracy,
thus affecting the overall performance of the model. Therefore,
it is imperative to seek a more effective method for defending
against federated learning backdoor attacks to balance security and
performance demands.

To overcome the limitations of existing methods, this paper pro-
poses a federated learning backdoor attack defense method based
on Contrastive Learning [3] and Generative Adversarial Networks
(GAN) [6], named GANcrop. This method utilizes contrastive learn-
ing to delve into the differences between malicious and benign
models, achieving effective attack identification. Then, on the pre-
dicted malicious models, it uses GAN to recover the trigger of
poisoned models and carries out targeted backdoor mitigation to
achieve the defense purpose. The contributions of this paper are as
follows:

• We have implemented a new federated learning backdoor
attack defense method, GANcrop, based on contrastive learn-
ing and generative adversarial networks.
• We introduced a model detection method based on con-
trastive learning, which can effectively distinguish between
malicious and benignmodels under themulti-model scenario
of federated learning, achieving effective attack detection.
This is one of the rare model-level contrastive learning meth-
ods in existing research.
• We applied the backdoor trigger recovery approach from
deep learning to the defense work against backdoor attacks
in federated learning. In non-IID scenarios, our method
achieves sound defense effects while ensuring model ac-
curacy.

2 PRELIMINARY KNOWLEDGE
Backdoor attacks in neural networks aim to guide the neural net-
work model to produce incorrect output results by making subtle,
humanly imperceptible modifications to the input data. Attackers
inject backdoors into the model during the training or deployment
phase, causing the model to produce incorrect predictions under
specific triggering conditions. In backdoor attacks, the attacker’s
task can be described as a multi-objective optimization problem,
where the attacker needs to maintain the accuracy of the main task
while achieving a high success rate of backdoor attacks on targeted
attack class samples [13]. The optimization objective function of a
backdoor attack can be represented by Formula (1):

𝜃∗ = min
𝜃
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Where D is the test set for the main task; 𝐷𝑝 is the poisoned
dataset containing backdoor samples, these samples are manip-
ulated by the transformation function 𝜓 , outputting a specific 𝑦
under the backdoor task.

sever

user A

user B

user C

wi
Model Contractive

Detetion

Potential
benign model

Potential
poisoning

model

Trigger
from GAN

Retrain
dataset

Retrain

Repaired
Model

New global
model

Figure 1: GANcrop architecture diagram

3 PROPOSED METHOD
This section will introduce the federated learning backdoor attack
defense framework based on Generative Adversarial Networks
(GAN). This framework mainly consists of three modules: attack
detection, backdoor mitigation, and model aggregation. The frame-
work of our method is shown in Fig. 1.

3.1 Attack Detection
In devising strategies to defend against backdoor attacks, directly
comparing the similarity between models is often insufficient to
identify contaminated models, as triggers are usually concealed. It
is necessary to delve into the analysis of model parameter differ-
ences and sensitivities to distinguish between benign and poisoned
models. In backdoor attacks, triggers are generally placed around
the periphery of images, not disturbing the main task’s accuracy.
It’s challenging to analyze the trigger location from model parame-
ters directly, so we employ contrastive learning to train an anomaly
detection model sensitive to edge position parameters, conducting
direct contrastive training on model data, which is particularly
crucial in federated learning.

We construct a poisoned dataset with non-central triggers to
train the poisoned models. Under the contrastive learning frame-
work, we build positive and negative sample pairs from the param-
eters of poisoned and clean models. Unlike traditional methods
[3], in our construction, different poisoned model samples from
different poisoned or benign models benign model samples are
considered positive samples, while poisoned and benign models are
considered negative samples. This method of constructing sample
pairs allows the model to extract as many common features among
poisoned models as possible. Our framework optimizes the con-
trastive learning model by conducting direct contrastive training
on model data and learning the patterns of trigger locations to
distinguish between model categories accurately. This is key to our
model-level contrastive detection in federated learning.

