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ABSTRACT
Self-attention (SA) mechanisms have been widely used in develop-
ing sequential recommendation (SR) methods, and demonstrated
state-of-the-art performance. However, in this paper, we show
that self-attentive SR methods substantially suffer from the over-
smoothing issue that item embeddings within a sequence become in-
creasingly similar across attention blocks. As widely demonstrated
in the literature, this issue could lead to a loss of information in
individual items, and significantly degrade models’ scalability and
performance. To address the over-smoothing issue, in this paper,
we view items within a sequence constituting a star graph and
develop a method, denoted as MSSG, for SR. Different from existing
self-attentive methods, MSSG introduces an additional internal node
to specifically capture the global information within the sequence,
and does not require information propagation among items. This de-
sign fundamentally addresses the over-smoothing issue and enables
MSSG a linear time complexity with respect to the sequence length.
We compare MSSG with ten state-of-the-art baseline methods on six
public benchmark datasets. Our experimental results demonstrate
that MSSG significantly outperforms the baseline methods, with an
improvement of as much as 10.10%. Our analysis shows the superior
scalability of MSSG over the state-of-the-art self-attentive methods.
Our complexity analysis and run-time performance comparison
together show that MSSG is both theoretically and practically more
efficient than self-attentive methods. Our analysis of the attention
weights learned in SA-based methods indicates that on sparse rec-
ommendation data, modeling dependencies in all item pairs using
the SA mechanism yields limited information gain, and thus, might
not benefit the recommendation performance 1.

1We will release the source code and processed datasets upon the acceptance of this
paper.
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1 INTRODUCTION
SR aims to identify and recommend the next item of users’ interest
based on their historical interactions. It has been widely employed
in applications such as online retail [9] and video streaming [1], and
has been drawing increasing attention from the research commu-
nity. With the prosperity of deep learning, deep neural networks,
especially recurrent neural networks (RNNs) [12] have emerged as
the prominent architecture of SR methods. From a graph perspec-
tive, RNNs represent each interaction sequence using a sequential
graph as shown in Figure 1a, and recurrently integrate information
from items within the sequence. This design, however, may not ef-
fectively capture the long-range dependencies within sequences as
it is challenging to propagate information across long distances [31].

To better capture the long-range dependencies, SAmechanisms [31]
have recently been utilized for SR [14, 37], and demonstrated state-
of-the-art performance [14]. Given a sequence, SA mechanisms
learn attention weights for all pairs of items within sequences, and
aggregates items using these attention weights. From a graph per-
spective, this is essentially equivalent to viewing items within a
sequence as nodes in a fully connected graph 2 [4] as illustrated
in Figure 1b, where 𝑣𝑠𝑡 is the 𝑡-th item in the sequence, and the
edge weights are determined by the attention weights. The fully
connected graph allows each item node to propagate information
to all others in a single step, thereby enabling SA-based methods to
effectively capture long-range dependencies within a sequence.

Though promising,modeling sequences as fully connected graphs
leads to two main issues. First, as will be demonstrated in our anal-
ysis (Section 6.3), SA-based SR methods substantially suffer from

2For simplicity, we drop the self-loops in the graph.
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(a) Sequential Graph (b) Fully Connected Graph (c) Star Graph

Figure 1: Illustration of a sequence represented by different graphs, in which 𝑣𝑠𝑡 is the 𝑡-th item in the sequence and 𝑐 is the
internal node in the star graph.

the over-smoothing issue [3] that the embeddings of items within
a sequence could become more and more similar across attention
blocks. Learning similar embeddings for all items within a sequence
leads to the loss of information on individual items, and thus, could
substantially degrade the model performance [3, 13, 27, 32]. In ad-
dition, as shown in Shi et al. [27], the over-smoothing issue also
deteriorates the learning of deep models, thereby degrading the
model scalability. Second, SA-based SR methods generally suffer
from quadratic time complexities, which limit their utilities in large-
scale recommendation applications.

Addressing the above issues while still effectively capturing the
long-range dependencies within sequences represents a critical
research challenge in developing SR methods. To tackle this chal-
lenge, in this paper, we develop MSSG, a method that models user
interaction sequences using star graphs for SR. Specifically, MSSG
stacks multiple blocks to recursively capture users’ intent from
their interaction sequence [14]. MSSG has an attention layer and
a feed-forward layer in each block. In the attention layer, as illus-
trated in Figure 1c, MSSG models each sequence as a star graph,
where edge weights are determined by the attention weights, and
introduces an additional internal node 𝑐 to integrate information
from all item nodes 𝑣𝑠𝑡 , thereby capturing the user’s intent. In the
feed-forward layer, MSSG updates the embedding of the internal
node via non-linear networks to more accurately estimate the user’s
intent. Previous work [3] shows that requiring information propa-
gation among all item nodes could be the essential reason for the
over-smoothing issue. Thus, MSSG does not propagate information
among items. Instead, it utilizes an internal node for information
aggregation. This design allows MSSG to fundamentally address the
over-smoothing issue (Section 6.3). Beyond addressing the over-
smoothing issue, by modeling sequences as star graphs, MSSG also
achieves a linear time complexity with respect to the sequence
length as will be proven in Section 4.5. In addition, similarly to
that in SA mechanisms, MSSG could effectively capture long-range
dependencies within sequences as each item node could propagate
information to the internal node within one step.

We extensively compare MSSG with ten state-of-the-art base-
line methods on six benchmark datasets. Our experimental results
demonstrate that MSSG could remarkably outperform the state-of-
the-art baseline methods on the six datasets, with an improvement
of up to 10.10% at Recall@10 (Section 5.3.2). Our experimental
results also show that MSSG consistently outperforms the state-
of-the-art SA-based SR method on users with different activity
levels (Section 6.2). In addition, our analysis reveals that existing

SA-based SR methods suffer from the over-smoothing issue (Sec-
tion 6.3), which limits their scalability in learning deep models
(Section 6.4). Our complexity analysis (Section 4.5) and run-time
performance comparison (Section 6.5) together show that MSSG is
both theoretically and practically more efficient than the state-of-
the-art SA-based SR methods. Our analysis also suggests that on
sparse recommendation data, leveraging SA mechanisms to capture
item dependencies could yield limited information gain.

We summarize our major contributions as follows: 1) To the best
of our knowledge, this is the first work demonstrating the over-
smoothing issue in SA-based SR methods; 2) We develop MSSG for
SR in which we model sequences using star graphs to address the
over-smoothing issue and enable linear time complexity; 3) MSSG
outperforms ten state-of-the-art baseline methods on six bench-
mark datasets; 4) Our analysis suggests that MSSG could achieve
both superior scalability and superior run-time performance com-
pared to SA-based SR methods; 5) Our analysis also indicates that
modeling item dependencies using the SA mechanism on sparse
recommendation data could yield limited information gain, and
thus, might not improve the recommendation performance.