Our model contrast detection diagram is shown in Fig. 2. The
specific contrastive loss function is shown in Formula (2):



GANcrop: A Contrastive Defense Against Backdoor Attacks in Federated Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝐿InfoNCE = − log exp(𝑑 (𝑢, 𝑣)−/𝜏)∑𝐾
𝑘=1 exp(𝑑 (𝑢, 𝑣𝑘 )+/𝜏)

(2)

Where 𝑑 (𝑢, 𝑣)−represents the distance between positive sample
pairs, 𝑑 (𝑢, 𝑣𝑘 )+ represents the distance between negative sample
pairs, and 𝜏 is the temperature parameter of the contrastive loss,
used to control the degree of softening.
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Figure 2: Model Contrastive Learning

Through the extraction of model representations using con-
trastive learning, it’s possible to identify the common characteristics
of potentially anomalous models. Utilizing these characteristics for
model classification training allows for precisely excluding mali-
cious influences and identifying potentially poisoned models. This
training process is completed on the server side using a public
dataset to distinguish potential poisoned models through feature
extraction and classifier training. The algorithm for GANcrop, as
shown in Algorithm 1.

3.2 Backdoor Mitigation
To effectively defend against backdoor attacks, we further mitigate
backdoors based on the results of parameter comparison detection,
reducing the impact of the attacks. We use GAN to recover the
backdoor triggers of poisoned models, reintroduce the recovered
backdoors into the server’s clean dataset with correct labels and
retrain the poisoned models to mitigate the backdoors.

The GANGSWEEP framework inspires the backdoor recovery
strategy, a defense method in deep neural networks that uses GANs
to recover backdoor triggers and mitigate their effects. However,
directly applying it to FL may cause convergence difficulties for the
global model. Therefore, this paper adopts a method of attack detec-
tion followed by backdoor mitigation to defend against backdoor
attacks in FL.

In this paper, we attempt to recover the backdoor triggers in the
contaminated model F using the generator of a Generative Adver-
sarial Network (GAN). The backdoor triggers are usually designed
as special vectors with the same dimensions as the image. Such a
design ensures the feasibility of generating triggers from the image

Algorithm 1:Model Contrastive Detection Algorithm
Input: Number of simulated clients 𝑁 , learning rate 𝜂,

ResNet network model 𝑅, initial feature extraction
𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙 , simulated user model parameters𝑤𝑡

𝑖
,

epoch 𝐸, trigger 𝑇𝑅, public dataset 𝐷𝑐 , proportion of
poisoned dataset 𝛾 , simulated attack user set 𝑆𝑝 ,
simulated benign user set 𝑆𝑏 , positive and negative
sample pair construction function 𝑔(·)

Output:Model feature extractor 𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙 , discriminator
1 Function ModContract(𝐷𝑐 ,𝑇𝑅):
2 𝐷𝑝 = 𝛾𝐷𝑐 +𝑇𝑅;
3 Send the initial model to each simulation client;
4 for 𝑡 = 0 to 𝑇 − 1 do
5 for 𝑗 = 0 to 𝑁 − 1 do
6 Send global model parameters to the customer;
7 if 𝑗 ∈ 𝑆𝑝 then
8 𝑤𝑡

𝑖
← Local Training( 𝑗,𝑤𝑡 , 𝐷𝑝 );

9 end
10 else
11 𝑤𝑡

𝑖
← Local Training( 𝑗,𝑤𝑡 , (𝐷𝑐 − 𝐷𝑝 ));

12 end
13 (𝑢, 𝑣) = 𝑔(𝑤𝑡

𝑖
( 𝑗 ∈ 𝑆𝑝 ),𝑤𝑡𝑖 (𝑖 ∈ 𝑆𝑏 ));

14 𝐿InfoNCE = − log exp(𝑑 (𝑢,𝑣)−/𝜏 )∑𝐾
𝑘=1 exp(𝑑 (𝑢,𝑣𝑘 )+/𝜏 )

;

15 𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙 ← 𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙 − 𝜂∇𝐿;
16 end
17 end
18 return IdentifyMod;
19 Function ModClassify(𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙, 𝑆𝑝 , 𝑆𝑏 ,𝑤