2 RELATEDWORK
2.1 Sequential Recommendation
Numerous SR methods have been developed, particularly using
Markov Chains (MCs) and neural networks. Specifically, Rendle et
al. [25] developed FPMC, a method in which MCs are utilized to
model the transitions among items. In recent years, neural net-
works such as RNNs and convolutional neural networks (CNNs)
have been widely adapted for SR. For instance, Li et al. [15] devel-
oped NARM, which incorporates attention mechanisms into RNNs to
better capture users’ long-term preferences. Tang et al. [29] devel-
oped a CNNs-based model Caser that employs vertical and horizon-
tal convolutional filters to capture the synergies among items for
better recommendation. Besides RNNs and CNNs-based methods,
SA-based methods are also widely developed for SR. Kang et al. [14]
developed a SA-based method SASRec, which stacks multiple SA
blocks to recursively learn users’ preferences. Sun et al. [28] in-
tegrated the cloze objective and SA mechanisms, and developed
a bidirectional sequence modeling method, denoted as Bert4Rec,
for comprehensive user intent modeling. Zhou et al. [37] devel-
oped FMLP for SR, in which they replaced the attention map within
each SA block with a predefined transformation matrix for more
efficient item aggregation. He et al. [10] constrained SA blocks to



Modeling Sequences as Star Graphs to Address Over-smoothing in Self-attentive Sequential Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

attend to local items, thereby enhancing the modeling of users’
short-term preferences. Recently, simple shallow methods have
been introduced for SR, and shown promising performance. For
example, Ma et al. [18] developed HGN, which uses a single gating
layer to adaptively aggregate items and capture users’ preferences.
Peng et al. [22] developed HAM in which a single pooling layer is
employed to learn the associations among items.

We notice that SGNN-HN developed in Pan et al. [21] also leverages
star graphs for SR. However, MSSG differs significantly from SGNN-HN.
Specifically, MSSG is developed to address the over-smoothing issue
in SA-based SR methods. To this end, MSSG utilizes the internal node
to aggregate information from individual items, and does not allow
information propagation among items. In contrast, SGNN-HN aims
to improve graph neural networks (GNNs) in capturing long-range
dependencies in sequences, and leverages the internal node as an
anchor node to better propagate information among items. MSSG
and SGNN-HN are developed to address different issues, and have
substantially different architectures. Thus, MSSG is not an extension
of SGNN-HN.

2.2 Over-smoothing
The over-smoothing issue was firstly identified in GNNs [6] by
Li et al. [16]. They observed that as GNNs propagate and mix infor-
mation between neighboring nodes across layers, all nodes could
eventually have identical embeddings. As a result, GNNs lose the
information on individual nodes, which could substantially dete-
riorate the model expressiveness [3]. Recently, Shi et al. [27] has
proven that theoretically, SA-based methods could also suffer from
over-smoothing and result in sub-optimal performance. Numer-
ous approaches have been introduced to mitigate this issue. For
example, Chen et al. [3] optimized the graph topology based on
the model prediction to mitigate over-smoothing in GNNs. Shi et
al. [27] developed hierarchical fusion strategies (ConcatFusion
and MaxFusion) to alleviate over-smoothing by fusing embeddings
from both shallow layers and deep layers as final output.

3 DEFINITION AND NOTATIONS
In this paper, we tackle the SR problem that given the historical
interactions of users, we recommend the next item of users’ inter-
est. In this paper, U = {𝑢1, 𝑢2, . . . } is the set of all the users, where
𝑢𝑖 represents the 𝑖-th user, and |U| is the total number of users.
Similarly, we represent the set of all the items as V = {𝑣1, 𝑣2, . . . }.
|V| is the total number of items. The historical interactions of 𝑢𝑖 is
represented as a sequence 𝑆𝑖 = {𝑣𝑠1 (𝑖), 𝑣𝑠2 (𝑖), . . . }, where 𝑣𝑠𝑡 (𝑖) is
the 𝑡-th interacted item in 𝑆𝑖 and |𝑆𝑖 | is the length of the sequence.
Given 𝑆𝑖 , the next item that𝑢𝑖 will interact with is referred to as the
ground-truth next item, denoted as 𝑣𝑔 (𝑖). The goal of MSSG is to cor-
rectly recommend 𝑣𝑔 (𝑖) for 𝑢𝑖 . When no ambiguity arises, we will
eliminate 𝑖 in 𝑆𝑖 , 𝑣𝑠𝑡 (𝑖) and 𝑣𝑔 (𝑖). We use uppercase letters to denote
matrices, lower-case bold letters to denote row vectors and lower-
case non-bold letters to represent scalars. Table A1 (Appendix A)
shows the key notations used in this paper.

Over-smoothing in SA-based methods: the embeddings of items
within a sequence become increasingly similar across attention blocks,
thereby deteriorating the model scalability and performance.

Sequence Representation

Multi-head Attention

FCN FCN

Feed-forward Layer

Figure 2: The overall architecture of MSSG. MSSG models se-
quences using star graphs and utilizes the internal node 𝑐 to
integrate information from all item nodes.

4 METHOD
Figure 2 presents the overall architecture of MSSG. MSSG treats se-
quences as star graphs to address the over-smoothing issue. MSSG
also explicitly captures users’ long-term preferences to enable com-
prehensive user intent modeling. We present the detail of MSSG in
the following sections.

4.1 Sequence Representation
Following SASRec, we focus on the most recent 𝑛 items in users’
interaction histories to generate recommendations. Specifically,
we transform each interaction sequence 𝑆 to a fixed-length se-
quence 𝐵 = {𝑣𝑏1 , 𝑣𝑏2 . . . }, which contains the last 𝑛 items in 𝑆 (i.e.,
𝑣𝑏𝑡 =𝑣𝑠 |𝑆𝑖 |−𝑛+𝑡 ). If |𝑆 | is shorter than 𝑛, we pad empty items, denoted
as 𝑣0, at the beginning of 𝐵. In MSSG, following the literature [14, 31],
we represent items and positions in each sequence using learnable
embeddings. We learn an item embedding matrix 𝑉 ∈ R |V |×𝑑 in
which the 𝑗-th row v𝑗 is the embedding of item 𝑣 𝑗 , and 𝑑 is the
dimension of embeddings. We use a constant zero vector as the
embedding of padding items. Similarly, we learn a position embed-
ding matrix 𝑃 ∈ R𝑛×𝑑 , and p𝑡 is the embedding of the 𝑡-th position.
Given 𝑉 and 𝑃 , we represent the sequence 𝐵 using a matrix 𝐸:

𝐸 = [e1; e2; · · · ; e𝑛] = [v𝑏1 + p1; v𝑏2 + p2; · · · ; v𝑏𝑛 + p𝑛], (1)

where v𝑏𝑡 is the embedding of 𝑣𝑏𝑡 .

4.2 Modeling Sequences as Star Graphs
MSSG employs a multi-block architecture to recursively model users’
intent. Distinct from existing SA-based SR methods [5, 14], in each
block, MSSG treats each item within 𝐵 as a node in a star graph, and
introduces an additional internal node to estimate the user’s intent
by aggregating information from all item nodes using multi-head
attention [31]. Across blocks, MSSG updates only the embedding of
the internal node to enhance the estimation of the user’s intent,
while maintaining fixed embeddings on item nodes to preserve
their individual information. In MSSG, we have 𝑛𝑏 blocks, and each
block contains an attention layer and a feed-forward layer. In what
follows, we present the attention layer and the feed-forward layer
in each block in detail.