𝑡
𝑖
):

20 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑀𝑜𝑑 ← LinearEvaluate(𝑆𝑖𝑚𝑀𝑜𝑑𝑒𝑙, classes);
21 for 𝑗 = 1 to 𝐸 do
22 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑀𝑜𝑑 𝑗 ← 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑀𝑜𝑑 𝑗−1 − 𝜂∇𝐹 𝑗 (𝑆𝑝 , 𝑆𝑏 );
23 end
24 return IdentifyMod;

model. Unlike traditional GANs, we do not optimize the discrimi-
nator during training; instead, we use the model from potentially
malicious users as a substitute to guide the generator in recovering
the original triggers more accurately. To verify the effectiveness
of the generated triggers, this paper injects the generated triggers
one by one into the images (marked as 𝑥 ) in the validation dataset,
forming new images 𝐺 (𝑥) + 𝑥 , and observes the predictions of
the malicious model F on these new images to guide the gener-
ator in iteratively improving, gradually learning trigger features.
Our architecture can effectively recover backdoor triggers through
continuous iterative training, as illustrated in Fig. 3.

After obtaining the generated triggers highly similar to the orig-
inal poisoned model’s triggers, this paper cleverly injects these
generated triggers into a new, clean dataset while keeping the
dataset’s real labels unchanged for model retraining. The purpose
is to allow the model to correctly identify and handle the correspon-
dence between image data and labels during retraining, thereby
effectively eliminating the impact of the backdoor triggers. The
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Figure 3: Trigger Generator
retraining process is a process of knowledge updating and forget-
ting, where the model gradually adjusts its internal parameters,
forgetting the original backdoor features to adapt to the new data
distribution.

3.3 Model Aggregation
Based on the results of attack detection, this paper identifies and fil-
ters out benign models and potentially malicious user models. Then,
through the backdoor recovery of the GAN model, pseudo triggers
similar to the original triggers of potentially malicious models are
generated, and these pseudo triggers are used for targeted backdoor
mitigation. The models retrained afterward will be restored to a
state unaffected by any malicious influence.

To enhance the robustness and reliability of the model, fully
utilizing the training success of each usermodel, this repairedmodel
is weighted and aggregated with the identified benign models to
obtain a global, more robust federated learning model.

4 EXPERIMENT
4.1 Experimental Setup
This experiment uses the RestNet18 neural network model as the
base architecture. The experiment employs a 3×3 convolution ker-
nel, with stride and padding values set to 1. This experiment omits
pooling layers to avoid excessive compression of image information.
The experiment involves 40 clients, selects CrossEntropyLoss as the
loss function, and adopts classic stochastic gradient descent (SGD)
as the optimizer, with a learning rate set to 0.1. In each iteration
round, each client conducts training for four epochs.

Dataset: The experiment utilizes the widely used Cifar10 dataset
in the same domain applications. The dataset contains 60,000 data
samples, 50,000 training samples, and 10,000 test samples, with 10
categories in the dataset.

(a) (b) (c) (d)

Figure 4: Attack Schematic

Data Division: To achieve a non-IID data distribution, the exper-
iment adopts the data skew and label skew methods proposed in
the literature [7], setting the Dirichlet coefficient to 0.7 to control
the degree of data skew.

Attack Method: The trigger injection [9] backdoor attack method
is adopted. Fig. 4 shows the effect of trigger injection using the
cifar10 dataset, where the first two subfigures are original pictures,
and the last two subfigures are poisoned pictures after trigger in-
jection.

4.2 Experimental Results and Analysis
Verifying the Effectiveness of GANcrop in Defending Against Back-

door Attacks: To compare the performance of GANcrop, control
methods were selected including FedAvg [11] without defense
measures as a baseline and four representative defense methods:
Krum[2], Trimmed-mean [12], Fang[8], and GANsweep[19]. An
attack ratio of 30% was set for the experiments, with these attack-
ing users launching attacks in each round of iteration. Fig. 5 (a)
depicts the rounds of successful defense against backdoor attacks
for six methodologies on the CIFAR-10 dataset, across a total of 50
experimental rounds. Here, we define a successful defense against
backdoor attacks as instances where backdoor accuracy falls below
30%. Typically, the level of backdoor accuracy is directly correlated
with the success rate of the backdoor attack.

(a) (b)

Figure 5: Successful rounds of defending against attacks and
main task accuracy of six methods

The experimental results indicate that the models trained using
FedAvg, Krum, Trimmed-mean, and Fang methods exhibit minimal
effectiveness in defending against backdoor attacks. In contrast,
GANsweep demonstrates a significantly higher defense capability
when confronted with corresponding trigger attacks. On the other
hand, the GANcrop scheme presented in this paper achieves a more
balanced effect in defending against backdoor attacks. The reason is
that GANcrop is a federated scheme aiming to balance maintaining
the accuracy of the model’s main task with reducing the success
rate of attacks.

Verifying the main task accuracy of GANcrop: Fig. 5 (b) shows the
change in the main task accuracy of the six experimental methods
on the cifar10 dataset. FedAvg, Trimmed-mean, and Fang do not
effectively defend against backdoor attacks despite having high
main task accuracy. However, combined with the experimental
results of backdoor accuracy above, it’s clear that FedAvg, Trimmed-
mean, and Fang, despite having high main task accuracy, do not
effectively defend against backdoor attacks. By discarding a portion
of user models during the global aggregation phase, Krum shows
weakness in main task accuracy. Meanwhile, GANsweep, although
it has backdoor solid defense capabilities, also leads to lower main
task accuracy.
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Table 1: Execution Time

Time Fedavg Krum Trimmed
_mean

Fang GANsweepGANcrop

s 258 303 302 533 451 477

Additionally, the GANcrop method presents a compromise in
terms of the model’s main task accuracy, achieving a level of back-
door defense effectiveness while maintaining a main task accuracy
that is higher than that of the GANsweep method but lower than
the other four methods.

Verify the main task accuracy and the backdoor task accuracy of
the two sub-models: To validate the model’s attack detection and
repair performance, this paper analyzed the main task accuracy and
the backdoor task accuracy of two sub-models. Fig. 6 shows these
results: Fig. 6 (a) displays the main task accuracy of both the benign
prediction model and the repair model, while Fig. 6 (b) presents
their backdoor task accuracy. Among them, a higher backdoor task
accuracy represents a higher backdoor attack success rate. Fig. 6 (a)
reveals that the benign model outperforms the repair model in main
task accuracy, potentially due to the repair model’s dataset. Fig. 6 (b)
shows that the backdoor task accuracy is significantly lower in the
repair model. This highlights the importance of integrating the
benign and repair models to lessen the main task accuracy loss
from backdoor mitigation and diminish the effects of undetected
attacks.

(a) (b)

Figure 6: Themain task accuracy and backdoor attack success
rate of two submodels

Verifying Execution Time of Six Approaches: The experiment fur-
ther compared the execution time of the six different methods,
aiming to assess their total time consumption from local compu-
tation to global aggregation in a single round of iteration. The
execution times obtained through experimental verification are
shown in Table 1.

5 CONCLUSIONS
This paper addresses the problem of backdoor attacks in feder-
ated learning and proposes a defense method based on contrastive
learning and Generative Adversarial Networks, GANcrop. Model
comparison and sensitivity analysis of parameters effectively distin-
guishmalicious and benignmodels. Then, utilizing GAN technology
to recover and mitigate backdoor triggers in models, significantly
reduces the success rate of backdoor attacks. Experiments have

proven that compared to existing methods, GANcrop not only en-
hances the defense against backdoor attacks but also mitigates the
risk of backdoor attacks in non-IID data scenarios while maintain-
ing the accuracy of the main task of federated learning models. In
future work, efforts will be directed towards further optimizing
the mitigation strategy of GANcrop, aiming to enhance the post-
mitigation model accuracy and thereby augmenting the method’s
practical applicability.
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