4.2.1 Attention layer. MSSG employs multi-head attention to adap-
tively aggregate information from item nodes to the central internal
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node in each block as follows:

𝜶𝑚
𝑘

= softmax
©­­«
(
c𝑚−1𝑄𝑚

𝑘

) (
𝐸𝑍𝑚

𝑘

)⊤
√
𝑑

ª®®¬ , head𝑚
𝑘

= 𝜶𝑚
𝑘
(𝐸𝐴𝑚

𝑘
),

g𝑚 = [head𝑚1 , head
𝑚
2 , . . . , head

𝑚
𝑛ℎ
]𝑂𝑚,

(2)

where c𝑚−1 is the embedding of the internal node from the (𝑚-1)-
th block, and g𝑚 is the output of the attention layer in the𝑚-th
block. Each attention layer has 𝑛ℎ attention heads and head𝑚

𝑘
is the

output from the 𝑘-th attention head. 𝜶𝑚
𝑘

is the attention weights

learned in the 𝑘-th attention head. 𝑄𝑚
𝑘
, 𝑍𝑚

𝑘
and 𝐴𝑚

𝑘
∈ R𝑑×

𝑑
𝑛ℎ are

learnable parameters in the 𝑘-th attention head. 𝑂𝑚 ∈ R𝑑×𝑑 is a
learnable parameter to integrate the attention heads.

Unlike SA-based methods, which require every item to aggregate
information from all others to capture global information within
the sequence, MSSG introduces an additional internal node to specif-
ically capture the global information and estimate the user’s intent.
This approach results in a linear time complexity as will be shown
in Section 4.5, while could still effectively capture long-range de-
pendencies within the sequence.

4.2.2 Feed-forward layer. After each attention layer, we include a
feed-forward layer to endow MSSG with non-linearity, and enable
more expressive models [31]. Particularly, given g𝑚 , we stack two
fully-connected networks (FCNs) as the feed-forward layer:

c𝑚 = (𝑓 (g𝑚𝑊𝑚
1 + b𝑚1 ))𝑊𝑚

2 + b𝑚2 , (3)

where 𝑓 (·) is an activation function such as ReLU [19] andGELU [11],
𝑊𝑚

1 ,𝑊𝑚
2 ∈ R𝑑×𝑑 and b𝑚1 , b𝑚2 are learnable parameters. It is worth

noting that different from SA-based methods, MSSG updates only the
embedding of the internal node across blocks, while fixing the item
node embeddings. As a result, MSSG could preserve the information
on individual items and will not be affected by the over-smoothing
issue, even when learning deep models (Section 6.3). Following
SASRec [14], we connect each layer with its previous layer using
residual connections [8] to mitigate the degradation issue [26] dur-
ing training. Recent studies [17, 22] show that the most recent
interacted item could be a strong indicator of the next item of users’
interest. Thus, for each sequence, MSSG employs e𝑛 , the embedding
of the last item in 𝐸 (Equation 1), as the initial embedding of the
internal node in the first block (i.e., c0=e𝑛).

4.3 Comprehensive User Intent Modeling
As demonstrated in the literature [18, 22], both users’ short-term
preferences and long-term preferences play important roles in gen-
erating accurate recommendations. By considering e𝑛 , the embed-
ding of the most recent interacted item, as the initial embedding of
the internal node, the internal node embedding should be able to
effectively capture the user’s short-term preferences across blocks.
However, it may not also fully capture the user’s long-term prefer-
ences as the long-term preferences of the user could be different
from her short-term preferences. Thus, to enable comprehensive
user intent modeling, MSSG learns user embeddings to specifically
capture users’ long-term preferences. In particular, MSSG learns an

embedding matrix 𝑈 ∈ R |U |×𝑑 to represent the long-term prefer-
ences of all the users. The 𝑖-th row u𝑖 in𝑈 represents the long-term
preferences of user 𝑢𝑖 .

4.4 Recommendation Scores and Network
Training

To generate recommendation scores for user 𝑢𝑖 , MSSG integrates
the embedding of the internal node from the last block (i.e., c𝑛𝑏

𝑖
)

and the learned user embedding u𝑖 , as follows:

𝑟𝑖 𝑗 = (c𝑛𝑏
𝑖

+ u𝑖 )v⊤𝑗 , (4)

where 𝑟𝑖 𝑗 is the recommendation score of user𝑢𝑖 on item 𝑣 𝑗 , and 𝑛𝑏
is the total number of blocks in MSSG. For each user, we recommend
items with the top-𝑘 highest recommendation scores. Following
SASRec, we employ the binary cross-entropy loss to minimize the
negative log-likelihood of correctly recommending the ground truth
next item as follows:

min
𝚯

−
∑︁

𝑆𝑖 ∈T,𝑣𝑗∉𝑆𝑖

[
log(𝜎 (𝑟𝑖𝑔)) + log(1 − 𝜎 (𝑟𝑖 𝑗 ))

]
, (5)

where T is the set of all the training sequences; 𝚯 is the set of
learnable parameters (e.g.,𝑉 and 𝑃 ); and 𝑟𝑖𝑔 is the recommendation
score of user 𝑢𝑖 on her ground-truth next item 𝑣𝑔 (𝑖). For each
training sequence, we randomly sample one negative item 𝑣 𝑗 for
optimization. All the learnable parameters are randomly initialized,
and are optimized in an end-to-end manner.

4.5 Complexity Analysis
Previous work [30? ? ] shows that the time complexity of each
SA block is O(𝑛2𝑑 + 𝑛𝑑2), where 𝑛 is the length of the trans-
formed sequence (Equation 1) and 𝑑 is the dimension of embed-
dings. The quadratic time complexity limits the utility of SA-based
methods in latency-sensitive recommendation applications. In con-
trast, MSSG models sequences as star graphs and could achieve a
time complexity of O(𝑛𝑑2), which is linear with respect to the
sequence length 𝑛. This allows MSSG to be theoretically more effi-
cient than SA-based methods. Particularly, each SA block requires
6𝑛𝑑2 + 2𝑛2𝑑 + 2𝑛𝑑 operations to compute, whereas each block in
MSSG requires only 2𝑛𝑑2 + 4𝑑2 + 2𝑛𝑑 + 2𝑑 operations. The difference
amounts to 4𝑑2 (𝑛 − 1) + 2𝑑 (𝑛2 − 1), which is quadratic with respect
to both 𝑑 and 𝑛. As will be shown in Section 6.5, the better time
complexity could translate into superior run-time performance of
MSSG over SA-based methods on modern GPUs.

5 MATERIALS
5.1 Baseline Methods
We compare MSSGwith ten state-of-the-art baseline methods. Specif-
ically, we compare MSSG with the MC-based method FPMC [25]
and the CNNs-based method Caser [29]. We also compare MSSG
with the RNNs-based method NARM [15] and two shallow methods
HAM [22] and HGN [18]. We compare MSSGwith three state-of-the-art
SA-based methods SASRec [14], Bert4Rec [28] and FMLP [37]. We
further compare MSSG with SASRec equipped with two hierarchical
fusion strategies: 1) SASRecwith ConcatFusion (SASRec-Cat); and
2) SASRec with MaxFusion (SASRec-Max). These two fusion strate-
gies are developed in Shi et al. [27] to alleviate over-smoothing. Note
that, we do not consider baseline methods that the implementation
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is not publicly available (e.g., SGNN-HN) to enable a fair comparison.
HGN and SASRec have been compared with a comprehensive set of
other methods including GRU4REC [12] and NextItRec [35], and
have outperformed those methods. Therefore, we compare MSSG
with HGN and SASRec instead of the methods that they outperform.

To ensure a fair comparison, we exhaustively tune the hyper-
parameters of all the baseline methods. Thus, the performance of
baseline methods reported in our experiments is generally better
than that reported in the literature [18, 23]. For example, on the
Beauty dataset (Section 5.2), the Recall@10 (Section 5.3.2) of SASRec
reported in our experiments is 20.3% higher than that reported in a
recent work [23]. We report the implementation detail of MSSG and
baseline methods, and the search range for each hyper-parameter
in Appendix B.

5.2 Datasets
We evaluate MSSG and baseline methods on six public benchmark
datasets: 1) Amazon-Beauty (Beauty) and Amazon-Toys (Toys) are
from Amazon reviews [20]; 2) Goodreads-Children (Children) and
Goodreads-Comics (Comics) are from the Goodreads website [?
? ]; and 3) MovieLens-1M (ML-1M) and MovieLens-20M (ML-20M)
are from the MovieLens website [7], We discuss the dataset pre-
processing and statistics in Appendix C.

5.3 Experimental Protocol
5.3.1 Training, validation and testing sets. Following SASRec, on all
the datasets, given the historical interactions 𝑆 of each user, we use
the last item (i.e., 𝑣𝑠 |𝑆 | ) in the history for testing, the second last item
(i.e., 𝑣𝑠 |𝑆 |−1 ) for validation, and all the previous items for training.
We tune hyper-parameters on the validation sets for all the methods
using grid search, and use the best-performing hyper-parameters
in terms of Recall@10 (Section 5.3.2) for testing.

5.3.2 Evaluation metrics. Following the literature [14, 18, 22, 29],
we use Recall@𝑘 and NDCG@𝑘 to evaluate MSSG and the baseline
methods. We refer the audience of interest to Peng et al. [22] for
the detailed definitions of both Recall@𝑘 and NDCG@𝑘 .

6 EXPERIMENTAL RESULTS
6.1 Overall Performance
Table 1 presents the overall performance of MSSG, its variant MSSG-u
and the state-of-the-art baselinemethods at Recall@𝑘 andNDCG@𝑘

on six benchmark datasets. In MSSG-u, we remove user embeddings
(i.e., u𝑖 ) when calculating recommendation scores (Equation 4). We
introduce MSSG-u to evaluate the effectiveness of the learnable user
embeddings in MSSG. For NARM, on ML-20M, with the implementation
provided by the authors, we get the out-of-memory (OOM) issue
on NVIDIA Volta V100 GPUs with 16 GB memory.

As shown in Table 1, overall, MSSG is the best-performing method
on the six datasets. In terms of Recall@10 and Recall@20, MSSG
significantly outperforms all the baseline methods on five out
of the six datasets except ML-20M. We observe a similar trend at
both NDCG@10 and NDCG@20. We notice that on ML-20M, MSSG
considerably underperforms SASRec. However, without user em-
beddings, MSSG-u could still significantly outperform SASRec on

ML-20M. These results demonstrate the strong performance of MSSG
and its variant MSSG-u on different recommendation scenarios.

6.1.1 Comparing MSSG to FPMC and Caser. As presented in Table 1,
MSSG outperforms the MC-based method FPMC and CNNs-based
method Caser by a significant margin on all the six benchmark
datasets. FPMC views the transitions among items as an MC and
leverages only the most recent interacted items to predict the next
item of users’ interest. Consequently, FPMC may not be able to
fully utilize the information in early interacted items, and result in
sub-optimal performance. Caser employs CNNs to integrate items
within sequences. Though CNNs have been shown effective in cap-
turing local structures, they may struggle to capture global informa-
tion within sequences [33]. In contrast, by modeling sequences as
star graphs, MSSG could effectively aggregate information from all
items to capture the global information, and thus, enable superior
recommendation performance over FPMC and Caser.

6.1.2 Comparison between MSSG and NARM. Table 1 shows that com-
pared to the RNNs-based method NARM, MSSG demonstrates superior
performance on all the six datasets at all the evaluation metrics.
NARM primarily uses RNNs to recurrently learn users’ preferences.
As demonstrated in the literature [31], due to the recurrent na-
ture, RNNs may struggle to model long-range dependencies within
sequences, which could limit their ability to capture global informa-
tion. In MSSG, as illustrated in Figure 1c, the central internal node
could aggregate information from every item node within one step.
Thus, compared to NARM, MSSG could better capture long-range de-
pendencies within sequences, and achieve substantial performance
improvement on all the datasets.

6.1.3 Comparison between MSSG and HAM. Table 1 also presents
that MSSG significantly outperforms the best-performing shallow
method HAM on all the six datasets. Compared to HAM, MSSG achieves
a remarkable average improvement of 7.8% and 6.0% at Recall@10
and NDCG@10, respectively, across the six datasets. HAM employs
the simple mean pooling to aggregate items and estimate users’ in-
tent. Though efficient, this simple approach may not be sufficiently
expressive to accurately estimate users’ intent from their diverse
interactions. Different from HAM, MSSG stacks multiple non-linear
blocks to enable expressive models, which leads to a more accurate
user intent modeling as compared to HAM.

6.1.4 Comparison between MSSG and SASRec. Table 1 presents that
both MSSG and MSSG-u substantially outperform the best-performing
SA-based method SASRec. Similarly to MSSG, SASRec stacks mul-
tiple SA blocks to recursively capture users’ intent, and has been
demonstrated state-of-the-art performance [14, 22] in SR. However,
as shown in Table 1, MSSG consistently outperforms SASRec on
five out of six datasets (i.e., Beauty, Toys, Children, Comics and
ML-1M). Particularly, compared to SASRec, in terms of Recall@10,
MSSG achieves a significant average improvement of 14.2% over the
five datasets. In terms of NDCG@10, MSSG also outperforms SASRec
with a significant average improvement of 15.1% over the five
datasets. Similarly, MSSG-u also remarkably outperforms SASRec
across the six datasets with an average improvement of 7.0% and
7.2% at Recall@10 and NDCG@10, respectively. From a graph
perspective, SASRec models sequences as fully connected graphs,
which allow each item to aggregate information from other items
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Table 1: Overall Performance

Dataset Metric FPMC Caser NARM HGN HAM SASRec SASRec-Cat SASRec-Max Bert4Rec FMLP MSSG-u MSSG imprv (%)

Beauty

Recall@10 0.0750 0.0647 0.0554 0.0782 0.0865 0.0728 0.0704 0.0741 0.0549 0.0622 0.0874 0.0923 6.71∗
Recall@20 0.1086 0.0869 0.0835 0.1121 0.1221 0.1083 0.1024 0.1106 0.0776 0.0952 0.1249 0.1286 5.32∗
NDCG@10 0.0430 0.0371 0.0291 0.0434 0.0493 0.0398 0.0390 0.0397 0.0298 0.0330 0.0486 0.0516 4.67∗
NDCG@20 0.0514 0.0427 0.0362 0.0520 0.0582 0.0487 0.0470 0.0489 0.0355 0.0413 0.0581 0.0607 4.30∗

Toys

Recall@10 0.0869 0.0675 0.0557 0.0926 0.1010 0.0909 0.0843 0.0903 0.0539 0.0787 0.1031 0.1055 4.46∗
Recall@20 0.1173 0.0895 0.0816 0.1240 0.1303 0.1278 0.1123 0.1240 0.0756 0.1072 0.1392 0.1434 10.10∗
NDCG@10 0.0517 0.0396 0.0308 0.0540 0.0620 0.0521 0.0496 0.0515 0.0290 0.0444 0.0604 0.0625 0.81∗
NDCG@20 0.0594 0.0452 0.0373 0.0619 0.0694 0.0614 0.0566 0.0600 0.0344 0.0516 0.0696 0.0720 3.75∗

Children

Recall@10 0.1298 0.1303 0.1126 0.1536 0.1729 0.1752 0.1471 0.1706 0.1435 0.1675 0.1709 0.1924 9.82∗
Recall@20 0.1843 0.1832 0.1735 0.2118 0.2366 0.2337 0.2064 0.2320 0.1930 0.2249 0.2334 0.2589 9.43∗
NDCG@10 0.0763 0.0764 0.0585 0.0917 0.1038 0.1086 0.0861 0.1037 0.0884 0.1040 0.1038 0.1176 8.29∗
NDCG@20 0.0900 0.0897 0.0738 0.1063 0.1199 0.1234 0.1010 0.1191 0.1009 0.1184 0.1195 0.1343 8.83∗

Comics

Recall@10 0.2517 0.2320 0.1304 0.2857 0.3055 0.3196 0.2975 0.3144 0.2363 0.3163 0.3193 0.3317 3.79∗
Recall@20 0.2986 0.2791 0.1896 0.3322 0.3513 0.3650 0.3456 0.3649 0.2846 0.3631 0.3680 0.3833 5.01∗
NDCG@10 0.1875 0.1642 0.0720 0.2061 0.2319 0.2430 0.2219 0.2327 0.1478 0.2377 0.2435 0.2485 2.26∗
NDCG@20 0.1993 0.1760 0.0869 0.2178 0.2435 0.2545 0.2340 0.2454 0.1600 0.2496 0.2558 0.2615 2.75∗

ML-1M

Recall@10 0.1614 0.2874 0.2349 0.2428 0.2745 0.2623 0.2397 0.2598 0.1611 0.2409 0.2866 0.3000 4.38∗
Recall@20 0.2298 0.3955 0.3422 0.3439 0.3707 0.3709 0.3455 0.3737 0.2291 0.3571 0.3993 0.4132 4.48∗
NDCG@10 0.0841 0.1619 0.1252 0.1374 0.1576 0.1463 0.1296 0.1349 0.0832 0.1261 0.1582 0.1684 4.01∗
NDCG@20 0.1013 0.1892 0.1524 0.1629 0.1818 0.1681 0.1561 0.1636 0.1003 0.1553 0.1867 0.1970 4.12∗

ML-20M

Recall@10 0.0992 0.1739 OOM 0.1588 0.1673 0.1922 0.1859 0.1915 0.1106 0.1707 0.1957 0.1786 1.82∗
Recall@20 0.1622 0.2649 OOM 0.2390 0.2493 0.2919 0.2844 0.2909 0.1866 0.2672 0.2959 0.2753 1.37∗
NDCG@10 0.0478 0.0907 OOM 0.0845 0.0895 0.1004 0.0967 0.1002 0.0515 0.0862 0.1015 0.0924 1.10∗
NDCG@20 0.0636 0.1136 OOM 0.1047 0.1102 0.1255 0.1214 0.1251 0.0706 0.1105 0.1267 0.1167 0.96∗

For each dataset, the best performance in MSSG-u and MSSG is in bold, and the best performance among the baseline methods is underlined. The column “imprv" presents the
percentage improvement of MSSG or MSSG-u over the best-performing baseline methods. The ∗ indicates that the improvement is statistically significant at 95% confidence level.

within the sequence. Though promising, this design results in qua-
dratic time complexities and leads to the over-smoothing issue
(Section 6.3). As shown in the literature [2, 34], this issue could
substantially limit the model scalability and degrade the recom-
mendation performance. In contrast, by modeling sequences as
star graphs, MSSG could fundamentally address the over-smoothing
issue while still being able to capture the long-range dependen-
cies within sequences. Consequently, as presented in Table 1, MSSG
could enable significant improvement over SASRec on different
recommendation scenarios.

6.1.5 Comparison between MSSG and SASRec-Max. Table 1 also
shows that overall, both MSSG and MSSG-u achieve superior per-
formance over SASRec-Max on the six datasets. For example, at
Recall@10, MSSG and MSSG-u achieves an average improvement
of 11.4% and 7.7%, respectively, over the six datasets compared
to SASRec-Max. SASRec-Max mitigates over-smoothing by fusing
embeddings from both shallow layers and deep layers using max
pooling. In contrast, MSSG fundamentally addresses over-smoothing
by modeling sequences using star graphs, thereby avoiding infor-
mation propagation among items. The substantial improvement of
MSSG over SASRec-Max shows that our approach is more effective
than hierarchical fusion [27] in both addressing over-smoothing,
and improving recommendation performance.

6.1.6 Performance Summary across Datasets. Table 2 shows the
average improvement of MSSG-u and MSSG over the baseline meth-
ods Caser, HAM and SASRec across the six datasets. We focus on
these baseline methods since they achieve the best performance in
terms of at least one evaluation metric on the datasets. As shown
in Table 2, both MSSG-u and MSSG significantly outperform the base-
line methods across the six datasets. For example, MSSG-u and MSSG

Table 2: Performance Improvement of MSSG-u and MSSG (%)

Method Metric Caser HAM SASRec

MSSG-u

Recall@10 28.2∗ 4.6∗ 7.0∗
Recall@20 28.5∗ 6.5∗ 5.7∗
NDCG@10 29.6∗ 2.5∗ 7.2∗
NDCG@20 29.8∗ 3.8∗ 7.0∗

MSSG

Recall@10 32.8∗ 7.8∗ 10.6∗
Recall@20 32.5∗ 9.3∗ 8.7∗
NDCG@10 34.7∗ 6.0∗ 11.2∗
NDCG@20 34.4∗ 7.0∗ 10.6∗

In this table, the column Caser, HAM and SASRec represents the percentage improvement of
MSSG-u and MSSG over the corresponding method. The ∗ indicates that the improvement is
statistically significant at 85% confidence level.

achieves a significant average improvement of 7.0% and 10.6%, re-
spectively, over SASRec at Recall@10 across the six datasets.

6.2 Comparison on Users with Different
Activity Levels

We also compare the performance of MSSG and MSSG-u with the
best-performing SA-based SR method SASRec on users with differ-
ent activity levels. Specifically, we quantify users’ activity levels
using the number of interactions in their history, and bin users into
different buckets based on their activity levels. In this analysis, we
use ten buckets in total: five buckets correspond to the top-10%,
· · · , top 40-50% most active users; the other five buckets are for
the bottom 40-50%, · · · , bottom-10% most active users. Figure 3
presents the performance of MSSG, MSSG-u and SASRec on Beauty,
Toys and Children. We present the results on Comics, ML-1M and
ML-20M in Appendix D.1 (Figure A1). The results on Comics, ML-1M
and ML-20M have a similar trend with that shown in Figure 3.

As shown in Figure 3, MSSG outperforms SASRec by a remark-
able margin on both active and less active users across the three
datasets. Similarly, MSSG-u substantially outperforms SASRec on
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MSSG MSSG-u SASRec

(a) Beauty (b) Toys (c) Children

Figure 3: Performance on users of different activity levels

MSSG SASRec

(a) Beauty (b) Toys (c) Children

(d) Comics (e) ML-1M (f) ML-20M

Figure 4: The average similarity 𝑎𝑚 in different blocks of
MSSG and SASRec

users of different activity levels on Beauty and Toys, and achieves
highly competitive performance with SASRec on Children. These
results signify that by modeling sequences using star graphs, MSSG
and MSSG-u could more accurately estimate the intent of users with
different activity levels compared to SASRec. Note that users’ ac-
tivity level is not the only factor in determining the difficulty of
estimating their intent. As a result, we do not expect a strictly in-
creasing or decreasing performance curve as activity levels change.

6.3 Analysis on Over-smoothing
We analyze if the state-of-the-art SA-based SR method SASRec suf-
fers from the over-smoothing issue. Specifically, for each dataset,
we train a SASRecmodel consisting of six SA blocks. Apart from the
number of blocks, we use the best-performing hyper-parameters of
SASRec on each dataset to train the model. Subsequently, we calcu-
late the average similarity between the embeddings of items within
a sequence for each SA block. We denote the average similarity
calculated from the output of the𝑚-th SA block as 𝑎𝑚 . We discuss
the details on the calculation of 𝑎𝑚 in Appendix D.2.

We use 𝑎𝑚 to assess whether the SASRec model suffers from
the over-smoothing issue. In particular, the increase of 𝑎𝑚 over
𝑚 implies that generally, the embeddings of items within a user’s
interaction sequence become more and more similar across blocks.
This serves as strong evidence to demonstrate that the SASRec
model suffers from the over-smoothing issue. We also evaluate if
MSSG suffers from over-smoothing by calculating 𝑎𝑚 from the MSSG
model trained using the same hyper-parameters as in SASRec. We
present 𝑎𝑚 calculated from MSSG and SASRec in Figure 4. Note that,
we observe a similar trend to that in Figure 4 when using a smaller
number of blocks. Due to the space limit, we present results for
using six blocks only.

As illustrated in Figure 4, in SASRec, 𝑎𝑚 increases across blocks
on all the six datasets. For example, on Beauty, the average similar-
ity rises from 0.56 (i.e., 𝑎1) in the first block to 0.78 (i.e., 𝑎6) in the last
block. These results demonstrate that SASRec substantially suffers
from the over-smoothing issue. In contrast, as shown in Figure 4, 𝑎𝑚
from MSSG remains constant across blocks, indicating that MSSG is
not affected by over-smoothing. The key distinction between MSSG
and SASRec lies in their sequence modeling approaches. While
SASRec utilizes fully connected graphs to model sequences, MSSG
instead models sequences using star graphs. As a result, MSSG does
not require information propagation among item nodes, and allows
each item to maintain its individual information across blocks. Con-
sequently, MSSG could fundamentally address the over-smoothing
issue. As shown in the literature [27, 32], the over-smoothing is-
sue could substantially deteriorate the model scalability, and thus,
degrade the model performance in the task of interest. Therefore,
by addressing this issue, MSSG could achieve superior performance
over SASRec on benchmark datasets as shown in Table 1.

6.4 Analysis on Scalability
The huge success of Transformer [31] highlights the importance
of a method’s scalability in determining its utility for real-world
applications. In this analysis, we evaluate the scalability of MSSG and
SASRec with respect to the number of blocks and the embedding
dimensions. Particularly, we assess the ability of MSSG and SASRec
in learning deep (i.e., with a large number of blocks) and wide
(i.e., with a large embedding dimension) models on benchmark
datasets. To enable a fair comparison, in this analysis, we apply the
best-performing hyper-parameters of SASRec on each dataset for
SASRec and MSSG.

Figure 5 presents the performance of SASRec and MSSG at Recall@10
over different numbers of blocks on the six benchmark datasets.
We limit the maximum number of blocks (𝑛𝑏 ) to six, as we got the
out-of-memory issue with SASRec when 𝑛𝑏 > 6.

MSSG SASRec

(a) Beauty (b) Toys (c) Children

(d) Comics (e) ML-1M (f) ML-20M

Figure 5: Performance over different numbers of blocks

Figure 5 demonstrates that MSSG outperforms SASRec at the scal-
ability with respect to 𝑛𝑏 . In particular, MSSG maintains reason-
able performance as 𝑛𝑏 increases on all datasets, while SASRec
fails on four out of the six datasets (Children, Comics, ML-1M, and
ML-20M) when 𝑛𝑏=6. As discussed in Section 6.3, the state-of-the-art
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SA-based SR method SASRec substantially suffers from the over-
smoothing issue. Consequently, SASRec struggles to learn deep
models, as the item embeddings become increasingly similar across
SA blocks [27, 32, 36]. In contrast, as shown in Section 6.3, MSSG is
not affected by over-smoothing, and thus, could enable superior
scalability with respect to 𝑛𝑏 compared to SASRec. It is worth not-
ing that, on ML-1M and ML-20M, the best performing MSSG-u and
MSSG models have at least 4 blocks (Appendix B), which reveals
that the better scalability of MSSG at 𝑛𝑏 could translate into superior
recommendation performance on real datasets.

Due to the space limit, we present the scalability comparison
between MSSG and SASRec in terms of embedding dimensions (i.e.,
𝑑) in Appendix D.3. As shown in Appendix D.3 (Figure A2), MSSG
also substantially outperforms SASRec at the scalability over 𝑑 . We
refer the audience to Appendix D.3 for a more detailed discussion.

6.5 Comparison on Run-time Performance
We conduct an analysis to evaluate the run-time performance of
MSSG and SASRec during testing. To enable a fair comparison, sim-
ilarly to that in Section 6.4, we apply the best-performing hyper-
parameters on SASRec for MSSG and SASRec, and compare their
run-time performance during testing when using different num-
bers of blocks. In addition, we perform the evaluation for both
MSSG and SASRec using NVIDIA Volta V100 GPUs, and report the
average computation time per user over five runs in Figure 6. More-
over, we use the same evaluation script for both MSSG and SASRec
to avoid any run-time performance differences that might arise
from differences in the implementation. We focus on the run-time
performance during testing due to the fact that it could signify
the models’ latency in real-time recommendation, which could
significantly affect the user experience and thus revenue.

MSSG SASRec

(a) Beauty (b) Toys (c) Children

(d) Comics (e) ML-1M (f) ML-20M

Figure 6: Run-time performance over the number of blocks

As shown in Figure 6, on all the datasets, MSSG achieves stronger
run-time performance compared to SASRec over different num-
bers of blocks, and the improvement increases as the number of
blocks increases. Particularly, when using the best-performing 𝑛𝑏
of SASRec on each dataset (e.g.,𝑛𝑏 = 2 on Beauty as in Appendix B),
MSSG achieves an average speedup of 16.6% compared to SASRec
over the six datasets. Note that, as shown in Figure 5, with the same
hyper-parameters, MSSG also outperforms SASRec in terms of the
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Figure 7: The average entropy of attention weight distribu-
tion in SASRec and uniform distribution

recommendation performance on all the datasets except ML-20M.
These results demonstrate that compared to SASRec, MSSG could
generate more accurate recommendations in lower latency, thus sig-
nificantly improving the user experience. Note that on GPUs, all the
computations are performed in parallel. However, when calculating
the time complexity (Section 4.5), we assume the computations are
serial. Therefore, in terms of the run-time performance on GPUs,
the improvement of MSSG over SASRec may not be as significant
as that suggested by the time complexity. However, in many ap-
plications, the recommendation model could be deployed on edge
devices with limited computing resources. In these applications, as
suggested by the time complexity comparison (Section 4.5), MSSG
could achieve a more substantial speedup over SASRec.

6.6 Analysis on Attention Weights in SASRec
We conduct an analysis to investigate the information gain derived
from the attention weights learned in SASRec. Particularly, we mea-
sure the information gain by comparing the average entropy from
the attention weight distributions and that from uniform distribu-
tions (i.e., weigh items equally). We present more details on the
calculation of the average entropy in Appendix D.4. A higher differ-
ence between the average entropies indicates a larger information
gain derived from the learned attention weights. Figure 7 shows the
average entropy from attention weight distributions and uniform
distributions on Beauty, Toys and Children. Following SASRec,
we focus on the attention weights learned in the first SA block in
this analysis.

As shown in Figure 7, on all the three datasets, the difference
between the average entropy from attention weight distributions
and uniform distributions is highlymarginal, indicating that SASRec
achieves limited information gain from the learned attentionweights.
An important difference between MSSG and SASRec is that SASRec
captures the dependencies in each pair of items by learning atten-
tion weights, while MSSG does not explicitly model these depen-
dencies. As shown in Figure 7, on the notoriously sparse recom-
mendation data [22], limited information gain could be achieved by
capturing the dependency in each item pair. As a result, as shown
in Table 1 and Table 2, without explicitly modeling dependencies in
item pairs, MSSG and MSSG-u could still achieve significant improve-
ment over SASRec on benchmark datasets.

7 CONCLUSION
In this paper, we identify the over-smoothing issue in SA-based
SR methods. To address this issue, we model sequences using star
graphs and develop MSSG for SR. Different from SA-based methods
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in which each item could aggregate information from all others,
MSSG introduces an internal node for information aggregation and
does not propagate information among item nodes. Consequently,
MSSG could fundamentally address the over-smoothing issue and
achieve a linear time complexity with respect to the sequence length.
We extensively evaluate MSSG against ten state-of-the-art base-
line methods on six benchmark datasets. Our experimental results
show that overall, MSSG outperforms baseline methods on all the
datasets except for ML-20M, with an improvement of up to 10.10%.
On ML-20M, a variant of MSSG could still significantly outperform
all the baseline methods. Our analysis shows that MSSG achieves
superior scalability with respect to both the number of blocks and
the embedding dimensions compared to the state-of-the-art SA-
based SR method SASRec. This improved scalability could lead to
enhanced recommendation performance in benchmark datasets. In
addition, our complexity analysis and run-time performance com-
parison together demonstrate that MSSG is both theoretically and
practically more efficient than SASRec. Thus, MSSG could be partic-
ularly desirable in applications with limited computing resources.
Our analysis also suggests that SASRec achieves limited informa-
tion gain by explicitly modeling dependencies between items using
the SA mechanism. Therefore, without modeling the dependencies,
MSSG could still outperform SASRec in benchmark datasets.
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A NOTATIONS

Table A1: Key Notations

notations meanings

U the set of users
V the set of items
𝑆𝑖 the historical interaction sequence of user 𝑢𝑖
𝑣𝑠𝑡 (𝑖 ) the 𝑡 -th item in 𝑆𝑖
𝐵𝑖 the fixed-length sequence converted from 𝑆𝑖
𝑣𝑏𝑡 (𝑖 ) the 𝑡 -th item in 𝐵𝑖

𝑣𝑔 (𝑖 ) the ground-truth next item that user 𝑢𝑖 will interact with

Table A1 summarizes the key notations used in this paper.

B REPRODUCIBILITY
We implement MSSG and MSSG-u in Python 3.9.13 with PyTorch
1.10.2. We use Adam optimizer with learning rate 1e-3 for MSSG
and MSSG-u on all the datasets. For all the baseline methods ex-
cept FPMC and Bert4Rec, we use the implementation provided by
the authors in GitHub. For FPMC and Bert4Rec, we use the im-
plementation in RecBole 3, a widely used library to benchmark
recommendation methods. For SASRec, FMLP, MSSG-u and MSSG, we
search the embedding dimension 𝑑 in {64, 128, 256, 512}, the length
of the fixed-length sequences𝑛 in {50, 75, 100, 125, 150, 175, 200}, the
number of heads 𝑛ℎ in {1, 2, 4, 8, 16}, and the number of blocks 𝑛𝑏
in {1, 2, 3, 4, 5}. For Bert4Rec, we search 𝑑 in {64, 128, 256, 512},
𝑛ℎ in {1, 2, 4, 8, 16} and 𝑛𝑏 in {1, 2, 3, 4, 5}. For SASRec-Cat and
SASRec-Max, the search range of 𝑑 , 𝑛 and 𝑛ℎ is the same with
that in SASRec. We search 𝑛𝑏 in SASRec-Cat and SASRec-Max in
{2, 3, 4, 5} as SASRec-Cat and SASRec-Max are equivalent to SASRec
when 𝑛𝑏=1. We use GELU [11] as the activation function in the
feed-forward layer for SASRec, SASRec-Cat, SASRec-Max MSSG-u
and MSSG. We use the PyTorch implementation in GitHub 4 for
SASRec. For FPMC, we search 𝑑 in {64, 128, 256, 512}. For Caser we
search 𝑑 in {64, 128, 256, 512}, the length of the subsequences 𝑛𝑠
in {4, 5, 6}, the number of negative items during training 𝑛𝑝 in
{1, 2}, the number of vertical filters in CNNs 𝑛𝑣 in {1, 2, 4}, and the
number of horizontal filters in CNNs 𝑛𝑓 in {4, 8, 16}. For NARM we
search 𝑑 in {64, 128, 256, 512} and the learning rate 𝑙𝑟 in {1e-2, 1e-3,
1e-4}. For HGN we search 𝑑 in {64, 128, 256, 512}, 𝑛𝑠 in {3, 4, 5}, 𝑛𝑝
in {1, 2}, and the regularization factor 𝜆 in {0, 1e-3, 1e-4}. For HAM
we search 𝑑 in {64, 128, 256, 512}, 𝑛𝑠 in {3, 4, 5}, 𝑛𝑝 in {1, 2}, 𝜆 in
{0, 1e-3, 1e-4}, the number of items in low order 𝑛𝑙 in {1, 2, 3}, and
the order of item synergies 𝑛𝑜 in {1, 2, 3}. Following the instruction
in RecBole, we use the Bayesian personalized ranking loss [24]
and cross-entropy loss for FPMC and Bert4Rec, respectively. We
report the best-performing hyper-parameters of MSSG, MSSG-u and
baseline methods in Table A2.

C DATASET PRE-PROCESSING AND
STATISTICS

Following SASRec, for Beauty, Toys and ML-1M, we only keep the
users and items with at least 5 ratings. For Children, Comics and
ML-20M, which are not used in SASRec, following HAM, we keep users
with at least 10 ratings, and items with at least 5 ratings. Following
3https://recbole.io/
4https://github.com/pmixer/SASRec.pytorch

MSSG MSSG-u SASRec

(a) Comics (b) ML-1M (c) ML-20M

Figure A1: Performance on users of different activity levels

the literature [14, 22], we consider the ratings as users’ implicit
feedback, and convert ratings into binary values. Particularly, for
ratings with a range from 1 to 5, we convert ratings 4 and 5 to
binary value 1, or 0 otherwise. Table A3 presents the statistics of
the processed datasets.

D MORE EXPERIMENTAL RESULTS AND
DETAILS

D.1 Comparison on Users with Different
Activity Levels (Cont.)

Figure A1 shows the performance of MSSG, MSSG-u and SASRec in
users of different activity levels on the Comics, ML-1M and ML-20M
datasets. As shown in Figure A1, the performance on Comics, ML-1M
and ML-20M has a similar trend with that on Beauty, Toys and
Children (Figure 3 in Section 6.2). Particularly, MSSG substantially
outperforms SASRec on Comics and ML-1M in both active and less
active users. Similarly, in most activity levels, MSSG-u considerably
outperforms SASRec on ML-1M and ML-20M. On Comics, MSSG-u also
achieves highly comparable performance with SASRec.

D.2 Calculating Average Similarities Between
Item embeddings

Given the transformed sequence of user 𝑢𝑖 : 𝐵𝑖={𝑣𝑏1 (𝑖), 𝑣𝑏2 (𝑖), . . . }
(Section 4.1), we calculate the average similarity of the embeddings
of items within a sequence for each SA block as follows:

𝑎𝑚𝑖 =
1

|𝐵𝑖 |2
|𝐵𝑖 |∑︁
𝑗=1

|𝐵𝑖 |∑︁
𝑘=1

cos(e𝑚𝑗 , e
𝑚
𝑘
), (6)

where |𝐵𝑖 | is the length of 𝐵𝑖 ; e𝑚𝑗 is the embedding of the 𝑗-th item
in 𝐵𝑖 after the𝑚-th SA block; cos(·) is the cosine similarity; 𝑎𝑚

𝑖
is

the average similarity between the embeddings of items in 𝐵𝑖 after
the 𝑚-th SA block. Note that as illustrated in Figure 1b, SASRec
updates the embedding of each item within the sequence in each SA
block. Thus, we expect different embeddings for the same item in
different blocks. We eliminate 𝑖 in e𝑚

𝑗
(𝑖) in Equation 6 for simplicity.

Given 𝑎𝑚
𝑖
, we average it over all the users in the dataset:

𝑎𝑚 =
1
|U|

∑︁
𝑢𝑖 ∈U

𝑎𝑚𝑖 , (7)

where 𝑎𝑚 is the average similarity over all the users and U is the
set of all the users.

https://recbole.io/
https://github.com/pmixer/SASRec.pytorch
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Table A2: Best-performing Hyper-parameters in MSSG, MSSG-u and Baseline Methods

Dataset FPMC Caser NARM HGN HAM SASRec

𝑑 𝑑 𝑛𝑠 𝑛𝑝 𝑛𝑣 𝑛𝑓 𝑑 𝑙𝑟 𝑑 𝑛𝑠 𝑛𝑝 𝜆 𝑑 𝑛𝑠 𝑛𝑝 𝜆 𝑛𝑙 𝑛𝑜 𝑑 𝑛 𝑛ℎ 𝑛𝑏

Beauty 512 512 4 1 2 8 512 1e-3 512 3 2 1e-3 512 3 2 1e-3 1 1 128 75 4 2
Toys 512 512 4 1 1 4 512 1e-3 512 3 1 1e-4 512 3 1 1e-3 1 1 128 50 2 3
Children 128 512 4 1 2 4 256 1e-4 256 3 1 0 256 4 2 1e-4 1 2 256 175 2 1
Comics 256 512 4 1 1 4 256 1e-3 512 3 1 0 512 3 1 0 1 3 256 200 1 1
ML-1M 256 128 6 1 4 16 512 1e-4 128 4 1 1e-3 512 5 1 1e-3 2 1 256 150 4 3
ML-20M 128 256 6 1 2 8 OOM OOM 128 4 2 1e-3 256 5 2 1e-3 3 3 256 150 2 3

Dataset SASRec-Cat SASRec-Max Bert4Rec FMLP MSSG-u MSSG

𝑑 𝑛 𝑛ℎ 𝑛𝑏 𝑑 𝑛 𝑛ℎ 𝑛𝑏 𝑑 𝑛ℎ 𝑛𝑏 𝑑 𝑛 𝑛ℎ 𝑛𝑏 𝑑 𝑛 𝑛ℎ 𝑛𝑏 𝑑 𝑛 𝑛ℎ 𝑛𝑏

Beauty 256 50 4 3 128 50 2 3 512 4 1 128 200 1 3 256 75 4 2 256 75 16 3
Toys 256 75 8 5 128 100 16 3 512 4 1 128 50 1 3 256 50 4 4 256 50 8 4
Children 256 100 2 2 256 200 2 2 256 4 2 256 150 1 1 256 200 1 2 512 100 1 1
Comics 256 200 1 2 256 100 1 3 128 4 1 512 200 1 1 512 200 1 1 512 200 1 1
ML-1M 256 75 4 3 512 200 2 4 256 4 3 512 175 1 1 512 200 2 5 512 200 4 4
ML-20M 256 200 2 4 512 150 2 2 128 4 3 512 150 1 2 512 150 8 5 256 100 4 4

In the table. “OOM" represents the out-of-memory issue.

Table A3: Dataset Statistics

dataset #users #items #intrns #intrns/u #u/i

Beauty 22,363 12,101 198,502 8.9 16.4
Toys 19,412 11,924 167,597 8.6 14.1
Children 48,296 32,871 2,784,423 57.6 84.7
Comics 34,445 33,121 2,411,314 70.0 72.8
ML-1M 6,040 3,952 1,000,209 165.6 253.1
ML-20M 129,780 13,663 9,926,480 76.5 726.5

In this table, “#users", “#items" and “#intrns" represents the number of users, items and
user-item interactions, respectively. The column “#intrns/u" has the average number
of interactions of each user. The column “#u/i" has the average number of interactions
on each item.

MSSG SASRec

(a) Beauty (b) Toys (c) Children

(d) Comics (e) ML-1M (f) ML-20M

Figure A2: Performance over different embedding dimen-
sions

D.3 Scalability over Embedding Dimensions
Figure A2 presents the performance of SASRec and MSSG at Recall@10
over different embedding dimensions on the six datasets. We ob-
serve that when the embedding dimension𝑑=2048, both SASRec and
MSSG were unable to complete training within 24 hours. Thus, we
limit the maximum embedding dimension to 1024 in this analysis.
As shown in Figure A2, MSSG is also more scalable than SASRecwith
respect to𝑑 . On all the datasets, MSSG could perform reasonably well
when 𝑑=1024. However, SASRec fails on three out of the six datasets

(Toys, ML-1M and ML-20M) when 𝑑=1024. These results demonstrate
the superior scalability of MSSG over SASRec with respect to 𝑑 . We
also notice that as illustrated in Figure A2, the recommendation
performance of MSSG improves as𝑑 increases on both Children and
Comics. These results suggest that better scalability in 𝑑 also leads
to improved recommendation performance in real-world datasets.

D.4 Calculating Entropy from Attention Weight
Distributions

Given the attention map 𝐴 from the first SA block in SASRec, we
calculate the average entropy of the attention weight distributions
over all the items as follows:

−1∑
𝑢𝑖 ∈U

𝑛∑
𝑗=1

1(𝑣𝑏 𝑗
(𝑖) ≠ 𝑣0)

∑︁
𝑢𝑖 ∈U

𝑛∑︁
𝑗=1

1(𝑣𝑏 𝑗
(𝑖) ≠ 𝑣0)

𝑗∑︁
𝑘=1

(𝐴𝑖 𝑗𝑘 log(𝐴𝑖 𝑗𝑘 )),

(8)
where 1(𝑥) is an indicator function (i.e., 1(𝑥) = 1 if 𝑥 is true, oth-
erwise 0); 𝑛 is the length of the transformed sequence (Section 4.1);

𝑣𝑏 𝑗
(𝑖) ≠ 𝑣0 excludes the padding items; and −

𝑗∑
𝑘=1

(𝐴𝑖 𝑗𝑘 log(𝐴𝑖 𝑗𝑘 ))

is the entropy calculated from the attention weights of 𝑣𝑏 𝑗
(𝑖).
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